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FIG. 3. Energy-level diagram for P~.

the erst excited state at 77.0&1.7 kev. This state kas
been veri6ed by Kinsey et a/. ,"who found two high
energy Psr(n, 7)PI gamma-rays, evidently correspond-
ing to the ground state and an excited state at 80~50
kev. In this region of the periodic table, the only other
known case for such a low-lying level is A12', where the
6rst excited state occurs at 31 kev, "

In addition to this ground-state doubtlet, there are
three other pairs of closely spaced levels at excitations
of 2.2, 2.7, and 3.3 Mev, with spacings of 50+2, 92+7,
and 59&3 kev, respectively. At present, n'one of these
doublets has been veri6ed by other workers.

The present results for the Psr(d, P)Pss react.'on can
be closely correlated with the results of Kinsey and
co-workers for the Psr(rs, 7)Pss reaction, as indicated in

Table I. The measured energies of twelve of the
Psr(N, 7) gamma-rays agree to 40 kev or less with the
established P" levels, when assigned. to the transitions
indicated in Fig. 2. Except for the case of the ground-
state doublet, the relative intensities of the observed
gamma-rays have generally the same pattern as the
relative intensities of the P"(d,p)P" proton groups.

The pattern of the established P" levels is quite ~4Enge Buechner, Sperduto, and Van patter, phys. Rev. 83,
distinctive. Of particular interest is the discovery of 31 (1931).
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The Interpretation of Image Transitions in Beta-Decay Theory*f
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The allowed favored beta-transitions are studied in relation to problems of nuclear structure and beta-
decay theory. These problems include (1) the influence of deviations from L-S coupling on the beta-decay
matrix elements of the light nuclei, (2) the relation between the observed magnetic moments, simp]e nuclear
models and deviations from L-S coupling, (3) determination of the ratio of Fermi to Gamow-Teller type
coupling constants, and (4) determination of the absolute magnitudes of the coupling constants.

The analysis of all available data yields two mutually supporting conclusions: (a) a substantial Fermi-
type component is present in the beta-decay interaction and (b} deviations from L-S coupling are an im-
portant factor in the interpretation of nuclear magnetic moments.

I. INTRODUCTION

HE theoretical interpretation of beta-decay data
is made dificult by two compI&cating factors:

(a) the possibility of linear combinations of the 6ve
covariant formulations of the theory and (b) the
occurrence of unknown nuclear matrix elements in the
derived formulas. Under (b) the difficulties are particu-
larly formidable when two or more nuclear matrix
elements are involved in a transition probability.

* Adapted from a dissertation presented to the Graduate Board
of W'ashington University in partial fulfilment of the requirements
for the degree of Doctor of Philosophy. This work was done
while the author was the holder of an AEC predoctoral fellowship.

f Assisted by the joint program of the ONR and AEC.
$ Present address: Knox College, Galesburg& Illinois.

Because of these general complications the testing of
the theory outside of the allowed range has been largely
dependent on the occurrence of transitions subject to
special selection rules for which only one nuclear matrix
element appears in the theoretital transition proba-
bility. " The study of such transitions (especially
AI=+2, yes) proves the need for a tensor or axial
vector component in the general linear combination,
but does not exclude the presence of other components
(scalar, polar vector, and pseudoscalar).

In allowed transitions the tensor and axial vector
components are responsible for the Gamow-Teller

' C. S. Wu, Revs. Modern Phys. 22, 386 (1930).
~ I. P. Davidson, Phys. Rev. 82, 48 (1951).
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selection rules:

AI=O, &1 (no), 0—&0 excluded

while the Fermi selection rules

AI=O (no) (2)

scalar, vector, tensor, and axial vector couplings,
respectively. These constants are real numbers in
consequence of the postulated invariance of the inter-
action Hamiltonian under the operation of time reversal'
or of charge conjugation. ~ Fierz's conditions'

GBGy ——Gag =0
derive from scalar and polar vector components.

An additional important distinction within the
allowed group is that between transitions within a
supermultiplet (allowed favored or superallowed —ft

10') and those between states belonging predomi-
nantly to different supermultiplets (allowed unfavored
or just plain allowed —ft 10' ').' The occurrence of
these distinct types in widely separated ranges of ft
values proves both the approximate nature of the
supermultiplet formalism and the general excellence of
the approximation —approximate because the allowed
unfavored transitions would not occur at all if the
supermultiplet formalism were exact and an exce1lent
approximation because the nuclear matrix elements for
allowed unfavored transitions are actually quite small.

