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The-general theory of first-forbidden beta-transitions involves
seven nuclear matrix elements in the nonrelativistic approxima-
tion. In principle the number of independent parameters can be
reduced to four with the help of the relation

(w w—;)(flxlz)
= (flLIIO, X3I')+(fl I.II., &Hli)+(f I

I:II., xlli).
Here S' is an energy eigenvalue, X a coordinate type first-for-
bidden operator, H0 the free particle Hamiltonian, H, the Coulomb
interaction, and H„ the specifically nuclear interaction. The
commutators of H0 and H, with X are easily evaluated, but
LH„, Xj presents difficulties. However, the matrix elements of

PI„,Xj can be estimated by general physical arguments based
on the semi-empirical energy surface and the validity of shell

model considerations. The explicit form of H„ is not required
a fortunate circumstance since H, for complex nuclei is at present
essentially unknown. These calculations determine the common
proportionality factor A. in the relations

,'Au—Zfr/R

;I.z—fer/R

,'AuZ-faXr/R=—

l. INTRODUCTION

HE matrix elements'
J-

—,'nZ~t r/R, -,'crZ~ o r/R, -', rrZ crXr/R (1b)
~l

Tsar.z I. Properties of momentum type matrix elements.

Covariant
formulation

Matrix
element

Nonrelativistic
approximation

Polar vector
Tensor
Axial vector

fe
fpe
J'»

—fp/Mc
—if'eX p/Mc
—fe p/Mc

*Assisted by the joint program of the ONR and AEC.
t AEC Predoctoral Fellow.
' n=fine structure constant, Z=atomic number of the product

Tiucleus, E.=nuclear radius with the approximate value
{e'/2mc2)A&. The first-forbidden pseudoscalar matrix element is not
included in the present discussion. The usual statement that it isfP» is misleading because this matrix element is extremely
small, of the order (p/3/Ic), in the nonrelativistic approximation,
if the lepton covariant P,*p»p„ is removed from under the
integration.

'E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
{1941).' R. Marshak, Phys. Rev. 61, 431 {1942).

4 E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943);

occur in the theory of first-forbidden transitions char-
acterized by the selection rule AI=O, &1 (yes). ' 4

Nonrelativistic approximations to the first three matrix
elements and the association with the diGerent covariant
formulations of the beta-decay theory are shown in
Table I. The designations momentum type (la) and
coordinate type (1b) are convenient to distinguish the
matrix elements in the two lines of Eq. (1).

Upper limits on the squares of the matrix elements
can be derived from the completeness theorem. %e use

the estimates
(p-')„/2M 20 Mev (2)

for the average value of the kinetic energy of the
particle making the transition, and

(r')A, 0.6R' (3)

for the corresponding average square of the radial
distance. Equation (2) is based on the single particle
picture of a nucleon having binding energy of 6—8 Mev
in a potential well of depth 25—30 Mev. Equation (3)
follows from the assumption of uniform particle density.
A small correction for a possible nonuniform particle
density is unimportant in the present context. Results
for the upper limits are collected in Table II.

Table II suggests that the momentum type matrix
elements are dominant for small Z, while leaving open
the question of which type is most important for the
very largest values of Z.

It must be admitted, however, that these upper
limits are too high to support strong conclusions on the
relative importance of momentum and coordinate type
matrix elements. Allowed favored transitions, for which
Pmr~3l~s 1, have ft 3X10', first-forbidden transi-
tions with ft 10' ' have PmI~M~s 10 '. Thus a
factor of about 50 separates the upper limits of Table II
from the mean experimental values.

2. THEORETICAL RELATIONS BETWEEN
COORDINATE AND MOMENTUM

TYPE MATRIX ELEMENTS

Information on the ratios of momentum to coordinate
type matrix elements is needed for an unambiguous
interpretation of the experimental material. These
ratios are accessible to theoretical study following a
procedure suggested by a remark in reference 2. The
analysis starts from the nuclear Hamiltonian'

I

~ The isotopic spin formalism PL. Rosenfeld, Nuclear Forces
(Interscience Pubhcations, New York, 1948), p. 43j is used in
the following calculations; i.e., the two charged states of a nucleon
are described by a charge variable r with the values +2 (neutron
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H=Ho+H, +H„,

Ho= —&Ptrt- ps —~& PPo,

TsaLz II. Upper limits on the squares of the first-forbidden
matrix elements. '

e'
H, = Q ——(1—ro,)(1—r(,),

8 «& ~81

IJ„—specifically nuclear interactions.
The equation

(w; —H,)(f I
x I.)= (flHx —xH I.)

