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A relation is obtained between the parameter describing the irreversible response of a driven dissipative
system and the spontaneous fluctuations of the thermodynamic extensive parameters of the system in
equilibrium. The development given in this paper extends the theorem, previously proven in the statis-
tical mechanical domain, to the macroscopic thermodynamic domain.

1. INTRODUCTION

HIS paper is one of a series of contributions to the
development of a theory of “irreversible thermo-
dynamics”—that is, to the extension of the methods of
thermodynamics to the treatment of real irreversible
processes. We shall show that the mean square deviation
of the spontaneously fluctuating extensive parameters
of a thermodynamic system in equilibrium is related
to the dissipative part of the admittance function which
characterizes the irreversible response of the system to
applied forces. If (%) denotes the mean square fluctua-
tion in the frequency interval determined by the range
of integration, we shall show that

—2k
<52>=Tf dwos(w)w™? 1.1)

o 28T
(8)=—vo f dwoy(w)w™2. (1.2)

The first of these equations applies to a system in which
all extensive parameters other than that which fluc-
tuates are held constant, whereas the second equation
applies to a system with similar constraints except that
the constraint on the energy is replaced by the condition
of adiabatic insulation. The quantities os(w) and oy (w)
are conductances defined appropriately to these re-
spective constraints. These equations may be re-ex-
pressed, although somewhat less directly, in terms of
equivalent fluctuating forces and then appear as
generalizations of the Nyquist electrical noise formula.!

The modern theory of irreversible thermodynamics
was first projected in 1931 by Onsager? with the for-
mulation of a general relation of reciprocity in the
mutual interference of two simultaneous irreversible
processes. Applications of this one basic theorem con-
stitute the totality of the existing theory of irreversible
thermodynamics.?

There are two possible methods of approach to the

* This work was supported in part by the ONR.

t Now at the Department of Physics, University of Illinois,
Urbana, Illinois.

1H. Nyquist, Phys. Rev. 32, 110 (1928).

2L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931);
see also H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).

3See S. R. DeGroot, Thermodynamics of Irreversible Processes
(North-Holland Publishing Company, Amsterdam, 1951).

theory of irreversible thermodynamics, which might be
characterized as the statistical approach and the ther-
modynamic approach. The statistical approach consists
of generalizing the methods of statistical mechanics, and
a theorem proved in this framework must then, of
course, be projected into the macroscopic thermo-
dynamic domain by a reasoning similar to that which
projects the statistical mechanical H theorem into the
macroscopic second law of thermodynamics. The alter-
native, or thermodynamic, approach consists in gener-
alizing the methods of thermodynamics itself, which is
already on a macroscopic level. Whereas the results of
the thermodynamic approach are thus in more imme-
diate contact with macroscopic irreversibility than are
the results of the statistical approach, the postulates of
the latter are closer to fundamental theory. Each
approach clearly has its advantages and each may be
independently prosecuted. The Onsager reciprocity
theorem, originally obtained by a thermodynamic
approach, has also been derived by the statistical
approach.?

The touchstone of the thermodynamic approach to
irreversibility theory lies in the intimate connection
between irreversible processes and the regression of
spontaneous fluctuations in equilibrium systems. This
connection has occasionally been criticized because con-
ventional thermodynamic fluctuation theory is an
approximate theory valid only for small fluctuations,
whereas real irreversible processes may involve ap-
preciable deviations from equilibrium.’® However, in a
previous paper® of this series we have reformulated
thermodynamic fluctuation theory on an exact basis
which is valid for fluctuations of arbitrary size. The
thermodynamic approach, based on the analysis of the
regression of spontaneous fluctuations, will be employed
in this paper.

In addition to Onsager’s reciprocity theorem a new
theorem has recently been established.” This relates the
dissipation parameter (the “resistance”) to the spectral
density of the equilibrium fluctuations and is the

4H. B. Callen, thesis, Department of Physics, Massachusetts
Institute of Technology, 1948.
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generalized analog of the Nyquist electrical noise
formula. The statistical approach was employed in the
derivation of this theorem, and the final projection of
the theorem into the macroscopic domain was omitted.
Thus, although a number of significant implications can
be drawn from the theorem, nevertheless it remains a
statistical mechanical rather than a thermodynamic
theorem. It is, in fact, difficult to see from the statis-
tical derivation what the macroscopic operational
meaning of certain quantities appearing in the formulas
would be. It is, therefore, necessary either to close the
hiatus between the statistical theorem and the macro-
scopic domain or to re-establish the theorem entirely
within the thermodynamic domain. In this paper we
shall establish the theorem by a totally thermody-
namic approach.

