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A careful treatment of the zero-point energy of the spin-waves in the Kramers-Heller semiclassical
theory of ferromagnetics leads to surprisingly exact results for the properties of the ground state, as shown
by Klein and Smith. An analogous treatment of the antiferromagnetic ground state, whose properties
were unknown, is here carried out and justified. The results are expected to be valid to order 1/S or better,
where S is the spin quantum number of the separate atoms.

The energy of the ground state is computed and found to lie within limits found elsewhere on rigorous
grounds. For the linear chain, there is no long-range order in the ground state; for the simple cubic and
plane square lattices, a finite long-range order in the ground state is found. The fact that this order can
be observed experimentally, somewhat puzzling since one knows the ground state to be a singlet, is explained.

I INTRODUCTION

RAMERS and Heller! were the first to give a

semiclassical . derivation of Bloch’s spin-wave
theory of ferromagnetism.? They started with a classical
ferromagnetic lattice, with classical spins and the
—JS;-S; Hamiltonian for exchange, found coordinates
which represented classically the small vibrations of the
system, and quantized these coordinates. In this way
they obtained a theory which in principle should be
good only to first order in 1/S (if the classical results
are considered zero’th order) but which actually, per-
haps by coincidence, is nearly exact. However, they
ignored the zero-point energy of their quantized vibra-
tions without considering its significance very deeply.
Klein and Smith? have recently pointed out the signifi-
cance of the zero-point energy, and have shown that
only if it is included does one get the correct energy
for the ferromagnetic ground state from the Kramers-
Heller treatment. That is, the true value of the classical
angular momentum .S, which should be used for atoms
with spin quantum number S is

Se=(S(S+ 1)

Therefore, since classically one can expect to be able
to set all spins exactly parallel, the energy available
from any —JS,:S; interaction is —JS2=—JS(S+1).
The total zero-point energy of the spin waves turns
out to be exactly such as to increase this to —J.S? the
correct value.

Hulthén* worked out the equivalent quantization
problem for small vibrations of simple antiferromagnetic
lattices from their classical equilibrium state. Here one
has the opposite sign, +J8;-S;, for the nearest neighbor
interaction, and the classical expectation is that suc-
cessive spins will align themselves antiparallel. How-
ever, Hulthén ignored the zero-point energy.

Bethe had worked out the exact ground state for the
antiferromagnetic linear chain of atoms with spin
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one-half.®® The result was so different from what
Hulthén had assumed to be true in his spin-wave theory
that he considered his former result to be of questionable
meaning. Aside from this simplest case, no rigorous
treatment of the antiferromagnetic ground state has
appeared. For this reason the very basis for the recent
theoretical work which has treated antiferromagnetism
similarly to ferromagnetism remains in question.”8 In
particular, since the Bethe-Hulthén ground state is not
ordered,® it has not been certain whether an ordered
state was possible on the basis of simple S;-S; interac-
tions. The best proof that it is seems so far to be the
experimental results of Shull et al.® using neutron
diffraction, in which they show that certain substances
do have ordered antiparallel spin arrangements. In
connection with these experimental results, a theory of
the ground state seems also of interest for comparison
with observed values of the magnetization of the various
sublattices.

In this paper we apply the results of the spin-wave
theory* to the approximate determination of the ground
state energy and wave function in a fashion similar to
the work of Klein and Smith,? by including the zero-
point energy and motion. This can be done for reason-
ably general lattices (we do explicitly the linear, plane
square, and simple cubic lattices) and for arbitrary
spin quantum number .S. The results obtained should
be valid to order 1/S (or perhaps even 1/ZS, where Z
is the number of nearest neighbors) since the approxi-
mations of the so-called “semiclassical” spin-wave
theory are valid quantum-mechanical approximations
to this order.

We are able to get a result for the ground-state energy
in all cases. This energy lies between the rigorous
limits which have been derived on the variational
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principle,t —3NJZ(S?) and —3NJZ(S?)(14-1/2S). In
fact, it is roughly equal to but slightly lower than
—3iNJZS*(1+1/22S). For the linear chain with S=3%,
there is good agreement with the rigorous result of
Bethe in spite of the fact that this is the worst possible
case for the approximation method, which in fact
should break down here, as we shall see.