In this paper the allowed favored group (including
the image transitions) is studied in relation to problems
of nuclear structure and beta-decay theory, developing
further earlier studies by %igner'4 and Gronblom. '
These problems include:

1. The influence of deviations from L-S coupling on
the beta-decay matrix elements of the light nuclei.

2. The relation between the observed magnetic mo-
ments, simple nuclear models and deviations from L-S
coupling.

3. Determination of the ratio of Fermi to Gamow-
Teller type coupling constants.

4. Determination of the absolute magnitudes of the
coupling constants.

II. THE METHOD OF CALCULATION

In the general formulation of the theory the half-life
I for an allowed transition is given by

1 2

(Gs'+Gv') 1
2x' ln2

SZC

2-

+(Gr'+G~') ~g f(Z Wo) (3)

where

2 (1+Sp)
f(Z Wp) = (Wp —W)'pW (2pR)"o-'

1'P(2Sp+ 1)
(4)

Xe &wt" (F(S,+iyW/P) ~'dW,

y =Ze'/Ac, Sp ——(1—y')'

and Gq, Gy, Gp, and Gg are the coupling constants for

' E. P. Wigner, Phys. Rev. 56, 519 (1939).
4 E. P. Wigner and A. M. Feingold, privately circulated notes

(1949).
~'B. O. Gronblom, Phys. Rev. 56, 508 (1939).

insure that the theoretical Kurie plots for allowed
transitions are straight lines. They are also necessary
conditions for complete symmetry between positron
and negatron emission when the eGect of the Coulomb
field of the product nucleus on the wavefunctions of the
emitted particle is neglected. ' The experimental evi-
dence" cannot establish Eq. (5), but does require
strong inequalities

2GsGv«Gs'+Gv', 2GrG~&&Gr'+G~' (6)

The notation

G p+G p=Gvp Grp+G~p ——Ggrp Gv'-——vGgrp (7)

is useful in indicating, respectively, the Fermi and
Gamow-Teller coupling types and permits rewriting
Eq. (3) as

r ') i't 2pr'ln21+
) mc Ggr'

The right side of Eq, (8) contains only constant factors;
so the left side must also be constant for all allowed
transitions.

In evaluating r and Gg~' the matrix elements are
first computed; then the left side is a known linear
function of r, the coeKcients varying with the transition
as prescribed by the assumed nuclear model. The left
side is made as nearly constant as possible in the sense
of minimizing the mean square deviation from the
average. This fixes the value of r; setting the right side
of Eq. (4) equal to the average value of the left side
gives a value for Ggr' and, hence, through Eq. (7), for
Gp2. The mean square deviation from the average
provides a figure of merit for the nuclear model used in
the calculation. The resulting theory is applied to a
number of transitions not included in the least squares
evaluation of r and the coupling constants. Three
models are tested and compared in this manner.
Finally a compromise solution is developed in an
attempt to achieve a satisfactory fit with all the data
while maintaining a close correspondence with the
more plausible of the three nuclear models.

The transitions used in the least squares calculation
are those between ground states of mirror nuclei. In
evaluating the nuclear matrix elements, these states are
assumed to be pure spin doublets. The calculation is
sketched below for

(
J'ir~'; that for

(
J'1~' is similar,

but simpler.

' L. C. Biedenharn and M. E. Rose, Phys. Rev. 82, 982 (1951).' H. A. Tolhoek and S. R. de Groot, Phys. Rev. 84, 150 (1951).' H. A. Tolhoek and S. R. de Groot, Physica 16, 456 (1950).
9 C. S. Cook and G. E. Owen, Am. J. Physics 18, 453 (1950).
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The explicit form of the matrix element, with the
charge operator included, is

Equation (8) becomes

ji r+ (n'(I+1) —(1—n')I)'
I(I+1)

A

Yq= 2 Q 'rqyoky
a

with vg and v, the components of the isotopic spin
operator, the subscript k referring to the kth nucleon. '0

Tr and Tr' are eigenvalues of the operator —,'Pere, equal
to the initial and 6nal values of s(A —2Z). The plus
sign in Eq. (9) refers to positron emission and E
capture, the minus sign to negatron emission.

Under the assumption of pure doublet states" the
wav'e function ean be expressed in the form

the individual components being assumed normalized.
This represents a Hnear combination of the two L-5
coupling states possible for a given value of I. Since
parity is a good quantum number, both components in
Eq. (11) have the same parity.

Since Yt+iY, does not operate on the space coordi-
nates and hence has no matrix elements between states
of different I., Eq. (9) becomes

+ (1 H) (Tr', I, I.'—, 5, m'
i Y&

+iY„~Tr, I, I.', 8, m) ~'. (12)

These matrix elements can now be evaluated directly
by the use of the theory of angular momentum oper-
ators and supermultiplet formalism. The result, is (see
Appendix)

=C. (15)
mc 6gz'

Thc mixing cocKcients 0. must now bc dctclIQlIlcd
from a theoretical interpretation of the nuclear mag-
netic moments. Plots of moments against spin in con-
junction with the theoretical single particle (Schmidt)
and uniform model (Margenau-Wigner) limits" are
helpful in devising a reasonable interpolation procedure
for aP. As a rule the observed moments are close enough
to pne or the other of the Schmidt limits to permit an
unambiguous assignment of parity and a predominant
olbltRl RngulRI' momentum L. Thcsc Rsslgnmerlts Rlc
strongly supported by the success of shell n1odel
considerations in interpreting a wide range of nuclear
properties.