An extension of these results to systems having more
than one fluctuating parameter will be shown in a
subsequent paper to yield a generalization of Onsager’s
reciprocal relations.?

2. THE METHOD OF APPROACH

The theorem which we wish to establish is a relation
between the generalized admittance (or impedance) of

a dissipative system and the spectral density of the.

spontaneous fluctuations exhibited by the system in
equilibrium. The proof employs certain theorems re-
lating to random variables, as summarized in Appendix
A. In particular the Wiener-Khinchin formula (A.18)
relates the spectral density G(w) to the autocorrelation

function (£(8)£(t+ 1)),
1 @ »
T f_ O Q)

The autocorrelation function, in turn, is given by (see
Eq. (A.6))

s+ = [ WD, D)

where W1(£)d¢ is the probability of finding £ in the
range £ <t<g4d¢ and where {7, £|£) is the expec-
tation value of £ at a given time if it is known that £
had the value ¢ at 7 seconds earlier. Thus the theory
of random variables permits us to compute the spectral
density of the equilibrium fluctuations if we know the
two quantities W1(£) and (7, | £). The function W(£)
is, however, simply the distribution function of con-
ventional thermodynamic fluctuation theory. The
method of computing the conditional average {r, §|£)
is the essential element of the proof. The average shape
of a spontaneous fluctuation pulse is identical with the
observed shape of a macroscopic irreversible decay
toward equilibrium and is, therefore, describable in
terms of the macroscopic admittance function. The

8 A preliminary expression of theseresults appears in R. F.

Greene, thesis (University of Pennsylvania, September, 1951)
(unpublished).
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conditional average (r, £|£) can, therefore, be com-
puted in terms of the admittance function, and Egs.
(2.1) and (2.2) then yield the desired relation between
the spectral density G(w) and the admittance function.

Spontaneous fluctuations under various types of
constraint are of interest. A system may be placed under
constraints microcanonical with respect to all but that
particular extensive parameter in the fluctuation of
which we are interested. Alternatively, the microca-
nonical constraint on the energy may be replaced by
thermal isolation (all extensive parameters other than
the energy and the parameter whose fluctuation we are
interested in remain microcanonically constrained).
Finally, the constraints may be such that more than
one parameter is permitted to fluctuate. We shall
confine ourselves in this paper to consideration of the
first two of the above mentioned types of constraints,
postponing treatment of several simultaneously fluc-
tuating parameters to a later paper. The microcanonical
constraints will be considered first, and only minor
alterations in this development (considered in Sec. VI)
will be required to adapt the results to the fluctuations
under thermal isolation.

3. THE ADMITTANCE OF THERMODYNAMIC
SYSTEMS

In this section we shall formulate a thermodynamic
definition of the admittance which characterizes the
response of thermodynamic systems to applied ‘“forces.”
Certain analytic characteristics of the admittance will
be dictated by thermodynamic considerations.

It is intuitively clear that a thermodynamic system
can be subjected to periodic generalized forces, evoking
periodic changes in the thermodynamic parameters.
Thus, a gas enclosed in a cylinder with a movable
piston can be subjected to a periodic external pressure
evoking periodic changes in the volume. Similarly, a
periodic ambient temperature will evoke periodic
changes in the internal energy. For very low frequencies
the system will respond quasi-statically to the applied
force, but at higher frequencies the system responds in
an essentially irreversible way. The fact that the con-
ventional intensitive parameters (temperature, pressure,
etc.) have no strict meaning in a nonequilibrium system
constitutes the chief difficulty in the formulation of a
quantitative thermodynamic definition of the forces
and hence also of the admittance.