More interesting results are obtained for the long-
range order. The quantity related to long-range order
which the theory furnishes directly is (8.)!, the average
z-component of the spin in one of the two sublattices
into which all the lattices we treat can be subdivided.
z is the direction in which we assume the spins of our
original unperturbed (i.e., classical) system were point-
ing. In turns out that the average spin on a given atom
is reduced by a small correction factor of order of
magnitude 1/2Z in the case of 2- and 3-dimensional
lattices. This result may be susceptible of experimental
verification by accurate neutron diffraction measure-
ments. B

In the case of the one-dimensional lattice (S,)?!
vanishes: The separate sublattices are on the average
in singlet states. A little consideration of the situation
for this lattice, in which it requires at most an energy
of the order J to break up the long-range order, while
N perturbation terms of order J are available to destroy
the ordered state, convinces one that this is a reasonable
result, and in fact it can be shown to agree with the
result for the rigorous ground state derived by Hulthén
and Bethe.>%° Physically, the situation is this: It is
known that in the one- and two-dimensional lattices in
ferromagnetism only an infinitesimal amount of thermal
energy in the spin-waves is necessary to break up
long-range order. In ferromagnetism, however, the zero-
point energy of the spin waves is not adequate to break
up long-range order because the quantized amplitudes
of the long-wavelength spin-waves, which are those
important in the thermal destruction of order, are
small. In the antiferromagnetic case it seems reasonable
to expect that the total amount of energy necessary to
break up long-range order is again infinitesimal in these
two cases; this is certainly true in the classical limit of
large S. However, here the zero-point energy can do the
job, because the large amplitudes of the longest wave-
length spin-waves permit a larger proportion of the
zero-point energy to go into them as compared to the
unimportant short-wavelength waves. This is only true
for the one-dimensional case; the two-dimensional case
is probably similar to the one- and two-dimensional
ferromagnets, having long-range order in the ground
state but losing it immediately under thermal excita-
tion.

Another result which has bearing on experiments,
while helping to give internal consistency to the theory,
can be derived by looking at the properties of the spin-
waves of longest wavelength, which actually represent
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motion of the transverse components of the total spin
of the entire sublattice. The sublattice spin, in the
ground state at least, certainly does not maintain a
constant, definite direction, since the ground state is a
singlet. Therefore, the amplitudes of motion of these
transverse. components of the total spin show an
apparent divergence, indicating that the coupled total
spins of the sublattices are indeed compelled to rotate
around at will in space. One might think that since the
approximate quantization of the spin-waves requires
that we assume a constant, large spin for the sublattice,
the fact that our theory then tells us that this is not
true represents an inconsistency in our reasoning. This
objection can be shown to be invalid in several ways,
particularly by assuming that a small anisotropy energy’
is present which holds the spins constant in the z-direc-
tion. It then appears that the required anisotropy is
actually infinitesimal, so that one can easily go to the
limit of zero anisotropy, using the anisotropy merely as
a convergence factor. Another way to answer this
objection is to assume that our theory really starts
out from “wave packets” of states, chosen in such a
way that the z-component of the total spin is roughly
constant. Inquiry into the properties of the longest
wavelength spin-waves shows that the energy required
to form such a packet is infinitesimal of order 1/N,
where N is the number of atoms in the lattice. This
energy is very small. An equivalent result, of experi-
mental interest, is that the time required for the total
spin to drift around from one orientation to another
essentially different one, in case we prepared the system
originally in a state of definite spin orientation, is of
order NV, and thus extremely large. It is clear that the
fact that the neutron diffraction experiments do indi-
cate definite sublattice arrangements, in spite of having
been averaged over some finite time, is perfectly
reasonable.

This argument, justifying the assumption of a large,
constant z-component of spin on the sublattice, is
admittedly somewhat circular: We have used the spin-
waves, derived on the basis of this assumption, to
verify it. However, it is difficult to find any reason
why the equation of motion of (S,)star should change
very much if the correction terms of the theory were
included. In any case, the argument shows internal
consistency. Every other result furnished by the theory
is at least not in disagreement with expectations arrived
at by other reasoning. For instance, the fact that the
sublattice spins are indeterminate in direction agrees
with our knowledge of singlet states; the energy values
lie between close limits set by a rigorous argument!;
order does not exist in one dimension, agreeing with
the rigorous result,>®° while it does exist in three
dimensions, agreeing with experiment.’® Further calcu-
lations which will be reported later on models for a
ferrimagnet, and for an antiferromagnet with next
nearest neighbor interaction, again give results whose
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consistency with one’s expectations furnishes further
strong confirmation of the theory. Thus, while we
cannot claim to have proved rigorously that this picture
of the ground state is the correct one, it can be said
that the probability is high that it is.