Covariant formulation

Scalar and polar vector
Polar vector
Tensor and axial vector
Tensor and axial vector
Tensor
Axial vector.

Matrix element M

)aZJ'r/R
J'e
—,'nZJ'tr i/it
—,'aZ J'ey r/Z
J'Pe
J'75

Upper limit on
Z z(m(~

0.15(aZ)'
0.044
0.15(aZ)~
0.30(m)'
0.088
0.044

=(&/s~)Z~ p~g~, (Sa)

LHo, Z«rkgo]= (t&—/s)Po(&pso 2se—(rx&))go

=(his~)g~ ~o. pago

=—(~&/s)Qo moog',

IHo, gtroXrkgs]=2o&go(~o —~s. rs&s+rk &otr&)gt.

relates the matrix elements of X=pxtgo and the
commutator of II and X.'

Explicitly,

LHo, Qrkgo]= st:kgb ukQo

' In the last column the sum is over all values of the magnetic quantum
number mI of the final state.

Equation (11) is not likely to be greatly in error con-
sidering that the Coulomb energy di6'erence of two
neighboring isobars is large compared with nondiagonal
Coulomb matrix elements; destructive interference
among. the neglected terms in Eq. (10) may also be a
helpful factor. 7

It is also possible that the neglected terms in Eq.
(10),

2 (flH. lf')(f'IXls) Z(f—lxls')(s'IH. ls), (»)

—:(It/s~)Zk ~oX psgi;

=&oZa P~aogt,

cj r~

I H„ge,. r,.g,]=he'P — (1—r„,)g„
l &A,

~~Xr)
LH. , Z«Xri;Qt]=se'2 — (1—r~,)gi.

(Sc)

(9a)

(9b)

(9c)

change in a fairly random manner as regards sign and.

magnitude, as E and Z are varied, suggesting the
possibility that Eq. (11) is accurately equivalent to
Eq. (10) on the average when fluctuations are smoothed
out over a range of E, Z values.

These statements are supported. by a test calculation,
with determinental wave functions, in which the left
and right-hand members of Eq. {11)differ by less than
ten percent (Appendix A). By inserting the Coulomb

energies of uniformly charged spheres into the right-
hand member of Eq. (11),we obtain

(flLH. , X]lt)—=12"(~—1)& '(flXls) (»)
The expansion theorem

(flÃ X]lt)=Br (flH lf')(f'IXlt)
-2"(flxl~')(t' H. lt) (10)

suggests the approximate relation

(flLH X]ls)=—L(flH. lf) —('IH. ls)7(flxlt) (»)
state) and —1 (proton state). The functions,

bg(7) =1, v =+1
=0, v'= %1

describe definite charge states. These functions are eigenfunctions
of the isotopic spin operator, 7, . ~,8y(~) =&By(v).

The conventional symbol J X of Eq. (1) denotes the matrix
element of the operator

Z X)bQI, or Z XJ,QI,~,
le 1 k-1

in which Q and Q* are displacement operators defined by

Qs, =s Q*s =s,
Qb =0 Q*a =0.

~The symbols f and i denote 6nal and initial states of the
P-decay process while the 8"'s are the corresponding energy
eigenvalues.

The matrix elements of the commutator tH„X]
can be estimated under special assumptions on II„.
Conditions under which the commutator vanishes
include ordinary forces (nonexchange) and zero range

exchange forces. Generally speaking, such estimates
have value as sample calculations, but throw no light
on whRt actually occurs in nature.