We shall find it convenient to frame our thermo-
dynamic analysis in the “entropy language,” in which
the entropy S is taken as a function of the internal
energy X, and of the equilibrium values of the various
other extensive parameters of the system X Xo---:
(volume, mole numbers, etc.),

S=S(Xo, X1, Xz, ) (31)
The intensive parameters in this formulation are

Fx=0S5/0Xx, (3.2)
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so that Fo=1/T, and various other intensive parameters
are P/T, — /T, etc. Except for Fy, the intensive param-
eters in the entropy language are simply —1/7 times
the intensive parameters in the more common “energy
language.” The instantaneous values of the extensive
parameters will be denoted by x;, as distinguished from
the equilibrium values denoted by X;. The deviation
of #; from its equilibrium value will be denoted by &,

§i=x—X;. (3.3)

The boundary conditions on an equilibrium system
are generally idealized as being of either of two limiting
types. That is, the extensive parameters may be rigidly
constrained (as is the volume of a system enclosed in a
rigid box) or they may be completely unconstrained
(as is the volume of a system enclosed within a cylinder
fitted with a freely movable piston). In order that the
latter type of system may be in equilibrium it must be
in interaction with another system, and the condition
of equilibrium is the equality of the appropriate inten-
sive parameters. Thus, a system enclosed in a cylinder
with a movable diathermal piston will be in equi-
librium if the outside of the piston is in contact with
another system and if the two systems have equal
values of the intensive parameters 1/T and P/T. A
system may be said to be “microcanonical” with
respect to those of its extensive parameters which are
rigidly constrained and to be “canonical” with respect
to those of its extensive parameters which are not con-
strained. The external system, with which the system
of interest is in contact, will here be referred to as the
“driving reservoir”’; the rationale of this nomenclature
will become evident immediately.

Let us suppose that the various extensive parameters
of the driving reservoir are now varied in such a way
that the intensive parameters of the driving reservoir
vary sinusoidally with angular frequency w. The system
of interest is, in turn, acted upon by these generalized
forces and will respond with a suitable time variation
of its extensive parameters. The generalized force is
defined as the intensive parameler of the driving reservoir.
For the purpose of this definition we require two distinct
characteristics of the driving reservoir. Firstly, the
driving reservoir must have characteristic relaxation
times small compared with 1/w, so that it is always in
quasi-static equilibrium and hence may be assigned
instantaneous intensive thermodynamic parameters.
Secondly, the size of the driving reservoir must be large
in comparison with that of the system of interest, so
that the induced changes in extensive parameters of
the system do not react to change the instantaneous
values of the intensive parameters of the driving
reservoir.

Consider a system canonical with respect to a par-
ticular extensive parameter x (where for convenience
we omit the subscript j) and microcanonical with
respect to all other extensive parameters. Let the cor-
responding intensive parameter of the driving reservoir
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be f(¢) and write

f)=F +———— f doB(@)eet.  (3.4)

(2m)}

This time-dependent applied force will induce a time-
dependent response %(#), which may be written in the
form

#(l)= X+—— f doa(o)e™,  (3.5)

(2m)}

where X is the equilibrium value of x associated with
the value F of f. The amplitude of the response a(w)
will be proportional to the amplitude of the applied
force B(w) for sufficiently small amplitudes. This
linearity-in-the-small may be characterized by an im-
pedance or an admittance function.

Y (w) =twa(w)/B(w). (3.6)

An important analytic requirement on the admittance
function follows from the fact that a constant impressed
force induces a finite and definite value of the extensive
parameter x. To formulate this requirement in terms
of the properties of the admittance function, consider
an impressed force of the constant magnitude

f(©)=F+AF, or §f()=AF, 3.7
which may be written in the form
51() = AF f dod(w)e, (3.8)

where §(w) is the Dirac delta-function. The response
follows from the definition (3.6) of the admittance
function

£(0)=AF f dod(@) Y (@)e“fio,  (3.9)

and we now inquire as to what properties ¥ (w) must
have in order that £(f) shall be a finite constant AX.
Expanding ¥(w) in a Laurent series in the vicinity of
w=0

Y(w) = Z Y™, (3 10)
and inserting this expansion into (3.9) we immediately

see that all y, with #<0 must vanish if 8x(¢) is to be
bounded. Thus, we find

Y (0) =wy1+0(w?), (3.11)

where 0(w?®) denotes a function of the order of w?. This
gives, in turn, from (3.11) and (3.9)

AX =AFy /i, (3.12)

or
y1=3i9X/dF, (3.13)

where the partial derivative is a thermodynamic
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derivative implying constant values of all other ex-
tensive parameters. We thus finally conclude that the
admittance function is of the form

Y (w) =iwdX/dF+0(w?). (3.14)

The causal relationship between the applied force
and the induced response has its analytic statement in
the further requirement that the impedance function
Y (w) may have poles only in the upper half of the
complex w-plane. For then Jordan’s Lemma® indicates
that

f dw?Y (w)ei =9 /iw=0 for ¢<9, (3.15)

-~

so that
tO)=x)—~X

0 )

dw f 4881(0)Y (w)ei« D /iwy  (3.16)

2wV _o _

receives no contribution from §f(6)=f()—F except for
times 6 which precede f; that is, the response of the
system is independent of the future behavior of the
force.

