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A study is made of the feasibility of calculating valence and
excited electronic energy bands in crystals by making use of one-
electron Bloch wave functions. The elements of the secular deter-
minant for this method consist of Bloch sums of overlap and
energy integrals. Although often used in evaluating these sums,
the approximation of tight binding, which consists of neglecting
integrals between non-neighboring atoms of the crystal, is very
poor for metals, semiconductors, and valence crystals. By par-
tially expanding each Bloch wave function in a three-dimensional
Fourier series, these slowly convergent sums over ordinary space
can be transformed into extremely rapidly convergent sums over
momentum space. It can then be shown that, to an excellent
approximation, the secular determinant vanishes identically. This
peculiar behavior results from the poorness of the atomic corre-
spondence for valence electrons. By a suitable transformation, a
new secular determinant can be formed which does not vanish
identically and which is suitable for numerical calculations. It is
found that this secular determinant is identical with that obtained

in the method of orthogonalized plane waves (plane waves made
orthogonal to the inner-core Bloch wave functions).

Calculations are made on the lithium crystal in order to test
how rapidly the energy converges to its limiting value as the
order of the secular determinant is increased. For the valence
band, this convergence is rapid. The effective mass of the electron
at the bottom of the valence band is found to be closer to that
of the free electron than are those of previous calculations on
lithium. This is probably because of the use of a crystal potential
here rather than an atomic potential. The former varies less
rapidly than the latter over most of the unit cell of the crystal,
and thus should result in a value of effective mass more nearly
free-electron-like. Unlike previous calculations on lithium, the
computed value of the width of the filled portion of the valence
band agrees excellently with experiment. By making use of cal-
culated transition probabilities between the valence band and the
1s level, a theoretical curve is drawn of the shape of the soft x-ray
K emission band of lithium. The comparison with the shape of
the experimental curve is only fair.

I. INTRODUCTION

N this paper we will study the properties of electrons
A in unbounded, crystalline solids. We will assume
that any given electron of the crystal can be considered
to move in the-electric field resulting from fixed nuclei
plus the time-averaged charge distribution of all the
other electrons of the crystal. It is well known that such
an assumption neglects correlation and exchange
between the electrons of the crystal. No attempt will
be made to correct for correlation directly, but an ap-
proximate method of correcting for exchange will be
included (see Appendix A).

Within the framework of the above assumption there
are great difficulties involved in solving Schrodinger’s
equation for an electron in a crystal. A number of
approximate methods have been introduced.! Here we
will be concerned with two such methods, the method
of Bloch waves®? and the method of orthogonalized
plane waves.* In connection with these two methods,
it might be appropriate to indicate how the work here
reported actually developed. It was originally planned
to make a study of the Bloch method. As a test of the
method’s practicability for numerical calculation, it
was planned to calculate electronic energy bands in the
lithium crystal. Such a procedure was in fact carried
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out, but only after mathematical manipulation had
been made in the Bloch method for the purposes of
convenience in the numerical computations. It was
later realized by the writer that the secular equation
obtained from the Bloch method by means of this
mathematical manipulation was identical with the
secular equation which could be obtained from the
orthogonalized plane wave method in a more straight-
forward fashion. For this reason, after having shown
that the Bloch method is equivalent to the ortho-
gonalized plane wave method, we will consider only the
latter method in obtaining explicit results for the
lithium crystal.

II. METHOD OF BLOCH WAVES

Let us consider an unbounded crystalline solid, which
can be divided into a set of identical unit cells. We may
define an enumerable, infinite set of displacement
vectors, r,, where the nth vector is drawn from an
origin of coordinates to the center of the #th unit cell.
For convenience, the origin will be taken at the center
of one of the unit cells. It is now possible to form an
unbounded reciprocal lattice which can be divided into
a set of identical unit cells. (We will pick each cell such
that it is equivalent to the first Brillouin zone.) This
reciprocal lattice is defined such that the quantity
K, r./27 is some integer for all values of i and #, where
the K/’s form an enumerable, infinite set of reciprocal
vectors drawn from an origin of coordinates (centered
on one of the unit cells) to the center of the ith unit
cell in reciprocal space. The factor 1/27 appears since
atomic units are being used; e.g., energy is ex-
pressed in units of the Rydberg energy, distance in
units of the Bohr radius, etc.
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It can be shown that the wave functions in a crystal
must satisfy Bloch’s theorem; namely, that any such
wave function ¥(r) must be of the form?

Vi (r+1,)=e™ ¥ (1), ¢))

Let us define
ki= k+Ki- (2)

Then (1) can be written in the form
Wi, (r41,) = e® T¥i,(r),

so that, as far as the translational properties of the ¥’s
are concerned, all the different k’s corresponding to a
given k are equivalent, and we need consider only
values of k lying in the first Brillouin zone. It was first
pointed out by Bloch? that such a wave function can be
formed by a spacial Bloch sum of atomic or molecular
wave functions, ¥(r),

V(1) =20 e™(r—12). )

In the discussion to follow, it will be assumed that there
is only one atom in the unit cell of the crystal. The
discussion can be generalized to the case of many atoms
per unit cell, however, simply by everywhere replacing
the word atomic by the word molecular, the molecule
in question being that formed by the atoms of the unit
cell.