%e attempt here to evaluate the commutator without
introducing Rn explicit form for IJ„; the cRlculation ls
based on general arguments and the semi-empirical

formula for the nuclear energy surface. %e use the

7 Equations (11) and (14) involve an im licit assum tion on the
reiative magnitudes af (fIXIr'), (f'IX i), and (f XIi'); the
situation is most favorable when

1(flXls) I- (f'IXI~) I

l (fix~') I.
%e note also that the two-particle character of the Coulomb
interaction 6xes f' in Eq. (10) to the extent that it ne|:d be
considered only when gy contains a substantial component
derived from con6gurations each differing by not more than two
orbitals from corresponding configurations in Py (a similar remark
apphes to @; and @;).



expansion theorem once more in the form expressed by
Eq. (10) with H. replaced by H„. H nondiagonal
matrix elements of II„can be neglected the exact
equation reduces to

(flLH. , Xlls)—=L(flH If)—(slH Is)j(flXls) (14)

Tile I'CIIIRI'ks III tllc dlscuss1011 of Kq. (11) on tllc
rclatlvc magnitude of diagonal Rnd QGHdlagonal cQclgy .

matrix elements, the possibility of destructive inter-
ference among the neglected terms, and a possible
smoothing effect produced by averaging over a range
of X, Z values all apply here in support of Eq. (14) as
a useful approximation. An additional argument
follows.

The terms neglected in the derivation of Kq. (14)
have the form of Eq. (12) with H„replacing H, and
require discussion only for values of f' and s' such that
(f'I X Is) and &fI XIi') are not extremely small compared
to (fIXIs). Paraphrasing an earlier remark, this condi-
tion fixes f' to the extent that it enters the problem
only when fr contains a substantial component derived
from configurations each diRering in just one orbital
from corresponding C0116gul'Rtlolls In 'ip; (R sllllllRI'

remark applies to P; and fr). These restrictions on f'
and ~' hold equally well for the matrix elements of I
occurring in Eq. (10).

When fI is restricted as above, one can argue on
physical grounds that (f'IH„I f) must be small. The
argument is based on the success of shell model con-
siderations in ordering and correlating. a wide range of
nuclear properties. This fact can be understood if
nondiagonal matrix elements of the spcri6cally nuclear
interaction are small between states derived from
con6gurations di6'ering in only a few orbitals. ' Other-
wise the irregular, but strong, incidence of configuration
interaction mould be expected to result in many anoma-
lous nuclear properties; anomalous, that is, from the
point of view of a logically coherent shell model.

The semi-empirical energy formula contains Coulomb
and symmetry terms in the form'

ssZ(Z —1)e'/E+N, (IV—Z)'/A
—(b'/4A) f (—1)~+ (—1)s} (15)

producing R pRrRbollc varlatlon of cnclgy with E—Z
along an isobaric series. At the bottom of the parabola

s(e'/R) fZ(Z —1)—(Z—1)(Z—2)}= (6/5)(e'/~)(Z —1)
=(u,/A) f (iV—Z+2)' —(IV—Z)'}. (16)

It is found in the treatment of the nucleus as a de-
generate gas of free particles that very little of the 8-

8 Equation (14) holds accurately for the arti6cial example of
long-range exchange forces. In this example the solutions are
eigenfunctions of H„, all nondiagonal matrix elements of H„
vanish, and con6guration interaction is completely absent. As
mentioned under Eq. (13), at the opposite extreme of zero range
forces fP„,Xg vanishes. In this case Eq. (19) still holds, bnt A
is somewhat larger than in Eq. (20).

9 E. Feenberg, Revs. Modern Phys, 19, 239 (1947).

term and about 40.percent of the term in (sV—Z)'
comes from the kinetic energy. Accepting this result
we obtain

(fIH If)—(t IH I I)——0.6(N, /A) {(X—Z+ 2)'—(Ã—Z)'}
—(8/2A)f( —1) +(—1) }=—0.72(e'/E) (Z—1)
-(~/»){(-1)"+(-1)'}.(»)

Equation (7) now becomes

I W;—Wy+0.48(es/8) (Z—1)—(&/2~) {(—1)"+(—1)'}XfI XI ')
=—(fIH,X—XH.II). (18)

The presence of 8 in Eq. (18) suggests a difference in
the relation between the coordinate Rod momentum
type matrix elements for odd and even values of A.
However, the 6 term simply. cancels out the contribution
to the energy difference from the sparing of the odd-odd
and even-even parabola's and thus tends to make the
gcIlcl'Rl I'clatloll cxpl'csscd by Eq. (18) IlldcpcIldcll't of
whether A is odd or even and, in the latter case,
independent of whether the product nucleus is odd-odd
or even-even.