It should be kept in mind that the admittance func-
tion describes the response to small changes in the
force in the vicinity of some equilibrium value F. The
admittance function is, therefore, a function of the
equilibrium value F and is consequently a state
function of the system. This is reflected in the relation
between Y (w) and 0X/dF, the latter derivative being
a conventional state function of the system.

4. THE CONDITIONAL EXPECTATION VALUE (z, ¥'| £)

Having now formulated a thermodynamically ac-
ceptable definition of the admittance function, we
proceed with the analysis as outlined in Sec. 2. In
particular we are interested in computing the condi-
tional expectation value (r, §| ). That is, we seek the
expectation value of £ at time ¢47 conditional on £
having had the value ¢ at time ¢. This problem may be
indicated schematically as follows: Let Fig. 1 represent
a record of the spontaneous fluctuations of £ as a func-
tion of time in an equilibrium system. On such a record
we may locate all of the times at which £ assumes the
value ¢. From each such value we then translate a
distance 7 to the right and read a new value of £ The
average of all of these displaced values of £ is (7, #|£).

Consider now the collection of all the states repre-
sented in Fig. 1 by the condition £=¢. In this col-
lection of macroscopic states every microstate con-
sistent with the condition £=¢" is equally represented.
This fact follows directly from the theory of thermo-
dynamic fluctuations.® Thus, the ensemble of microstates

9 E. Whittaker and G. Watson, 4 Course of Modern Analysis
(Cambridge University Press, London, England, 1927).
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associated with the fluctuations to the value £ is precisely
the conventional microcanonical ensemble associaied with
the extensive parameter X+ ¢.

To illustrate the above statement we may consider
that the parameter x denotes the energy. The proba-
bility of an energy eigenstate with energy X+ &/ is
proportional to exp[ — (Xo+&/')/kT] and is, therefore,
the same for every microstate of energy Xo+£’. Thus
the collection of microstates associated with spon-
taneous fluctuations to the energy Xo+ £’ is composed
of all energy eigenstates with eigenvalues Xo+ £, each
with equal probability. This is just the microcanonical
ensemble associated with a system with total internal
energy equal to Xo+£'.

The problem of obtaining (r, £|£) may now be
reformulated. If a microcanonical ensemble corre-
sponding to X+ ¢ is established at time ¢, the ensemble
average of £ at time ¢+ will be (r, £'| £). This suggests
a direct macroscopic method of observing {r, | £). One
merely imposes microcanonical constraints on the
system, forcing it to have x=X4¢, and allows the
system to come to equilibrium. The macroscopic system
then represents the microcanonical ensemble of interest.

Wi V'/—\\/‘q: Z;{/’/\:A\X/'Af/’\’( _

t
£

o

v

—

F1c. 1. The spontaneous fluctuations in an equilibrium system.

At time /=0 the microcanonical constraint is lifted,
and the external force F is applied. The system then
decays toward the value x#=X. The macroscopically
observed value of £ at time (=7 is (7, £|£). Thus, by a
consideration of the associated stalistical ensembles we are
led to a connection between spontaneous fluctuations and
macroscopic irreversible processes.

We can now identify the average regression of a
spontaneous fluctuation with the decay function which
describes the macroscopic behavior of a system after
a microcanonical constraint has been lifted. Now there
is a simple way to get this macroscopic decay function.
Rather than impose a constraint which is to be lifted
at $=0, we may impose an appropriately chosen force
which is again to be lifted at ¢=0. This force, of course,
is chosen so as to induce the same initial macroscopic
state of the system as would the constraint which it
replaces.’® That is, we shall consider that until ¢{=0
the system is in equilibrium with an applied force
F4-6F of such a magnitude as to produce a value X+ ¢’

10 From the microscopic point of view we have merely replaced
the initial microcanonical ensemble by a canonical ensemble—a
change which, as we know, does not influence the macroscopic
thermodynamics of the system.
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of x. At time £=0 the applied force is suddenly changed
to F, and the macroscopically observed value of £ at
t=r is again (r, ¢|£). The problem is now in a form
suitable for analysis in terms of the impedance function.
The applied force is