If the crystal potential, V(r) is essentially the same
as the potential, V(r), of the isolated atom in the vicinity
of each nucleus, then ¥(r) will be an approximate
solution for the crystal potential if ¥(r) is a solution for
the atomic potential. This approximation will be good
for the ion-core electrons but poor for the valence
electrons. Thus, if #,(r) is the set of isolated-atom wave
functions for the ion-core electrons, then

&,(r)=2", ey, (r—1,) @

is the set of ion-core Bloch wave functions for the
crystal. If v,(r) is the set of isolated-atom valence and
excited wave functions, then the two sets #,(r) and
2,(t) combine to form ¥,(r), the complete set of solu-
tions to the Schrédinger equation for the isolated atom
potential. For reasons that will be discussed in Sec. ITI,
it is convenient t6 work with valence and excited Bloch
wave functions that are orthogonal to the ion-core
Bloch wave functions, ®,. In order to obtain these, we
define

‘ws=’Us—Zz O st (5)
where

Zn e—ik.r"foo ut*(r* rn)vs(r)dT
S uF(Ou(r)dr .

(6)

Ost=

5 Actually this theorem holds only for wave functions satisfying
periodic boundary conditions. Other types of wave functions may
be used when phenomena at the surface of the crystal are being
studied. For an excellent proof of Bloch’s theorem, see W. Shockley,
Electron and Holes in Semiconductors (D. Van Nostrand Com-
pany, Inc., New York, 1950).
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(Here Jadr represents an integral over the entire
crystal.) We now define

Y (r)=3_, ey, (r—r,) @)

as the set of valence and excited Bloch wave functions.
Assume that

f U *(t— 1) (1) 7= 84180 f u*(uy(t)dr;  (8)

0 0

i.e., the ion-core atomic wave functions are mutually
orthogonal and the overlap integrals between ion-core
wave functions on different atoms are negligible. It now
follows immediately that

f ¥ B dr=0, ©)

for all the values of s and :.

Assume that the exact Bloch wave function, ¥, for a
valence or an excited electron can be expanded in terms
of the ¥/’s,

\I’—"—Zg Ott‘I’,;. (10)

Let us define as energy and overlap integrals, respec-
tively,

Hyp= f w*(r)Hw,(r—1,)d7,

(11)
I",,=f w ¥ (0w, (r—r,)dr,

00

where H is the one-electron Hamiltonian for the crystal.
If we require that (10) satisfies Schrédinger’s equation,
then by making use of the usual variation method we
get the set of equations,

ZS Qs Zn eik'r"(Hstn—EIstn)=O- (12)
The corresponding secular equation is
det[Zn ek .rn(Hstn_EIHn)]:O- (13)

The elements of the secular determinant are thus Bloch
sums of overlap and energy integrals.

A major problem of the method of Bloch waves is
the accurate evaluation of these Bloch sums. The
approximation of “tight binding” has been used ex-
tensively in the past in obtaining these sums.? This
approximation consists of neglecting all integrals
between non-neighboring atoms of the crystal. This
approximation is usually excellent for ion-core wave
functions ([Eq. (8)] is a strengthened version of this
approximation), but the approximation may be very
bad for valence and excited wave functions, whence the
corresponding Bloch sums converge very slowly. An
accurate method of calculating such Bloch sums will be
discussed in Sec. IV.
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III. METHOD OF ORTHOGONALIZED PLANE WAVES

One of the earliest methods of treating valence elec-
trons in a crystal involved expanding the wave function
in plane waves.® This method is not accurate, however,
for the following reason. When using a small number of
plane waves, the lowest root of the secular equation
gives an energy in the region of the valence band, but,
of necessity, if a complete set of plane waves were used,
the lowest root should give the energy of the lowest
ion-core band. This indicates that a very large number
of plane waves is necessary to represent accurately the
wave function, a fact which results from the rapid
variation with position of the wave function close to
each nucleus.

Herring* has shown that this difficulty can be
removed by expanding the valence wave function in
terms of orthogonalized plane waves. An orthogonalized
plane wave, by definition, is a plane wave which has
been made orthogonal to the ion-core Bloch wave func-
tions by the Schmidt orthogonalization procedure. It is
well known that the complete set of plane waves for an
unbounded crystal is e®:*, (The symbols used here
have the same meaning as in Sec. I1.) The corresponding
set of orthogonalized plane waves is

Xi(r)=e®ir—3"; u;;j®,(r),

o= fw ikt % (1) dr / f wF (e, (15)

It is easily shown that

f X *®,dr=0

00

(14)

(16)

for all the values of 7 and j.