II. SPIN WAVES IN AN ANTIFERROMAGNET

Hulthen? has carried through the quantization of the
spin waves in an antiferromagnet, but we shall repeat
the derivation here, both for ready reference and
because his way of doing it is not easily adapted to our
purpose.

The Hamiltonian for an antiferromagnet is taken to
be, assuming that the Heisenberg exchange coupling is
responsible for the phenomena,

H=J 3 8;8, 1)
(k)

with J positive. The notation > will be used repeatedly

(G, )

to mean a sum over all pairs j and % of neighboring
atoms. j and &, of course, represent each a set of D
numbers, where D is the dimensionality; they may be
thought of as D-dimensional vectors. We are assuming
nearest neighbor: interaction, and also we shall work
only with lattices which can be divided into two sub-
lattices with the neighbors of one all on the other and
vice versa; the linear, plane square, and simple cubic
lattices only will be used as examples. None of these
restrictions is essential to carrying out a theory of this
general type.

The basic assumption we make in deriving the semi-
classical spin waves is that the state of the antiferro-
magnet is not greatly different from the classical ground
state in which the spins of one sublattice all point in
one direction (say +2), the spins of the other all in the

other direction. This is an assumption which must be-

justified, and which cannot, unfortunately, be justified
by external reasoning, as is possible in the ferromagnetic
case. We must use for this justification results of the
theory itself (as well as its internal consistency and its
agreement with other ideas).

Mathematically, we assume

S.~+S, S.>~-S. (2)

Here and later, atoms labeled 7 are always on sublattice
(1), while those labeled % are on sublattice (2). For the
linear chain, for example, this would mean that j is odd
and % is even. Where there is some possibility of con-
fusion, we shall also use a superscript (1) or (2) to
denote the sublattice. Now

SE=8¢— (5445, ©)

where S, is the “classical” total spin of an atom with

spin quantum number .S,

Se=[SES+1D T )]

P. W. ANDERSON

If our fundamental assumption, Eq. (2), is correct,
we can use the following binomial theorem expansion
for the z components,

S 2S o= (S22 4-S,2)/2S.,
St =St (Su+S,2)/25. ©)
Then the Hamiltonian is, by substitution,
=—3ZNJS 32T {2 i(S2+ Sy + 2 u(Sar2+Sus?) }
+J(Zk)Sszzk+S”ijk. (6)
g

This is valid to first order in the small quantities S,?
and S,% We introduce two sets of spin waves, one pair
for each sublattice:

Sai=(25/N)¥Lx exp(id-3)Ox
Syi=(28/N)Zx exp(—id-3) Py
Sax=(25/N)2_\ exp(—id-Kk)R)
Syp=—(2S/N)¥Y ) exp(id-k)Sy.
Here the wave number A runs only over N/2 values

from —m to m, giving 2NV coordinates in all?; for
example, for the linear chain of length ¥,

A=2mn/N, n=—3iN+2,---—2,0,2---3N. (8)

Thus, we have the correct number of degrees of freedom.
To show the commutation relations, let us write down
the inverse of (7):

Or=(2/NS)*L; exp(—ir-)Sjx
Pr=(2/NS)>; exp(id-3)S;y
Ry=Q2/NS) i exp(ir-k) S
Sy=—(2/NS); exp(—id-k)Syz.
That Qn commutes with Qy, Ry, and Sy, etc., is

obvious. We need to verify only the following com-
mutation rules:

Q)

(7

2
[0y Pad=— B 3 expl =i =) TS Sur]

2
=—73 exp[ij- A—A) TS,
NS; p[j- ( ) 1S

Under our assumption (2) as to the sublattice spins,
this gives
[Q)\, Py =8ty ; S/ 3N S~ 9)
[Ry, Sv]=—(2¢/NS)>_ s exp[ik- (A—2") ISz

. E’ia)\)\r. (10)
We use the well-known equation

2 exp[iA—2) - j]=3Now. 11

2 The use of A as a wave number, or inverse wavelength, for
the spin waves, is perhaps unfortunate; it is hoped that no
confusion will be caused.
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Note that the sign change in .S) comes from the require-
ment that the two commutators (9) and (10) be equal.