. l 6F=(oF/0X)¥, t<0

(4.1)
0, t>0

or

o _(;r) ax f_:dw[(w) )ty W)aw]em’ (*2)

where the improper integral is to be interpreted in
terms of a Cauchy principal value. The response to this
applied force is

(21)*2% _:dwyii,)[(z) ()+(zr)%w]em’
3)

(=
or using Eq. (3.14),

1 oF ©
) =38+——¥ f do¥ (Wo—tcie.  (4.4)
270X Y _ o

//.E (t) from eqghn (4,4)

‘ /W(Togll€>

T—

F16. 2. The conditional expectation value (7, £'|£).

This equation gives a response such as is indicated
schematically in Fig. 2. A moment’s reflection makes it
clear that £(v) will be equal to (r, £|£) only if 7 is
positive. The value of (r, £| £) for negative values of 7
may be immediately obtained, however, by invoking
the principle of microscopic reversibility.* That is, we
need merely realize that (r, £|£) must be an even
function of 7, because the spontaneous fluctuations of
Fig. 1 are, on the average, symmetric.!! Thus (r, &|£)
is given by the solid curve in Fig. 2, or

1 0F po ‘
nElo=+— ¥ f_ do¥ (urter, >0

and 4.5)

1€ "+16Fs'fwd Y (w)w—2 <0
('r,f §)=3& max J wY (w)w e , t<0.

Now Fig. 2 shows that (7, £|£) can be written as
(r, #|&)=E(m)+E(—7)—¢, (4.6)

11'We here 1mphc1tly ignore magnetic or Coriolis fields. If these
are present (-r, £E) is symmetric only with respect to a simul-
taneous inversion of the time and the magnetic (or Coriolis) field.
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so that, for all 7 we obtain

L LoF = o
(r, & |5>=;5}E f_wdwY(w)w (etot+-e=ter),  (4.7)
or
(7 E/ff>='}“3€€' f ’ dol¥ (w)+¥*(w) Jo~2e.  (4.8)
2rdX J_,

5. THE SPECTRAL DENSITY

The essential part of our analysis has been carried
out with the calculation in the previous section of the
conditional average (7, | £). It now remains merely to
substitute this quantity into Egs. (2.2) and (2.1) to
obtain the spectral density of the spontaneous fluc-
tuations of £ From (2.2) and (4.8) we compute the
autocorrelation function

eetr+)= [axme)e

[_*5 f dw[Y(w)-f-Y*(w)]w"zem]» G

or

<t)(t+)>”‘101'? 2 wd Y T* ‘—2ir
HORO )= (8 f_ ALV (@470 is :

Now, from Eq. (2.1) or more directly from Eq. (A.15),
we find

Glw)=

— (5.3)
(2m)ta (

The theory of thermodynamic fluctuations predicts
precisely the mean square fluctuation (£?). For a system
canonical only with respect to a single extensive param-
eter x, the mean square fluctuation is simply®

(8)=—k4X/0F, (5.4)

where the partial differentiation connotes constant
values of all the other extensive parameters.

The spectral density of the spontaneous fluctuations
now becomes

G(w) =—(2/m)¥kos(w)/?, (5.5)
where the conductance,
os(@)=3[Y (w)+¥*)], (5.6)

is the real, or dissipative, part of the admittance. The
mean square fluctuations may be written in terms of
the spectral density by (A.17);

2k p*
(#)=-— [ dustoryer 5.7)
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which is our essential result for a system with micro-
canonical constraints.

It is sometimes convenient to describe the spon-
taneous fluctuations in the extensive parameters in
terms of a hypothetical generalized force §. This equiva-
lent force is taken as that which, if it were to act on the
system, would induce the observed spontaneous be-
havior of the extensive parameter. This hypothetical
force and the fluctuating extensive parameter are thus
related by the admittance function as in Egs. (3.4) to
(3.6), and the spectral density of the force is, therefore,
given by [see Eq. (A.16)]

(Spectral density of “force”)
2

—_— Glo 5.8
V(w)V*(w) « o8
k
== O] 69)
= — (2/21’)%]@133(‘0)7 (510)

where R, (w), the resistance, is the real part of the im-
pedance ¥—!(w). The mean square of the effective force
is

(6F2)=— (2/7r)kfRs(w)dw. (5.11)