Results from Eqs. (8) and (18) are summarized in
the relations

-', AuZ r/E= i, n—

'AnZ -e. r/E= i—
sAnZ) eXr/E= — Pe,

in which, for odd A,

(20)

For positron emission Z is replaced by —Z in Eqs. (19)
and (20). This follows from the anti-Hermitian property
of I'e, its, and pn and the fact that the roles of f; and
lpf Rl'c IlltclcllRIlgcd If the dII'cctloll of 'tile transltlon Is
reversed.

To complete the theory for applications one needs also

W;—WI——Ws —2.5trsc' (negatron emission)
=. We+ 2.5tttc' (positron emission)
=AM+1.5mc' (It-capture).

3. DISCUSSION

In a recent publication, " Pursey derives relations
similar to those developed in the preceding sectio~.
The procedure divers greatly in detail from that

'0 D. L. Pursey, Phil. Mag. 42, 1193 (1951).



followed here since complete reliance is placed on the
accuracy of single particle wave functions" and on the
correctness, of an explicit Hamiltonian operator. The
assumed form of H„ is a linear combination of short-
range two-particle ordinary, charge exchange, and spin-
orbit coupling interactions. The contribution to A from
the matrix element of (f1)H„,X7li) is found to be
small, in agreement with our conclusion for short-range
two-particle interactions stated in the footnote following
our Kq. (14). Zn our notation Pursey's results are
equivalent to Eq. (19) with a modified value for A,

F—lVf A'
A~2+

mc Z

Our procedure with neglect of I H„Xj wouM yieM

J
ij'f 4' 'dr34" A

Q (v(i)e„(2)—e(2)N„(1))*
A(A —1) i=i

now yields

~ jl,(1)N„(2)—N, (2)N, (1)), {A2)

P,", the indices 1 and 2 refer to both spin and space
coordinates. Also (11p„l2)—as above for protons;
p„(r)—total initial neutron density; p„(r)—total initial
proton density.

The general formula

8';—lVf A'
A~2.4+

mc' Z
(23)

~(~ —1) " 4v*Qik'drs4

At present it is perhaps not possible to distinguish
experimentally between Eq. (20) and Kqs. (22)—(23).
Eventually, when the correct formulation of beta-decay
theory is known down to the last coupling parameter,
an experimental test should be possible.

Pursey also obtains a theoretical relation between
the matrix elements of f and eXr in the single particle
approximation. Since experiment may eventually make
possible a test of this relation, we give a simple non-

relativistic derivation,

I
» L, r]= (5/i)»Xr (24)

(flL» & r5I i) =&(lf(If+1) I'(I'+1)—
—I.f(J.f+1)+L (1.+1)) (fl r

I i) (2S)

for If=I;,+I, I.g= I;~i
2(1~-Ir)(flrli) =+i(fl»Xrli):

The symmetry between r and p in the definition of L
ensures that the same analysis goes through with r
replaced by y in Eqs. (24)-(26).

—k~.*(2)~-(1)(1I p. l 2) (A3)

Here the integration symbols in Eqs. (A3) and (A4)
include a summation over the charge variables of
particles 1 and 2.

In the. single particle approximation the transition
may be described as the transfer of a nucleon from an
occupied neutron orbital N~ to a vacant proton orbital
P. This HYlplles

(2)(21'-I 1)d .= -(1)

APPENDIX A. ESTIMATES OF THE COULOMB
AND COORDINATE MATRIX ELEMENTS

(y *(2)(11& 12)d»=0.

(AS)

%'e compute the coordinate and Coulomb matrix
elements in the approximation of single particle orbitals.
These orbitals are combined to form antisymmetrical
wave functions

A=(~ l) 'E.(—1)""&.Nl(1)~2(2) "NA{&)
(A1)

A= (~ l) 'E.(—1)""~.i(1)r~~(2) ii~(&).