Now we must substitute (7) into the Hamiltonian (6).
First we replace S, by |Sz|?% etc., which simplifies
the presentation somewhat but does not change the
results. Then, of course [using (11)],

2 S22=(2S/N)x Zn 25 exp[i(d—2") -3 JONOn
=SZ)\ Q)\2’

and so forth for the squared terms. The cross-terms are

Z (SZszk+Sijyk)
(. k)

28
=—2 Z exp[i(d-3—2"-k) J(QaRx— PrS\/)
N A, )\’ 7, k

;V—x;« Z exp[id- (k—3)J(OxRx— P\Sx)

X3 expli(a—2)-i]
=9 ; (Q)‘R)‘—P)\S)\)(kz_ >€Xp[’L?. (k'—j)],

again using (11). The sum over {(k—j), of course, is
meant to run only over neighbors. We define

2Dy= 3. exp[id- (k—3)],

(k—j

(12)

where D is the dimensionality of the lattice. For the
three lattices we consider, the linear, plane square, and
simple cubic, v, is

D COSA;
A= Z

=1

(13)

(The A; are the D components of the vector A.) Then
the total Hamiltonian (6) is, in terms of the spin-wave
coordinates (again only for our three lattices):

H=—NDJS 2+ DISTA\[(Pa2+ 022+ Ry2+ 552
+27)\(Q)\R)‘—P)‘S)\)]. (14)
For our three lattices, of course, Z=2D. Similar
expressions may obviously be found for other simple
lattice types.
H is not quite in normal coordinate form, but a

canonical transformation may easily be found to make
it so. This transformation is

Pr=(ptp0)/VZ, Or=(qnt+g)/V2,
Sa=(pn—p0)/VZ, Ra=(qu—qa)/V2.

It leaves the commutation relations unchanged. The
Hamiltonian then becomes

H=—DJINS 2+ DISY\[gn2(14+va)+ pni(1— 1)
+ga2(1—7)+ pa2(14+m) 1.

(15)

(16)
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The eigenvalues of the harmonic oscillator terms in
(16) are easily found. The eigenvalues of

H=(p*/m)+mw?e, 17
if
[q’ P] =1,
are
H=(n+1)w, A7)
so that ’
H=—DJNS2+DISTA\[2nn+1)(1—72)}
+Quat+ 11—t (18)
For the ground state all #,=0, so that
E,=—DJNS24+2DJSY »(1— 7?3 (19)

The frequencies of the spin waves fall into two identical
branches, as we see by (18) ; using (17), these frequencies
are

w=DJS1—r)t (20)
Notice that ya~1—%N? A—0, so that
ax~DSJ\, A—0. (21)

This dispersion law is quite different from the ferro-
magnetic case, where w~N\2 The resulting decrease in
magnetization of a sublattice, and specific heat, will
vary as 7% at low temperatures if this dispersion law is
correct. Thus, they will differ from the ferromagnetic
case in which these quantities vary as T*%. It is question-
able whether this could be observed.

The difference in dispersion laws is not the most
important difference between the two types of spin
waves; it is the difference in amplitude per quantum of
excitation which leads to the more striking effects.
Since the potential and kinetic energies of a harmonic
oscillator are on the average the same,

(go)a(1+v) = PpHn(1—7) =51—md)},

(goIda=3[(1—7N)/(1+7) ],
o= 35[(1+1)/A—=) T,

in the ground state. These quantities are also propor-
tional to the extra amplitude per quantum of excitation.
Note that, for small A,

(pa—1/(VZN);

the mean amplitude of $1? per quantum diverges as
1/X (i.e., as the wavelength) for very long wavelengths.
This could be predicted from the dispersion law (21),
because one expects from analogy with ferromagnetism
that it requires only an energy proportional to A to
create a periodic disturbance in the spins of a certain
amplitude and of wavelength 1/); since here we require
an energy proportional to A per quantum, the amplitude
of disturbance per quantum must be as 1/A.

or

(22)

(23)
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III. THE ZERO-POINT ENERGY

We will compute first the energy of the ground state
as it is given by (19), assuming for the moment that
the basic premise (2) is right. In (19) the sum over A
may be replaced by an integral, since the values (8) of
\ are quite dense. Since there are 3V values of A,

2ALA=7)i=N/2{(1—7) i

= (27r)—1’§ f ] f driv+drp
X [1— (D—l i cos)\i)2r, (24)

2L(=r) = GN)Ip.