6. FLUCTUATIONS UNDER AN ADIABATIC
CONSTRAINT

We have now obtained a theorem relating admittance
function and spontaneous fluctuations, each measured
under conditions in which all but a single extensive
parameter of the system is held constant. Our theorem
would apply to energy fluctuations if volume and mole
number were to be held constant or to volume fluctua-
tions if energy and mole number were to be kept con-
stant. Unfortunately these are not always operationally
convenient requirements. In particular, in studying
spontaneous volume fluctuations we may easily keep
the mole number constant, but we would find it ex-
tremely impractical to attempt to keep the internal
energy constant. A more practical arrangement would
be to study the spontaneous volume fluctuations of an
adiabatically insulated system, of constant mole
number. We thus seek to adapt our theorem to the
replacement of the condition X,=constant by the con-
dition of adiabatic insulation when treating the spon-
taneous fluctuations of any parameter xx, K>0.

Consider an adiabatically insulated system—that is,
a system enclosed by a wall which is impervious to the
flow of heat. For such a system the energy xo and the
other extensive parameters x;, xs, --- are not inde-
pendent. In fact, if 2% is the fluctuating parameter (all
%j, 770 or K, being held constant), then the work done
by the reservoir on the system is simply

dxo = Pkoxk, 6.1)
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where

.4
PKE——)
0Xk/ s,xj---

is the intensive parameter in the energy language of the
driving reservoir. Then we can see that the first-order
differential change in the entropy of the system vanishes

ds=(1/T)éwo— (Px/T)dxx '
=(Pg/T)éxx— (Px/T)dxx=0. (6.2)

Thus, we see that the adiabatic constraint is equiva-
lent, although only to first order in differentials, to the
condition of constant entropy. Therefore, the appro-
priate set of independent variables for the analysis of
fluctuations under an adiabatic constraint is .S, Xj,
Xo, - -. This is just the set of independent parameters
which defines the energy language in which the funda-
mental relation is

Xo=Xo(S, X1, Xa, -+ -). (6.3)

This is to be contrasted with the use of the set of inde-
pendent parameters X,, X1, X, - -+ which was appro-
priate for the analysis of fluctuations under micro-
canonical constraints, and which defines the entropy
language.

In adapting the analysis of the microcanonical case
to fluctuations under an adiabatic constraint, the.
generalized force F is to now be replaced by P (where
for convenience we omit the subscript K). Thus we
replace (3.4) by

1

p(0)=P—— f duB(w)e,

o (6.4)

and Y (w), as defined in (3.6), now has the dimensions
of X/P rather than of X/F. The Laurent expansion of
the energy language admittance function in analogy
with (3.14) is

Y (w) =iwdX/3P) s+ 0(?). (6.5)

Similarly, appropriately replacing (4.1) and succeeding
equations we find in analogy with (5.3)

G(w) =(2m)2P/0X) ()Y (w)+ V*(w)Jw?,  (6.6)
or
G(w) =(2/m)*P/3X) (§)ov(w)w™?, (6.7)
where
op(w) =3[V (0)+V*(w)]. (6.8)

The conductance oy(w) carries the subscript U to
explicitly indicate the fact that it is the real part of an
energy language admittance.

In order to complete the analysis it remains only to
evaluate the mean square fluctuation (£) under an
adiabatic constraint. This result is shown in Appendix B
to be

(£)=—+kToX/9P)s. (6.9)
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Then we obtain the final result

(&)= f dwoy(w)w™? (6.10)

This result may also be expressed in terms of the mean
square fluctuation of an equivalent generalized force,

[see Eq. (5.11)7,

BT o
(6 6% =—" f doRu(w), 6.11)

where Ry(w) is the real part of the energy language
impedance function.

7. CONCLUSION

We have now obtained the explicit relation between
the spontaneous fluctuations in an equilibrium system
and the function characterizing the irreversible response
of the system to applied forces. The results have been
obtained for two types of constraints which allow the
independent fluctuation of but a single extensive
parameter. The theorems are the generalization of the
Nyquist electrical noise formula and are the thermo-
dynamic statement of an analogous statistical theorem
previously proven.” Applications of the relations have
_been indicated in the paper on the statistical theorem.

In a succeeding paper the analysis will be extended
to systems in which more than one extensive parameter
is capable of independent fluctuation. It will then be
shown that the extended theorem includes® a generalized
form of the Onsager reciprocy theorem.