Assume that the exact Bloch wave function, ¥, for
a valence or an excited electron can be expanded in
terms of the X/’s,
Define

Di=(1/2N) f X (H—E)Xdr, (18)

where Q@ is the volume of the unit cell and N is the
number of unit cells in the crystal, so that QN is the
volume of the crystal. Making use of the variation
method, we get the set of equations

2 B:Dy;=0. (19)
The corresponding secular equation is
detD,;=0. (20)
Let us assume that the Hamiltonian is of the form
H=—v+V(1), 1)

6 A. Sommerfeld and H. Bethe, Handbuch der Physik (Verlag
J. Springer, Berlin, Germany, 1933), Vol. 24, No. 2, p. 385.
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where the crystal potential V is a spacial sum of atomic-
like potentials, V, i.e.,

V@)=,V (t—r,). (22)

(See Appendix A for the determination of V.) D;; can
now be put in a form more convenient for numerical
computation, namely,

= (k2= E)d;— Q" Zs[(ki2+ k2—E)pispis™
X f ¥ (1)t ()7 — pisptss™ f v, *(x)

'Vus(r)dr]—’r Q“‘f V(r)e*i-*dr

o0

—Q-! Zl:”is f e Tuy(r) V(1= ra)dr

8, n| 0

+ﬂj3*f ek Ty X(r)V(e—rn)dr

— s f us*(r)us(r)V(r—r,,)dr]. (23)

0

Here we have used the shortened notation K;—K;=K.;.

As Herring has pointed out, by using a set of orthog-
onalized plane waves, X, rather than a set of ordinary
plane wave, e™:'r the energy of the lowest root of the
secular equation converges to the energy of the lowest
valence band (rather than to the energy of the lowest
ion-core level) as the order of the secular determinant is
increased (in the approximation that the ®/s are the
exact solutions for the ion-core levels). Therefore it
might be expected that the series in Eq. (17) would be
much more rapidly convergent than a similar series
using ordinary plane waves. This expectation will be
shown to be justified in the case of the lithium crystal.
It was for essentially the same reason that we went to
the trouble of insuring orthogonality between the ion-
core and the valence Bloch functions in-Sec. II.

An alternative, but equivalent, method of explaining
the rapid convergence of the series in Eq. (17) is the
following. The reason that an ordinary Fourier expan-
sion of the valence Bloch wave function does not con-
verge rapidly lies in the fact that the wave function
varies rapidly with position in the vicinity of each
atomic nucleus—this rapid variation requiring plane
waves of short wavelength for the accurate repre-
sentation of the wave function. The mathematical
necessity for this rapid variation with position arises
from the requirement that the valence Bloch wave
function be orthogonal to the ion-core Bloch wave
functions combined with the fact that the latter vary
rapidly with position near each nucleus. If we use
orthogonalized plane waves in place of simple plane
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waves for expanding the wave function, however, the
Schmidt orthogonalization procedure insures that the
rapidly varying portion of the wave function is not
expanded in plane waves but is kept in its unexpanded
form. Thus we break up ¥ into two parts, ¥’ and ¥/,
where

\I’l=2i 61‘3“[1: r
is that portion which zs expanded in plane waves, while
V=34 j Banii®;(r)

is that portion which is not expanded in plane waves.
There is no reason why the expansion of ¥’ should not
converge rapidly.

IV. TRANSFORMATION FROM THE METHOD OF
BLOCH WAVES TO THE METHOD OF
ORTHOGONALIZED PLANE WAVES

It was pointed out in Sec. II that a major problem in
the method of Bloch waves is the accurate evaluation
of the Bloch sums of energy and overlap integrals. For
ionic and molecular crystals, where the approximation
of “tight binding” is valid, these sums can be evaluated
in a straightforward manner. For metals, semicon-
ductors, and valence crystals, however, any attempt at
evaluation in a straightforward manner is discouraging,
since the sums converge very slowly. Henceforth, we
shall consider only crystals where such a situation holds.

The following device is effective under such a situ-
ation. Expand in three-dimensional Fourier series that
portion of each Bloch wave function which contains an
isolated-atom valence or excited wave function, v,(r).
A corresponding portion of each Bloch sum over
crystal space can thereby be transformed into a Bloch
sum over reciprocal space. Recalling the uncertainty
principle, we would expect that a slow convergence over
crystal space would correspond to a rapid convergence
over reciprocal space. Such is the case. This is equiva-
lent to the fact that a valence electron in a crystal will
have a very sharply defined momentum when it has a
very poorly defined position.

