Letters to the Editor

DUBLICATION of brief reports of important discoveries in physics may be secured by addressing them to this department. The closing date for this department is five weeks prior to the date of issue. No proof will be sent to the authors. The Board of Editors does not hold itself responsible for the opinions expressed by the correspondents. Communications should not exceed 600 words in length.

Third-Order Elastic Coefficients in Trigonal and Hexagonal Crystals

FAUSTO G. FUMI Institute of Theoretical Physics, University of Milan, Milan, Italy (Received March 28, 1952)

HE independent third-order elastic coefficients pqr = prq = qpr(p, q, r=1 to 6) have been reported previously for twenty-

TABLE I. T	hird-order	elastic	coefficients:	sixth-orde	r polar	tensor	$pqr = qpr = prq.^{a}$	ł
------------	------------	---------	---------------	------------	---------	--------	------------------------	---

Sym- metry group	C_1, S_2	C_{3}, S_{6}	D3, D3d C3v	C _{3h} , C ₆ , C _{6h}	D ₆ , D ₆ h, D _{3h} C _{6v}
Refer- ence frame	Anv	ell Ca	$x \ C_2' \ \ C_3$ $z \ C_2 \ \ C_3$	211 C2 Ce	$x \ C_2' = z \ C_6$ $z \ C_2 - C_6 - uz \ \sigma_2$
			111		
	111	111 112	111	111	111 112
	113	113	113	113	113
	114	114	114	0	0
	115	115	0	116	Ŭ
	122	111 - 222 + 112	111 - 222 + 112	111 - 222 + 112	111 - 222 + 112
	123	123	123	123	123
	124	124	0	. 0	0
	126	-116	ŏ	-116	ŏ
	133	133	133	133	133
	135	135	0	0	0
	136	0	0	0	0
	144	144	144	144	144
	146	$-\frac{1}{2} \cdot 115 - \frac{3}{2} \cdot 125$	ŏ	0	ů ů
	155	155	155	155	155
	166	$(\frac{3}{2} \cdot 222 - \frac{1}{2} \cdot 111)$	$(\frac{3}{4} \cdot 222 - \frac{1}{4} \cdot 111)$	$(\frac{3}{4} \cdot 222 - \frac{1}{4} \cdot 111)$	$(\frac{3}{2} \cdot 222 - \frac{1}{2} \cdot 111)$
		$-\frac{1}{4} \cdot 112$	$-\frac{1}{4} \cdot 112)$	$-\frac{1}{4} \cdot 112)$	- <u>1</u> ·112)
	222	222	222	222	222
	224	$-114 - 2 \cdot 124$	$-114 - 2 \cdot 124$	0	0
	225	$-115 - 2 \cdot 125$	0	0	0
	226 233	116	0	116	0 133
	234	-134	-134	0	0
	235	-135	0	0	0
	230	155	155	155	155
	245	-145	0	-145	0
	246 255	$\frac{125-115}{144}$	0	0 144	0
	$\tilde{256}$	$\frac{1}{2}(114 - 124)$	$\frac{1}{2}(114-124)$	0	0
	266	$(\frac{1}{2} \cdot 111 - \frac{1}{4} \cdot 222$	$(\frac{1}{2} \cdot 111 - \frac{1}{2} \cdot 222$	$(\frac{1}{2} \cdot 111 - \frac{1}{4} \cdot 222$	$(\frac{1}{2} \cdot 111 - \frac{1}{4} \cdot 222$
	333	333	333	333	333
	334	0	0	0	0
	335	0	0	0	0
	344	344	344	344	344
	345	0	0	0	0
	355	- 135 344	344	344	344
	356	134	134	0	0
	366	$\frac{1}{2}(113-123)$	$\frac{113-123}{444}$	$\frac{1}{2}(113-123)$	$\frac{1}{2}(113-123)$
	445	445	0	Ő	ŏ
	446	145	0	145	0
	456	$\frac{-444}{1}$	$\frac{-444}{155-144}$	$\frac{1}{3}(155-144)$	$\frac{1}{2}(155-144)$
	466	124	124	0	0
	555 556	-445 	0	0	0
	566	125	ŏ .	0	ŏ
	666	-116	0	-116	0

^a p, q, r=1, 2, 3, 4, 5, 6. ^b The symmetries listed at the top of each column are equivalent for the third-order elastic coefficients (and generally for polar properties of even order).

five of the thirty-two crystal classes.¹ Table I completes these results. The numbers of coefficients obtained agree, of course, with those predicted by group theory.² Symmetries C_3 , S_6 , C_{3v} , D_3 , and D_{3d} are treated again but with reference to the usual frames having $z \| C_3 \|$.