APPENDIX A: RANDOM VARIABLES AND THE
WIENER-KHINCHIN FORMULA

We here review certain pertinent aspects of the
theory of stationary random variables.”? At a given
time we can consider the past behavior of a random
variable £ to be described by a definite mathematical
function £(¢). The future behavior of a stationary random
variable is, however, only defined by a set of prob-
ability functions

W), Wal'; &, 1), Wa(E'; &7, 7, 7, 777) - -

such that W,(¢)d¢ is the probability of £ being in
the range & <#<§-+d¢ at any given future time; and
wo(§'; £, )dE'dE’ is the joint probability of £ being
in the range & <f<§4d¢ at any given future time,
and of also being in the range £’/<¢<g’+dE’ at r
“seconds later.

A conditional probability function may be con-
veniently defined by the relation

Py |E", 1) =Wa(&; &', 1)/ W), (A1)
and Pu(¢|g’, 7)d&”’ gives the probability that a

12 See M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945); and N. Wiener, Acta Math, 55, 117 (1930).
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measurement, made 7 seconds after a previous measure-
ment which gave £¢=¢, will give a value of £ in the
range £/ <E<§'4-dg".

In terms of these probability functions we may
compute any desired average values. Thus, the expec-
tation value of £is

®= f YW A(E)dE, A2)

and

@)= [@mera. (A3)

The autocorrelation function is defined as the expecta-
tion value of the product £(t)&(¢+7) (which, for a
stationary variable, is independent of ). Then

EOEE+)= f a f QLW ), (Ad)

or

(EOEE+))= f aEEW(E) f dg"E"Py(E'| €, 7). (A.5)
This equation can be written in the useful form

EOE+1)= f WA €18, (A6)
where

(r, ¢ 8= f WP, Y. (A7)

This latter quantity (r, £|£) has the significance of
the expectation value of £ at a given time if it is known
that £ had the value ¢ at 7 seconds previous.

For a stationary random variable the probability
functions defining its future behavior may be deter-
mined by observations on its past behavior. Similarly
various average values may be computed by direct
reference to the known function £(¢) (#<0). In particular
the autocorrelation function is given by

. 1 0
(GO 7)= lim— f RECTCERNCE

It is convenient to analyze the past behavior of the
variable in terms of the Fourier transform of £(f)
rather than in terms of £(¢) itself. A minor complication
arises, however, because £() is not integrable square in
the infinite range of ¢. This difficulty may be overcome
by defining a “cut-off function” &r(f) such that

S(t), —T<t<0
&)= { 0 otherwise. (&.9)
Then
fr(t)= ——;_‘); f dwBr(w)e®t, (A.10)
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and inversely

6T(w)='“—“f dtgr(t)e~ot=Br¥*(—w). (A.11)
The autocorrelation function becomes
1 00" 0 0
(Er(t)ET(i+T)=———~f dtf dwf do’
21|"T — —00 —00
X Br(w)Br(w’)eitteNigior,  (A.12)
But
f e+ = 2 (wt-o), (A.13)
whence
1 ©
(erOen(t)=— [ dolpre) e, (A1)
or
1 3]
COK+I= f oG,  (AS)
T —00
where
1
G(w)=(27)} lim —|Br(w)|= (A.16)
T T
If we take the particular value {=0, Eq. (A.15)
becomes
1 ® N\t p
()= —— f de(w)=(—) f deG(w), (A17)
(271')% —00 ™ 0

so that G(w) is identified as the spectral density.
Equation (A.15) is the statément of the Wiener-
Khinchin relation, to the effect that the autocorrelation
function and the spectral density are mutual Fourier
transforms. We use this theorem in its inverted form

Gl >—-—— f AHEQEC+)eor. (A18)

(2m)?

APPENDIX B: FLUCTUATIONS UNDER AN
ADIABATIC CONSTRAINT

The theory of thermodynamic fluctuations has not
been extended to the treatment of fluctuations under
an adiabatic constraint. We recall that for a system
canonical with respect to both the energy X, and some
other particular extensive parameter X the probability
of a fluctuation to instantaneous values %, x is®

W=, exp

_%[S_s_%(Xo—xo)—;(X—x)]}. (B.1)
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From this ensemble, however, only that subset of states
consistent with the condition

P(x—X) =x9— X, (B.2)

is accessible to a system under an adiabatic constraint.
Thus, for such a system the probability of fluctuation
to the state x is [inserting (B.2) in (B.1)]

W = Qe 18011k, (B.3)

where by virtue of (B.2) s is now to be considered a
function of x only. Then we can write

(&)= f dx(x— X)W (B.4)

= f dwe—(8=)k(x— X)2, (B.5)

This integral may be evaluated by making a series
expansion in the exponential and discarding higher
order terms

A} aS
s=S+—=06x0+—0x
X oX

0
RN a%s

dx6x0-+
0Xd3X, 0X?