In obtaining the Fourier series, the correct set of
expansion functions to use is the set of ordinary plane
waves, ¢'®i°7 already discussed in Sec. III. If we define
the coefficients, 4;;, by the equation

Zi Asieiki'r'—"—Zn eik""vs(t—— rn), (24)
then it immediately follows that
A= Q‘lf e kiry (1)dT. (25)

0

The coefficients o; and p;;, used in the Schmidt orthog-
onalization procedures for the Bloch waves and the
orthogonalized plane waves, respectively, can be related
through the equation,

Ust=2i Asi“it- (26)
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Combining Egs. (4), (5), (7), (14), (24), and (26), we
get
T (r)=2_: 4,Xi(r). 27

Thus our device of expanding only a portion of the
Bloch wave function in a Fourier series is equivalent to
expanding the entire Bloch wave function in orthog-
onalized plane waves. It is interesting that the Eq.
(27) is exact despite the fact that the set X; is not a
complete set. (27) holds since the set X; may be con-
sidered a complete set for the purpose of expanding any
function which is orthogonal to the set of ion-core Bloch
wave functions, ®,.

It is possible to write the Bloch sums of overlap and
energy integrals in the form

Zn eik 'r"<Hstn_E[stn) = N—lf ‘I,t*(H—E)‘IISdT' (28)

Substituting (18) and (27) into (28), we get
Zn eik'r"(thn"E[stn)zﬂ Zij AsiA tj*Dij- (29)

Thus the secular equation in the Bloch method can be
written

det[QZU AgiAtj*D{j:|=0. (30)
Applying the law of determinant multiplication, we get
det[3 s Asid*Dij]

= (detA s 7,) (detA tj*) (detDH), (31)
so that (30) is equivalent to
detD,;=0. (32)

Since Egs. (32) and (20) are identical, we have shown
that the Bloch method is equivalent to the orthogon-
alized plane wave method.

Let us now study the practicability of the Bloch
method for numerical calculation. We will show that
while Eq. (29) is a very useful way of evaluating Bloch
sums of overlap and energy integrals, Eq. (30) is
absolutely useless for calculating energy bands. To do
this we must determine A,;, which depends upon v,(r).
In the types of crystals under consideration, the atomic
correspondence is very poor for valence electrons, so
that it is not necessary to use accurate analytic approxi-
mations to the true set, v,(r), of isolated-atom valence
and excited wave functions when making numerical
calculations. Indeed, it is not even necessary that the
analytic approximations to »,(r) have radial nodes.
When we form w,(r) from 2,(r) by the Schmidt orthog-
onalization procedure [Eq. (5)], we automatically
insure that w,(r) has the proper number of nodes. We
will approximate v,(r) by a set of Gaussian functions,’

" (1) =1L P 7 (cosB) e ert exp(— bir?). (33)

7The use of Gaussians in place of the more conventional ex-
ponential wave functions in problems involving many atoms was
first suggested by S. F. Boys, Proc. Roy. Soc. (London) 200, 542
(1950). Boys pointed out that energy and overlap integrals could
be obtained much more easily by using Gaussians rather than
exponentials.
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Substituting (33) into (25), we get

A mi= SZ—‘(r/b;)%(ki/sz)lP;'m[(cosoi)eim‘”
Xexp[— (ki#/4b1)], (34)

where 0; and ¢, give the orientation of k;. We can see
the relative magnitudes of the various A4’s by consider-
ing the example of lithium. For a 2p Gaussian wave
function in an isolated lithium atom, the values of b;
obtained by minimizing the one-electron energy can be
shown to be 8;=0.0557. (The atomic potential, V(r),
used in such a calculation is that obtained in Appendix
A.) In the crystal b, is probably still smaller, since the
wave function is probably more spread out in the
crystal than it is in an isolated atom. For the lithium
crystal K; is the form

Knlnzna = K(i1%1+ izﬂz‘l' is”a),

where 1y, iz, and 1 are fixed, mutually orthogonal unit
vectors, (n1+ne+ns) is an arbitrary even integer (face-
centered-cubic reciprocal lattice), and K=0.957. Since
k; usually increases with 7 (by convention), we can see
that, because of the factor exp[ — (k:2/4b;)]in A4, the
ration A ,1/A; will usually be a very small number,
often smaller than one millionth. Because of this fact,
the double series on the right-hand side of Eq. (29)
will converge extremely rapidly. This situation will hold
in general provided that the Bloch sums on the left-
hand side are slowly convergent. It is thus usually a
very good approximation to replace Eq. (29) by

T e n(Hyun— ELun)=0A 0w Do (35)

when the Bloch sums converge slowly. (Here we have
replaced the double series over reciprocal space by its
leading term.) If we attempt to use this approximation
in Eq. (30), however, we find that the secular deter-
minant vanishes identically (since the rows and columns
are mutually proportional), so that it is impossible to
solve for the energy eigenvalues. This is a convincing
demonstration of the fact that it is necessary to deter-
mine the Bloch sums extremely accurately, since the
solution to the secular equation depends upon the
minute deviations from proportionality of the rows and
columns of the secular determinant.