The last three columns of Table I have been derived from column C_3 by the "direct inspection" method.⁴ Indeed, the Cartesian orthogonal coordinates chosen (which are of the usual type) do not transform into linear combinations of themselves under the generating elements to be added to the group C_3 to obtain the groups D_3 and C_{3h} or to be added to the group C_6 to obtain the group D_6 . Column C_3 has been obtained by imposing invariance directly on each tensor component.⁵

The results of Table I have been obtained also by group theory. The method used can be applied to any tensor property of a material system of finite symmetry; it consists essentially in constructing the totally symmetrical linear combinations of tensor components in each group of interest, and in equating to zero the nontotally symmetrical linear combinations of the components contained in them. The equations of invariance that the method yields are very simple, since the vanishing components are eliminated from the start. Important simplifications are provided by the correlation tables of irreducible representations of groups and subgroups and by the replacement of Cartesian orthogonal components by coordinate products; the results for all subgroups can be obtained from the results for a group treated with proper completeness and the results for higher order tensors can be obtained from those for lower order tensors. Details of this method will be given in a paper to be published in Nuovo Cimento.

¹ F. G. Fumi, Phys. Rev. 83, 1274 (1951).
² S. Bhagavantam and D. Suryanarayana, Acta Cryst. 2(1), 21 (1949);
⁴ The reference frames which are not distinguishable in relation to the symmetry elements of a given group are equivalent for it.
⁴ F. G. Fumi, Acta Cryst. 34 (1942).
⁵ C. Hermann, Z. Kryst. 89, 32 (1934).

The Decay Energy of Si³¹

A. H. WAPSTRA Nobel Institute of Physics, Stockholm, Sweden * (Received March 27, 1952)

HE difference in binding energies of P³¹ and Si²⁸, computed from Ewald's1 mass spectrographical measurements, is 26.314 ± 0.036 Mev. This is in disagreement with the Q-values of some nuclear reactions studied at M.I.T.;² from $P^{31}(p, \alpha)Si^{28}$ Mev it follows that $P^{31}-Si^{28}=26.374\pm0.011$ Mev; from $P^{31}(d, \alpha)Si^{29}$ and $Si^{28}(d, p)Si^{29}$ it follows that $P^{31}-Si^{28}=26.373\pm0.015$ Mev. A check on these values can be made with the Q-values for the d, preactions on the three Si isotopes in combination with the disintegration energy of Si³¹. However, existing values³⁻⁵ for this decay energy were not very precise.

We first tried to compare the Si³¹ and P³² absorption curves by the Feather method. We hoped that the similar end points and shapes of the β -spectrum (Si³¹ was expected to have an allowed form) would result in an accurate Feather plot. This hope was not substantiated in agreement with the later results of Wennerblom et al.⁶ We found a range of $690\pm 20 \text{ mg/cm}^2$ in Al; with Glendenin's⁷ range-energy relation this yields a β -energy of 1.53 ± 0.04 Mev. This part of the work was done in the Instituut voor Kernphysisch Onderzoek, Amsterdam, Netherlands.

We have now measured the β -spectrum of Si³¹ in an intermediate image β -spectrometer,⁸ calibrated for this purpose with the internal conversion lines of Cs137 9, 10 and Co60.11, 12 The Si31 samples were prepared in the way described by Wennerblom et al.⁶ The best sample used had a mean thickness of 0.5 mg/cm² and a backing of 0.15 mg/cm^2 Al; with this sample the Fermi plot was linear above 700 kev (lower energies were not measured for lack of suffi-