This equation defines 7p. A rough value of Ip may be
obtained by expanding the square root in (36) by the
binomial theorem and keeping only the first term,

Ipﬁl

Z COs\; ) > / 2D%=1—{cos?\)a/2D,

Ip~1—1/4D;
since D=Z7/2, this is equivalent to

Ip~1—1/2Z. (25)

This value leads to a rough ground-state energy-value,
from (19):

E~~—NDJ[S2—S(1—1/22)]
E~—3iNZISM(14-1/22S).

In this approximation, the correction factor for the
energy is 1+4-1/2ZS, which certainly lies between the
rigorous limits 1 and 14+1/ZS1 For most known
antiferromagnets this correction is fairly small, as
discussed in reference 11.

The approximation (25) for Ip is not very good
because of the slow convergence of the series of which
(25) is the first two terms. More accurate values of Ip
have been computed for D=1,2and 3.8 For D=1, Ip s,

(26)

1 pr 2
I=—— f |sinh|dh=—, @)
27 . T
Thus, the energy for the linear chain is
E,| poy=—NJ[S(S+1)—(2/7)S] (28)
=—NJS5%*(140.363/5).

T am indebted to Dr. R. W. Hamming for helpful suggestions
in connection with the evaluation of these integrals. Dr. J. M.
Luttinger has kindly pointed out that one of them, J,, has been
shown to be an elliptic integral by G. N. Watson [Quart J. Math.
10, 266 (1939)]. His more exact value agrees well with our
numerical integration.

P. W. ANDERSON

This is to be compared with the rigorous ground-state
energy in the case S=1% for the linear chain, computed
by Bethe,® ;

(Ep)Bethe= —1.7TTNJS?,

(Ep))rq. o8y=—1.73NJ S

This agreement is good, which is unexpected, both
because S=1 is a bad case for our assumption that S
is large,”* and because, as we shall see, in this case the
basic premise that the sublattice spin is large and nearly
equal to .S, on the average, is incorrect. One can only
suppose that the basic premise is fulfilled temporarily
over large enough regions of the lattice that the energy
parameter is not badly approximated. An interesting
comment which might be appended here is that for the
antiferromagnet, as for the ferromagnet, the theory
gives entirely correct results for the case N=2: Two
atoms coupled by one exchange interaction. For the
antiferromagnetic case, (8) gives A=m only, and thus
v»=—1, and the zero-point energy vanishes entirely.
This is correct: for. two spins, the singlet state has
energy —JS(S+1). The zero-point motion, however,
does not vanish in this case, and as discussed in Sec. V
shows us that no directional preferences exist. For the
ferromagnetic case one also obtains the correct ground-
state energy, —JS%

The integrals I, and I3 were evaluated numerically,
essentially by computing or approximating higher terms
in the binomial series for the square root.®® The results
were

(29)

I,=1—-0.158, I;=1-0.097, (30)

so that the energies are
(E,) p—2= —2NJS*(140.158/S), (31)
(E,) p=s=—3N.JS?(14-0.097/5). (32)

The energies (28), (31), and (32) are all somewhat lower
than the rough approximation (26) but lie between the
rigorous limits derived on the variational principle.!!