It is now apparent that Eq. (30) is not practical for
numerical calculations. The key to this lack of usefull-
ness of the Bloch method lines in Eq. (27). Just as we
approximated Eq. (29) by Eq. (35), we may approxi-
mate Eq. (27) by

W, (1)=2A 0Xo(1). (36)

We thus see that in Eq. (10) we are attempting to
expand the exact crystal wave function, ¥, in terms of
a set of wave functions, ¥,, the members of this set all
being, to an excellent approximation, numerical mul-
tiples of a single function, X,. In other words, ¥, is an
extremely poor set to use in expanding ¥. Disregarding
numerical factors, we see that ¥, depends almost en-
tirely on X, and almost not at all on v,. Because of the
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large amount of overlapping of valence atomic wave
functions centered on different nuclei of the crystal, the
valence atomic correspondence of ¥, is almost com-
pletely lost.

It is possible to reformulate the Bloch method in
order to remove the difficulty of a secular determinant
which vanishes identically (for practical purposes). This
reformulation is rather unwieldy for numerical com-
putations, however. From the set of valence Bloch
wave functions, ¥,(r), let us form the set of doubly
orthogonal valence Bloch wave functions, W,(r), where

llj's(r) = ‘I's(l‘) '—Z< gsv\l"y(r) (37)
and
Esv=f ‘Irv*\I’sdT/f ‘py*\ppdT.‘ (38)

As well as being orthogonal to the ion-core Bloch waves,
the W,(r) are mutually orthogonal. Similarly, let us
form the set of doubly orthogonalized plane waves,
X.(r), where

X(r)=Xi(r)— g, 74 X;(1) (39)
and
71,~_7~=f XjX,;d‘r/f X;X,dr. (40)

As well as being orthogonal to the ion-core Bloch waves,
the X,(r) are mutually orthogonal. As might be ex-
pected, it is possible to expand W,(r) in terms of the

X,;’S.
\If's(r)=zi B”-Xi(r). (41)
It can be shown that
Bsi=Zp.v ’YsuAuvﬂviy (42)
where
Zv 'stgvt= Bst- (43)

Using the fact that 4,4, ,.1, we can show that
B> B, 641> B, 540+ -, s0 that, to a very good approxi-
mation, we have

W, (r)=2B,,X,(r). (44)

Equation (44) should be contrasted with Eq. (36).
Associated with each doubly orthogonal valence Bloch
function there is a particular doubly orthogonalized
plane wave—the two being very nearly proportional—
so that there are no difficulties with vanishing secular
determinants. Just.as with W¥,(r), the valence atomic
correspondence of W,(r) is almost completely lost.

V. APPLICATION TO LITHIUM

We shall now apply the method of orthogonalized
plane waves to the case of the lithium crystal. The
calculations are simplified by the fact that there is only
one type of ion-core atomic wave function, namely, a
1s wave function, u;,. We approximate this by the
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exponential
Us=€" ",

(45)

a is determined by minimizing the expectation value of
the 1s energy in the isolated lithium atom; i.e., we solve
the equation

6E13//6d= 0,

Els,=fulsH,ulsdT/fulsulsdT;
0 0

H=-Vv4+V(r),

where
(46)

(47)

'V (r) being the atomic potential determined in Appendix
Ajie,

2 4
V(r)=—-3 C, exp(—c,r?) (48)
r

y=1

(the C’s and ¢’s being suitably chosen constants). The
results obtained are ¢=2.788 and E;,’=—4.572 (to be
compared with the experimental value of E/=
—4.799).

By substituting Egs. (45) and (48) into Eq. (23), we
can explicitly evaluate the integrals occurring in the
expression for D;;. After considerable mathematical
manipulation it is possible to obtain an approximate
but numerically accurate expression from which D;;
may easily be calculated as a function of k; and k;.

When we approximate ¥ by the first # terms of the
series in Eq. (17), then we obtain in Eq. (20) an nth
order secular determinant. For example, if we use only
the leading term of the series in (17), then (20) becomes

D00= 0, (4:9)

and we get a single solution for E versus k, this solution -

being independent of the direction of k. For higher
approximations, involving a secular determinant of
order greater than the first, the energy will not be
completely independent of the direction of k. If the
crystal wave function in the lowest valence band can
be closely approximated by a single orthogonalized
plane wave, however, then the energy will be nearly
independent of direction. That such is the case for
lithium can be seen from an examination of the results
given in Table I, where it is apparent that as the order
of the secular determinant is increased, E converges
rapidly to its limiting value. It is this behavior which
makes the orthogonalized plane wave method useful
for numerical calculation.

Knowing E as a function of k, we can find the ratio
of free to effective electronic mass in the valence band.
For k along a symmetry axis of the reciprocal lattice,
the ratio is given by

m/m*=3d*E/dR*.
We obtain as values along the 110, 111, and 100 direc-
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TaBLE 1. E versus k for the valence band of lithium. For con-
venience, E+-(4wC1/S;) has been denoted simply by E. The
number in the parentheses after E refers to the order of the
secular determinant used in solving for E.