The orbitals e~ are functions of space, spin, and charge
coordinates of a single nucleon. In evaluating the
matrix elements we use the notation: eo —space and

spin component of e~., co~—space and spin component
of v; (11p 12)—neutron density matrix derived from

'1 Note that this involves much more than the general semi-
quantitative validity of the spin-orbit shell model.

With tile aid of Kqs. (A3) and (AS) the coordjnate
matrix element (fl Xl i) reduces to a simple integral

(fl &xiQi Ii) =~(fl xiQil')

P I

a)~*(1)Xi' (1)dr i. (Ati)

In Eq. (A4) the second term of the right-hand
member is generally unimportant, particularly so when

no destructive interference occurs in the 6rst term.
Consequently, we drop the second term and also, for
simplicity, treat p„as a constant in evaluating. the



Coulomb integral. The result is

( e X( Xge' 1
(tIL& X~le)=I &

—~ —(1—"-N« I=I f ~(~—1) -(1—2)Q '
I

2i~~r(g
I
j r„2

3(Z—1)e' ( t.co,*(1)Xgca (1) 3(Z—1)e'
v,dv, = P " i~ ~~,'(1)Xi~.(1)(~'—3&2)d» (A&)

$f now (tl Xl j) is compara, tively large, g2 —arp may he replaced safely hy an approximate average
E' (1/5)R—'= (4/&)R' Fq. (A7) then reduces to

(f1 LB., xjli)=—(6~(z—»/5~)(fl xl ~)

in agreement with Eqs. (11) and (13).
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A potential well somewhat between a three-dimensional isotropic oscillator and a square well is determined
by using a nonlinear meson theory for heavy nuclei in their ground states. The introduction of a phenomeno-
logical spin-orbit coupling is shown to group the energy levels obtained according to the magic numbers.
Finally, it is shown that the existence of nuclear shell structure seems to imply a modification in the concept
of constant nuclear density for heavy nuclei.

C. INTRODUCTION

HE failure of existing two-body interactions to
account adequately for nuclear saturation and

the apparent incompatibility of the observed relatively
strong, short-range, two-body interaction between
nucleons with the independent particle model of the
nucleus, strongly suggest the possibihty of many-body
forces among nucleons. A detailed investigation of
many-body interactions would be somewhat compli-
cated for an exploratory calculation. However, an alter-
native and much simpler procedure suggests itself in
the possibility of interpreting the independent particle
model for a heavy nucleus in its ground state in terms
of a phenomenological nonlinear Ineson theory.

In this paper, a sort of classical e6ective meson 6eld
will be determined for a heavy nucleus from a phe-
nomenological nonlinear wave equation. In conjunction
with this investigation, we will also discuss the com-
patibility of nuclear shells with some of our other con-
cepts of nuclear structure.

static nonlinear wave equation for a classical neutral
scalar field with a time independent nucleon source
density. As suggested in a previous note, ' we assume
the static wave equation to be

V'y+ y,'y+ g'—(kc) 9,y'= gp, (2.1)
where p is the nucleon density, p, the inverse meson
Compton wavelength (1.4)&10 " cm for the m-meson)
and g and X are constants which are to be determined.
Equation (2.1) is essentially the same form as that
independently investigated by Schi6.' However, we
solve this equation solely from the point of view of
determining an effective meson field compatible with
the independent particle model of the nucleus. As noted
by Schi6, ' the total energy associated with the meson
field is

&= t B(V4)'+kp'4'+ 'g'(Itc) '&e' -gpss j&r, —

so that from Eq. (2.1)

Z. AN EFFECTIVE MESON FIELD FOR A
HEAVY NUCLEUS

E
—kg'(&c) '&4'—2gpll« (2.3)

%e assume that an effective meson fieM for a heavy
nucleus in its ground state can be characterized by a

~ Based on part of a thesis presented in partial fulfillment of
the requirements for the degree of Doctor of Philosophy at
Harvard University, November, I951.

' B.J. Malenka, Phys. Rev. 85, 686 (1952).While we make use
of the form of the wave equation that was calculated in this note,
we do not wish to imply that the nonlinear meson. theory coii-
sidered in the present paper is a consequence of vacuum polari-
zation.

«L I. Schi8, Phys. Rev. 84, 1 (195I).' See reference 2, Eqs. (j,2) and (&4).