IV. THE TOTAL SPIN OF THE SUBLATTICE

A parameter which represents the state of long-range
order of the lattice is the total spin of one of the two
sublattices. It can easily be shown that the square of
this total spin divided by the square of the number of
atoms in the sublattice is, except for quantities infini-
tesimal to order 1/NV, the more usual order parameter

lim §;-S;.

j—f—e

14 The direct use of the expansion (5) is rather dubious in case
S=4%. One can justify at least the long-wavelength spin-wave
approximation on another basis, however: For the long wave-
lengths one can think that there are relatively large regions of
parallel spin, leading to large S’s in total so that something like
(5) holds. In other words, one sums .S ,;S . over fairly large regions
first, and then expands into an expression like (5). Since the
contribution to the energy is most critical for the long wave-
lengths, this procedure might well lead to good energy eigenvalues.
In other words, for long wavelengths we think more nearly in
terms of the phenomenological type of spin-wave theory of C.
Herring and C. Kittel [Phys. Rev. 81, 869 (1951)].
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The total spin, however, is the more direct physical
parameter, since it is what is measured in a neutron
diffraction experiment: What is measured is the average
spin per atom parallel to the total sublattice spin,
which comes directly from the total spin.

The total z-component of the spin of a sublattice,
which we shall call (S.)st™® (or (2), for the second
sublattice) is easily computed, simply by adding up the
expressions (5) for the whole sublattice. We shall see
later that the x and y components may be neglected;
for the time being we shall assume this to be true.

Let us, then, start from (5) and compute

(S )tot() Z] 2= (IN)S Z](Sz +Sw'2)/250-
By (7),

33)

Zi ij2+Sy12
and by (15)

2P =2\ $(gn+ pod+-ga?
+ P+ gungat pinpar),

=S2AQNHPY),

so that

(Seor® = (GN)Se— (S/28) 2 3(qui+pn?

F g2+ a2+ gnngaatpuapan).

In the ferromagnetic case, (S.)tot is & constant of the
motion. This is not true for the sublattices here, as
could in fact be shown from the original Hamiltonian
(1). The sum of (S,)® and (S,)® is, however, a constant
of the motion, since this is the z-component of total
spin. Because of this lack of constancy we must content
ourselves with average values,

((SD)totn=3NSe— (S/4S )2 :{gn®+ pi?
F g2+ pada, (34)

since ¢1¢s and p,p, vanish on the average. The average
values of the ¢’s and p’s are given in (22), so that

N S I—va\? /1470 ?
<(sz)m<l>>m——sc——z{( ) +( ) }
2 45,2 1+ 1=y
N S 1

27 25 (l—md)¥

(35)

Again we can replace the A\-sum by an integral,

% (l—lwz)% 2 (27r)Df f f M

x[1— (D—l > cos)\i)z]—i (36)

1 N

2

This equation defines J p.
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It is obvious that the integral J, diverges logarithmi-
cally. This means that the original assumption that
long-range order exists in the one-dimensional case is
wrong; no component of the sublattice spin is finite,
and the method breaks down. This, as we pointed out
in the introduction, is in agreement with the rigorous
result of Bethe and Hulthén.56°

For the other two cases, the integral does not diverge.
Because of the slow convergence, however, a rough
approximation such as (25) is quite useless, so that it
is necessary to use values computed in much the same
way as the exact values (30) for I, and I;.”® These are

J2=1.393, J;=1.156. (37

This leads to the following values for the total z-compo-
nent of spin (in all cases we neglect terms of order 1/,
so that we set .S,=.S541, etc.):

(S. tot)Av‘ p=2=3N(5—0.197). (38)
(Sz f,ot)AvI D=3=%N(S—0078) (39)

These corrections to .S are small, and one expects them
to become smaller as the number of neighbors increases
beyond Z=6. Nonetheless, it is entirely possible that
this correction term (or the similar term that would be
present in more complicated lattices) can eventually
be observed by neutron diffraction methods.

The results (38) and (39) cannot immediately be
taken at their face values. To see why this is so, let us
compute the x- and y-components of (Sior)® o @,
These are given by the particular spin wave coordinates
for A=0:

2 i Sei=GNS)Qo, Xk Sa=(GNS)IR,,

40
5 Su=GNS) Py, T4 Sy=— @V 0

The two quantities
Zj Sz;+2k Szkzsz tot™ (NS)%qIO (41)

and

i Syt 28 Syr=Sy tos=(IVS)¥p2o

[by (15)] have finite mean squares, as we see by (22);
the squares are somewhat smaller than or of order N,
so that the actual quantities are always very small.
This was to be expected from the fact that Siot is a
constant of the motion for the Hamiltonian (1). We
see that we have, by our basic assumption (2), acci-
dentally limited ourselves exclusively to singlet states
or at least states of very low total spin quantum

number. This is acceptable; the ground state is certainly

a singlet, while actually the majority of all states
have very small total spins.