110 direction

E(1) E(2)

0.0 0.188567 0.188527

0.2 0.222039 0.221287

0.4 0.330156 0.326336

0.6 0.509509 0.487387

0.67675 0.598254 0.527035

111 direction
k EQ1) E(2) E4)
0.0 0.188567 0.188527 0.188437
0.2 0.222039 0.221456 0.220183
0.4 0.330156 0.328368 0.324709
0.6 0.509509 0.504317 0.495564
0.67675 0.598254 0.589861 0.578193
0.75 0.693473 0.677700 0.663656
0.82885 0.807631 0.756032 0.756032
100 direction
EQ) E(2) E(5)

0.0 0.188567 0.188527 0.188394
0.2 0.222039 0.221674 0.220513
0.4 0.330156 0.329050 0.325783
0.6 0.509509 0.507119 0.501071
0.67675 0.598254 0.595096 0.587910
0.75 0.693473 0.689234 0.681002
0.82885 0.807631 0.801213 0.792210
0.9 0.921154 0.909060 0.901722
0.95707 1.019513 0.985029 0.994526

tions at the bottom of the band
(m/m™*)110=0.8190,
(m/m*)111=0.7936,
(m/m*)100=0.8030,
(m/m*)n=0.8075.

(The directional average is obtained in an approximate
fashion by averaging the values for the three symmetry
directions—weighting these values according to the
fact that there are six 110 axes, four 111 axes, and three
100 axes.) Silverman and Kohn® computed (m/m*)
=0.727 at the bottom of the band. The difference is
probably because of their use of an atomic rather than
a crystal potential. The latter varies less rapidly than
the former over most of the unit cell, and thus should
result in a value of m* more nearly “free-electron-like”
(see Appendix A).

Knowing E as a function of k, we can compute the
energy-width of the filled portion of the valence band,
obtaining a value of 4.06 electron volts. By means of
the soft x-ray K emission band of lithium, Skinner?
measured this to be 4.140.3 volts. This excellent com-
parison is in contrast with the results of previous cal-
culations on lithium.®* For example, the results of
Silverman and Kohn, who use the Wigner-Seitz ap-

8R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).

9 H. W. B. Skinner, Reports on Progress in Physics, V (1938).

10 J, Millman, Phys. Rev. 47, 286 (1935); F. Seitz, Phys. Rev.
47, 400 (1935); J. Bardeen, J. Chem. Phys. 6, 367 (1938).



558 R. H.
2
p
z E xPERIMENTAL
Curve:
THEORETICAL
i Curve
1
]
o ! 2 3 LS ) 6

Vours

F16. 1. Soft x-ray K emission band of lithium.

proximation, would predict the filled portion of the
band to have a width of only 3.51 volts.

It is instructive to compute the 1s energy level in
the lithium crystal; i.e.,

Els=f @1S*H‘1’lsd’r/f (I)ls*cblsde (50)

B ()=, ety (r—1,), (51)

and H is given by Eq. (21). (Note the distinction be-
tween Egs. (50) and (46)—the former holding for the
crystal and the latter for the isolated atom.) Having
done this, we can compute the energy-difference
between the Fermi level and the 1s level in the crystal
to be 57.8 volts. This should be compared with the
experimental value of 54.84-0.6 volts.*

Let us now compute the shape of the soft x-ray K
emission band of lithium. The experimental shape of the
emission band will be proportional to the optical

where

transition probability between the valence band and the .

1s level and proportional to the density of filled states
per unit energy range in the valence band. In the
approximation of E being independent of the direction
of k in the valence band, then k%dk/dE is proportional
to the density of states per unit energy range. The
optical transition probability between a 1s wave func-
tion ®;, and a valence wave function ¥ is proportional
to the quantity P, defined as

2
f By *vWdr / ( f B Dy dr f \1/*\1«17).(52)

If we define the quantity
I=Pkdk/dE, (33)

then, for energies below the Fermi level, I should be
proportional to the experimental shape of the emission
band. As can be seen from Fig. 1, the comparison
between theory and experiment® is only fair. The com-

1 H. M. O'Bryan and H. W. B. Skinner, Phys. Rev. 45, 370
(1934).

P=
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puted values of I are roughly proportional to E}. The
reason for the drop in the experimental curve at high
energies is not known.

VI. CONCLUSION

Let us briefly recapitulate the basic results of this
paper. For ion-core electrons (i.e., electrons associated
with a given nucleus), the crystal wave functions can
be conveniently expressed as Bloch wave functions
formed from the appropriate atomic wave functions. As
is shown in Appendix B, it is permissible to use simple
analytic approximations for these atomic wave func-
tions if our primary interest lies in the valence and
excited bands.