1ra92s
+-[—-—ax2+2 5x02], (B.6)
2lax?

whence using (B.2) to eliminate the first-order terms

1% S
(s— S)=—[—~——6x2+2
2loxe

%S
6x6x0+ 50602] )
0XdX, 9X,?

-9 -7 7)
e
w9 -x(7) 7
+ai&(%)pz]<ax>z, ®.2)

where the subscript s indicates that s is held constant
in the differentiation rather than X, as would be
implied by the derivative with no explicit subscript.
Then by the identity

d 4SS —9 aS
—)-——————————————( ) (B.8)
aXo 00X, 90X 00X 93X,



we find
=9 x(7) 73x(7)
O
@) ) Jer
1 9P
= 7 5;0 s((Sx)"‘. (B.9)
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Thus
W= exp[l[——l—-a—P) ](60@)2], (B.10)
2L T oX/,
whence
fdx(&x)2 expll[—l a—l.i) ](890)2 ]»
)= 2 T X7 . (B.11)
fdx exp{—l—[—}— —(?z) ](63:)2}
28 T oX/,
0X
=2kT—-) f doeze—" / fdﬁe—”z.
oP/
(£)=kT0X/0P),. (B.12)
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Second-Order Acoustic Fields: Relations Between Density and Pressure*
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In acoustics the relations between the excess pressure and the excess density neglect effects of the fluid
flow. The object of this paper is to derive a general relation between the pressure and density which includes
streaming. This is done for a nonabsorbing ideal fluid from general thermodynamic arguments. The results
justified the static derivations (neglecting flow terms) which are used for more complex media.

I. INTRODUCTION

IN acoustics, one assumes (for a nonabsorbing medium)
that the relation between the excess pressure p, and
the excess density p. is of the form

pe=F(p.), (1)

where F is some function. For second-order fields the
pressure and density are expanded into first- and second-
order terms, i.e., po=p1+p2 and p.= p1+p2 (p1 and p1
are solutions of the wave equation!). Equation (1) can
be expanded in the form

1t pa= co*(p1t+ p2)+ 3 (c,>+co*c) pi?, (2)
where
co?=(0F/dp)s, evaluated at equilibrium values of the
pressure, po, and density, po;
2= (9ci®/8p),, evaluated at po and po;
¢,2=(9ce%/ 9p) », evaluated at po and po;

and s is the entropy. Using directional derivatives we
can see that the term in (2) which multiplies p,? is
(0%F/3p%)s.

The above argument takes no account of the fluid
flow. In this paper a relation is derived between p, and

* Supported by the Bureau of Ordnance, U. S. Navy.
1 C. Eckart, Phys. Rev. 73, 68 (1948).

p. which takes the flow into account. The derivation is
based on Eckart’s irreversible thermodynamics.? From
this new equation a relation corresponding to (2) will
be obtained.

II. EXACT PRESSURE DENSITY RELATION

We shall be interested only in a simple fluid where
¢ is a function of p and p alone. Since the time does not
enter explicitly into e, thermal or structural relaxation
is thus eliminated.® Because of the simplicity of the case
considered, standard equilibrium thermodynamic equa-
tions can be used.

Eckart has considered the energy relations in a
moving medium composed of a simple fluid. An equa-
tion relating the energy, pressure, density, and particle
velocity* is

pDe/Di+ pV-u=0, 3)

2 C. Eckart, Phys. Rev. 58, 267 (1940).

3L. I. Mandelstam and M. A. Leontovich, J. Exp. Theoret.
Phys. 7, 438 (1937), have treated relaxation of fluids by con:
sidering the Helmholtz free energy to be given by the usual
thermodynamic variables and an additional one which can be
associated with time. It would seem that the assumption e(p, )
elimates thermal and structural relaxation.

¢ Equation (3) follows from the first equation after Eq. (9) of
Eckart’s paper (see reference 2). The entropy change is set equal
to zero.