On the other hand, the differences between the two
x- and y-components,

35 Sai— 2k Sar= (IV.S)¥qs0,
25 Syi— 2k Syr=(NV.S)¥p1o,

have divergent mean square amplitudes, as we saw in

(42)
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(23). The meaning of this fact is perfectly clear from
our basic knowledge of the problem. The ground state
of the antiferromagnet is certainly a singlet state,
and a singlet state cannot, by general reasoning,
show in any way a preference for one direction over
another. Therefore, while the spins of the two sub-
lattices can certainly be said to be opposite in direction,
in the ground state of the lattice, on an average basis,
we cannot define the direction in space of the spin of
either one. One may think of the system as similar to
the singlet state of two spins, («8—Ba), in which the
spins are certainly opposite but each is directed with
equal probability in all directions.

The quantities (42) are the degrees of freedom which
represent the rotation of the two oppositely directed
sublattices in space. We know that in the ground state,
at least, we cannot “pin down”’ these degrees of freedom
in any way; the lattices will rotate around at will in
the course of time. The apparently infinite zero-point
amplitude of motion is the mathematical result in this
theory of this fact, and is therefore not to be thought
of as a fault of the theory.

The tendency of the pair of lattices to rotate around
is, however, a weak one, as we can show in two ways.
One way is more physical: Since every real lattice will
certainly have some kind of anisotropy, we introduce
in the Hamiltonian (6) an anisotropy of axial symmetry
which makes the z-axis the preferred direction. It is
easily verified that such an anisotropy energy can be
expressed by

Hﬂ,nisz K[Z](Sz]2+ Syj2)+zk(sick2+s!lk2)])

where K is the anisotropy energy constant per atom.
(43) can be re-expressed in terms of the spin-waves (7)
and is

(43)

Hanis= KSYA(Q33HR*H-Py3-5)%).
Then the total Hamiltonian becomes, instead of (14),
= —NDJS 2+ DISEA[(P2+ QO Ry2+-85)2)
X (1+K/DJ1)4-27:(QzRr—PS)) ]
=—NDJS+DJSY \[gn*(1+K/DJ+v»)
+pu2(1+K/DJ —v\)+ga*(1+K/DJ — )

(44)

+pa*(1+K/DJ+m)]. (45)
The amplitudes (22) become
1+(K/DJ)— 7P
(gua={parDn= %[—'———“——z—):]
14 (K/DJT)+» (6)
(o= gor) _l[1+(K/DJ)+-y)‘]%
D)= (gaN N3 I-I—(K/————D])—'w\ ’
and, in particular,
<(ZJ Szj_Zk Sa:k)2>AvgNS (47)

(2K/DJ)}
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for very small K. This shows us that, unless K is small
in the order 1/N, the root mean square values of >_S,;
or 2_S,; to be expected is reduced from infinity to
something of the order 4/N, completely negligible in
comparison with the value of 3_;.S,;, which is of order
N. Thus, we may consider an infinitesimal K to. be
present as a convergence factor, and then the truly
interesting physical parameter,

[(Stot(l)y]%: [(Sz toc(l))z’f‘ (Sy t,ot(l))2+ (Sz tot(l))z:]’},
is simply given by
(Sz tot“’)i\v,

which is the value computed in (38) or (39).

A second way of clarifying the meaning of the
divergence of the amplitudes (42) is the following.
Let us return to the consideration of the original
Hamiltonian (16):

H=—DNJS24+DIST\[gn2(14v)+pn2(1—v»)
Fga2(1—=y)+p2(14+v) ]

For spin waves A=0, the energy terms are
Hy_y= 2DJS((]102+P202) . (48)

Now besides the ground state of the A=0 oscillators,
there will be a number of higher states, which happen,
since w=0, to form a continuum. As the first question
let us ask: how much energy will it cost to form a
wave packet of higher states which, instead of having
a large amplitude of pio or gay, has a reasonably small
one? This is easily answered by means of (48). From
the commutation relations it can be derived that

p=10/0qr, q=—19/3px. (49)

Thus, if we limit ¢x to some definite range, say Ag, we
must contribute a certain amount of p,, given in order
of magnitude by