For valence and excited electrons (i.e., electrons
which cannot be associated with any given nucleus),
the ordinary Bloch method leads to computational dif-
ficulties. The elements of the secular determinant
involve slowly convergent spacial sums of overlap and
energy integrals between the various atoms of the
crystal. An approximation often used, that of tight
binding, which consists of neglecting integrals between
non-neighboring atoms of the crystal, is quite unjus-
tified because of the slow convergence of these sums.
By expanding each valence Bloch wave function in
terms of orthogonalized plane waves, however, these
slowly convergent sums over ordinary space are trans-
formed into extremely rapidly convergent sums over
reciprocal space. It thereupon becomes apparent that,
for the purpose of numerical computation, the secular
determinant occurring in the Bloch method will vanish
identically. This difficulty is caused by the fact that,
to a good approximation, all the valence Bloch wave
functions (in terms of which we attempt to expand the
true wave function) differ among themselves only by a
multiplicative constant. By a simple process, however,
the secular equation of the Bloch method can be trans-
formed into the secular equation of the method of
orthogonalized plane waves. The latter equation is
quite suitable for numerical computations. Thus we see
that the valence and excited wave functions are most
conveniently expressed in terms of orthogonalized plane
waves. The latter have most of the advantages and
none of the overwhelming disadvantages of ordinary
plane waves.

There are, of course, electrons which fall into neither
of the two general classes considered in the last two
paragraphs (e.g., the 3d electrons in the transition
elements). About such electrons nothing can be said
here.

Concerning the crystal potential, two important
facts stand out, as is shown in Appendix A. In the first
place, within a given unit cell of the crystal, the crystal
potential is not approximately the same as the corre-
sponding potential for the isolated atom. As we have
seen for the case of lithium, the two give significantly
different answers to the same problem, so that one
should not be used in place of the other. Secondly,
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Slater’s method of including exchange in a one-electron
approximation (by using an effective potential) seems
to be well-suited for the calculation of energy bands in
crystals.

The writer is indebted to the members of the Solid-
State and Molecular Theory Group at MIT for their
helpful discussion and criticism during the course of the
investigation reported herein. In particular, the writer
is indebted to the director of the group, Professor John
C. Slater, for much-needed advice and encouragement.

APPENDIX A
Determination of the Crystal Potential

First we shall justify Eq. (22),
VI)=2.V(r—r.), (1a)

which states that the crystal potential, V(r), can be
taken as a spacial sum of atomic-like potentials. This
is certainly true for that part of the crystal potential
resulting from the ion-cores of the various atoms of the
crystal, since the charge distributions of different ion-
cores do not overlap. We now show that the same is true
for that portion of the crystal potential resulting from
valence electrons. The exact (one-electron) wave func-
tion ¥(r) for the valence electrons can be written in the

form
Y(r)=2, ™ a(r—1,), (2a)

where (2a) may be taken as an implicit definition of the
Wannier function, a(r).12 This function is.similar to an
atomic wave function, a fact which might be suspected
by comparing Egs. (2a) and (3). If we define

o(r)=3", e tng*(r)a(r—r,), (3a)
then it follows that
=y, p(r—r,). (4a)

We have now fully justified (1a), since (4a) shows that
that portion of the crystal potential arising from the
valence electrons can be taken as a spacial sum of
atomic potentials, the atomic potential being that
arising from the atomic-like charge distribution, p(r).

We shall use the spherical average of p(r), rather than
p(r) itself, in computing V(r)—this approximation
being used universally in atomic problems. We will
make the further approximation of replacing the series
in (3a) by its leading term; i.e.,

p(r)=a*(r)a(r). (5a)

These two approximations tremendously simplify the
calculations. Incidentally, it can be shown that (5a)
follows from the spherical averaging unless a(r) has the
character of an s wave function.

In order to include electron exchange in our one-
electron Hamiltonian, we will form our potential by a
method introduced by Slater.!® If we define U(r) as the

2 G. H. Wannier, Phys. Rev. 52, 191 (1937).
13 J. C. Slater, Phys. Rev. 81, 385 (1951).
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conventional potential of an electron in the field of the
neutral crystal, then V(r), the potential including
exchange, is given by

V="0+(3/2)@3/x)}(v*0)h. (62)

It follows from the previous discussion that we may
decompose V(r) into a spacial sum of atomic potentials;
ie.,

V() =2 W(r—r4), (7a)
where!*

W(r)=—(2/1)Zy(r) (8a)

serves to define the effective atomic number Z,().
Instead of properly applying the exchange correction
to the crystal potential as is done in Eq. (6a), we will
adopt the approximate procedure of applying it to the
atomic potential ‘W (7). Thus we take

V(r)=—(2/NZpn(),
Zpi(r)=Zp+3(3/32x)}(rd*Z »/ dr*)?,

where V(r) and V(r) are related by Eq. (22). The
second term in Z,, results from a free-electron approxi-
mation to the exchange hole correction.

In computing Z, for lithium, isolated-atom wave
functions (with exchange) for lithium were taken from
Fock and Petrashen.!® It was assumed that the appro-
priate configuration to use for the neutral lithium atom
in computing Z, is (15)2(2s)%3(2p)%®. This assumption is
based on the following approximate calculation. Let the
valence atomic wave function for lithium be of the form,

v=a; (k)‘/’2s+ ap(k)¢2ﬂ»

Following Jones, Mott, and Skinner,® we assume that
|ap| =k/K,, where k=K, at the edge of the first
Brillouin zone. Denote by Qx the volume of the first
Brillouin zone, so that approximately Qx=(4/3)7K,%.
Two valence electrons would fill the valence band. Since
for lithium there is only one valence electron per atom,
the band is exactly half full, and 3Qx=(4/3)7k:3, k1
being defined as the maximum value of % associated
with an occupied state. We now find that

. k1 . k1
(@, = f 4dmk%adk / f 4rkdk
0 0

=3(3)1=0.378022

(%a)

is the fraction of 2p electrons in the valence band of
the lithium crystal.

It was found that Z,: could be very closely approxi-
mated by a sum of Gaussians,

Zp(r)= Z=:1C,, exp(—cr?), (10a)

14Tt should be emphasized that W (7) is the conventional poten-
tial energy of an electron in the field of the neutral, isolated atom.

18V, Fock and M. J. Petrashen, Physik. Z. Sowjetunion 8, 547
(1935). i
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where
C1=0.9256, C,=1.2278, C3=0.5901, Cs=0.2369,

€1=0.014408, ¢;=1.0642, ¢3=11.939, ¢4=107.37.
If we define
V.(r)=—(2/7)C, exp(—c,?), (11a)
then
4
V=2 V,(). (122)
y=1

It is convenient to speak of Vi, as the long-range part
of the atomic potential and (Vo+Vs+ V) as the short-
range portion. Similarly, we call X, Vi(r—r,) the
long-range portion of the crystal potential and

Z 24: Vv(r_rn)

n y=2

the short-range portion. Because of the values of ¢, cs,
and ¢, it can be seen that the short-range portion of the
crystal potential near a given nucleus is the same as the
short-range portion of the atomic potential centered on
the given nucleus. Because of the smallness of ¢y, this is
not true of the long-range portion. By expanding the
long-range crystal potential in a Fourier series, it can
be shown that near a given nucleus the long-range
crystal potential acts like the long-range atomic poten-
tial (centered on the given nucleus) multiplied by a
screening factor, S(r), of the form

S(r)= [1 - (Z/W)fK" x~1 sinxdx], (13a)

Ky havingalready been defined such that Qx= (4/3) 7K 3.
This screening factor has the important effect of making
a crystal potential more “free-electron-like” than is the
corresponding atomic potential.

The long-range crystal potential further contains a
small term not strongly dependent on position and a
very large term independent of position. This latter is
called the divergence term and has the value — (47 C; /Qcy)
(—=177.6 volts for lithium). (2 is the volume of the poly-
hedral cell of the crystal.) Apart from this divergence
term, V(r) is rather insensitive to changes in ¢;. This
means that the variation with position of the crystal
potential is insensitive to the value of the corresponding
atomic potential at large distances (large 7) since the
latter is largely dependent on ¢;. Such a situation is
fortunate, since the atomic potential we are using is
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clearly incorrect at large distances; i.e., Z,1 approaches
zero whereas it should approach unity as r—oco. This
incorrect behavior is a result of the free-electron ap-
proximation to the exchange hole correction in (9a),
and is the cause of the excessively large value of the
divergence term. Since our primary interest lies in
énergy bands, then an error in the divergence term is
unimportant, for the shape and relative separation of
the bands are independent of any constant terms in the
potential.

APPENDIX B
The Use of Approximate Ion-Core Wave Functions

Let us investigate the error in the lithium valence
band resulting from the approximation of the 1s atomic
wave function by a single exponential. We do this in
the following way. Consider the approximation of a
first-order secular determinant, so that the secular
equation is given by Eq. (49). In this approximation we
can expand E in powers of k2,

E=E\tEk+Ekt4-- - -.
Solving for the coefficients, we get
Eqt (47Cy/Qc1) =0.1886, E,=0.8792, E;=0.0199. (2b)

If we approximate our 1s wave function by a 'Gaussian,
exp(—a'7?), rather than by an exponential, ¢=%, and
then repeat the above calculation, we get

Eyt (47C1/Qc1)=0.1905, E;= 0.8751, E4=0.0224. (3b)

There is some work involved in getting (3b). First we
must obtain the best value of &’ from the equation

9E.,'/8a’=0,

(1b)

where Ey, is given by Eq. (46), where now
u1s=exp(—a’r?). (4b)

The results obtained are a’=2.076 and E,,’= —3.248.
Comparing this energy with those given in the dis-
cussion following Eq. (46), we can see that a Gaussian
is a decidedly poorer approximation to the 1s wave
function than is an exponential. Substituting (4b) into
Eq. (23) we can evaluate Dy and thus obtain (3b).
The point that should be made is that (3b) is remark-
ably similar to (2b), despite the fact that a much poorer
1s wave function was used in obtaining (3b). This leads
us to hope that the error resulting from approximating
the 1s wave function by a single exponential will be
negligible.