Ap=1/Agy, (50)
or vice versa. Thus, to limit ¢s to a value Agso we require
Eiim=2DJS/(Agx)". (51)
Thus
2DJS
lim =~

[ACSsi— XS F/NS

2DJ NS 2
/NN R

N A(ZSz:i_ ZSxk)

From this relation it becomes clear that to limit the
rotation of the sublattice spins to a finite angle (this
means limiting >°.5.;, etc., to a value of order of magni-
tude N.S) the excess energy required is only of order
of magnitude 1/N, and thus is extremely small. It is
clear that we can even limit }_.5; to a quantity of order
of magnitude (N)¥e, «>0, without requiring any
perceptible energy.
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An equivalent way of looking at Eq. (52) is this:
Suppose the lattice had been looked at at one time (say
with neutron diffraction) and it had been determined
that the sublattices were pointing in the +2z and —z
directions, respectively. How long would it then take
for them to turn to the x-directions under the effects
of the Hamiltonian (1)? The answer to this is given by

(kX frequency of rotation)~FEjin;
Frequency of rotation~J /AN ;
Time to rotate~iN/J.

(53)

This time is of the order of magnitude 10% sec=3 years.

These two arguments based on Eq. (52), I think,
show that our original assumption that S, total>~N.S
is justified, at least according to its own consequences.
It seems very difficult indeed to find a reason why, at
least in order of magnitude, (52) should not hold even
for the rigorous problem. If we assume initially that
(S.®) is large, the S., S, commutation relation tells us
that .S, can then be localized easily, and this in turn
justifies the entire theory, which tells us then that S,
is large.

This argument also has the consequence that we can
definitely predict the result of observing the spins on
the two sublattices. The direction of the spins will no
doubt in any real case be determined primarily by
anisotropy energies. Their magnitude is given to a fair
approximation by (39) or the equivalent formula for
the lattice under consideration.

V. SOME CONCLUSIONS

The apparent success of the spin wave theory in
elucidating the complications of the ground state of the
antiferromagnet leads one to have some confidence in
its validity as a description of the higher lying states;
thus such things as Bloch wall theory may be capable
of being carried over practically unchanged from ferro-
magnet theory. This is of some practical interest in
connection with ferrimagnetism, which will also be
discussed in a way similar to the present theory in a
later paper. It seems, too, that the “sublattice’ picture
of antiferromagnetism which has been used in some

theoretical papers®” is at least not qualitatively affected .

by the present picture of the complications of the ground
state. This is of importance because these theories
have had considerable success in explaining experi-
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mental results in a semiquantitative way, and because
they do lean rather heavily on the assumption that the
ground state has order and is not greatly different from
what one would naively expect.

The only approximate energies which seem to have
been given in the literature for two- and three-dimen-
sional antiferromagnets are the energies of very small
aggregates (6 and 8 spins) with periodic boundary
conditions, which were computed by Harrison.!®* How-
ever, these energies lie even below the rigorous limits
computed previously,"! because of the fact that the
aggregates are so small that certain paired electrons
can have an over-riding effect (just as in the linear case
the binding energy of the two-spin case is far too great).
Thus, it does not seem fruitful to make a comparison
with Harrison’s results.

The conclusions of this paper about long-range order
have implications in the theory of metallic binding. If
one describes a substance by the Heitler-London model,
(1) is at least a fair approximation for the effective
spin coupling, unless one has a case such as diamond in
which the interatomic exchange integrals may be
thought of as over-riding the internal spin-coupling
which leads to a total S for the atom. (Of course, such
substances as ionic crystals have S=0, and we do not
treat them.) In most metals, however, and particularly
in the single-electron metals such as the alkalis, the
description by the Heitler-London model certainly
leads to (1). Then, as we have shown, (1) requires a
long-range spin order to be present, which is probably
not the case in most metals. Thus, we conclude that
the Heitler-London model is not even a good qualitative
description of metallic binding, in agreement with
Schubin and Wonsowski'® and Mott ;' the band theory
must be used in metals, the Heitler-London theory
may be used in insulators.

I have profited greatly in doing this work from
stimulating discussions with a number of my colleagues,
particularly Dr. Wannier, Dr. Herring, Dr. Holden,
and Dr. Kittel. Dr. Hamming’s valuable help has been
mentioned in the text.
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