In the single particle model the odd particle is
assumed to move in the spherically symmetric 6eM
produced by a core containing all the other particles;
this core is assumed to have zero angular momentum,
so that if the odd particle is a proton gl.= 1, while if it
is a neutron gJ.=O. A di6iculty arises when an attempt
is made to explain deviations from the moments pre-
dicted in this way since states with L=I—2 and
I.'=I+-,' have opposite parities in a single particle
model and cannot be put into the same Hnear combi-
nation. Direct interpolation between the Schmidt limits
is therefore meaningless and some other procedure must
be used.

If it is assumed that one.pure L-5 coupling compo-
nent can be described more or jess accurate]y as repre-
senting a single particle interacting with a symmetrical
core of even parity, the other component necessarily
has a many particle character in order to maintain the
same parity in both components. A reasonable estimate
of the extent to which both components are present
can be derived from a simple interpolation procedure
on the moment diagrams. One component is referred
to the nearest Schmidt limit. (ps) and the other to the
opposite Margenau-Wigner limit (y~s ); then one
computes the quantity

(16)

In a similar manner

(14)

This interpolation coefFicient is interpreted as 0.' or
1—a' depending on the location of p, relative to the
Schmidt limits. "

For comparison purposes another coefFicient Ape~ ~~
is defined by linear interpolation between the DES'

'OL. Rosenfeld, Xucleur Forces (Interscience Publishers, ¹vr
York, 1949), Chapter IV and Appendix 1.

"A consequence of the assumed validity of the supermultiplet
analysis.

& E. Feenberg, Phys. Rev. 77, 771 (1950).
"Interesting and perhaps signi6cant regularities appear in the

application of Kqs. (11)and (16) to the available data on moments
and spins (private communication from J. P. Davidson).
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TasLE I. C= ftLrf f1['+]fe]'] for L Scoupling.
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Transition

n~HI
H3~He'
Be ~Ll
CI F11
N13~C13
PIS~N15
F17~P17
Ne19~F19
Mg23~Na'3
Si27~AP7
S3~P31
Cl33~S33
A35~C/35
K37~Cl37
Ca39~K39

Na'~Ne"
Na'~Ne"
Al25~Mg"
P29~Si99
Se41 Ca41

8e7~Li7*
He'~Li'
Clo~glo@
CIP Q /Ping

P,I N14~

F18~Q18

I
1/2
1/2
3/2
3/2
1/2
1/2
5/2
1/2
3/2
5/2
1/2
3/2
3/2
3/2
3/2

(3/2)
(5/2)
5/2

(1/2)
(7/2)

3/2~1/2
0 1

(0 1)
(0 0)
(0 0)
(1-0)

1
1
1
0
0
1

1
1
1
0
0
0
0

1 gaol

5/3
5/3
1/3
1/3
7/5

5/3
7/5
3

3/5
3/5
3/5
3/5

5/3
7/3
7/5
3

9/7

4/3
6
6
0
0
2

ft

1400
1100
2300

, 3900
4800
3700
2250
2000
4600
3700
4300
3500
3400
2700
4000

3600
3600

(3000)'
3800
2550

3600
550

2000

3300
3700

1400r+4200
1100r+3300
2300r+3830
3900r+6500
4800r+ 1600
3700r+ 1230
2250r+ 3150
2000r+ 6000
4600r+ 7670
3700r+5180
4300r+12900
3500r+2100
3400r+ 2040
2700r+ 1620
4000r+ 2400

3600r+6000
3600r+8400
3000r+4200
3800r+ 11400
2550r+3280

2'—Ape ~

a
1Sp~3$, ~

'S0~3SI'
lS~1So '

'Sp 'Sp.
'SI~'Sp,

a=C-C
—1777r—48—2077r —948—877r —418

723r+2252
1623r—2648
523r —3018—927r —1098—1177r+1752

1423r+3422
523r+932

1123r+8652
323r—2148
223r —2208—477r —2628
823r —1848

not used in
calculating

r and 0

f1 '=0
J'1 '=0
J'1 2=0f1 '=2
J'1 '=2
J'1' '=0

C(r =0)

4200
3300
3830
6500
1600
1230
3150
6000
7670
5180

12900
2100
2040
1620
2400

6000
8400
4200

11400
3280

4800
3300

12000
0
0

7400

( ) assumed value; { )a estimated, TVO =7.08mc2.
C =3177r+4248; (b2)Ay =(122r~+143r +892) )&104.
r (for minimum (a&)Ay) =0' minimum QP)Ay =8.92 X10s.
C (for minimum (hs)Ay) =4250; probable error =2000.
All ft values were taken from A. M. Feingold, Revs. Modern Phys. 23, 10 (1951), except for the neutron in which case ft was computed from data

given in reference 14, and the mass numbers A =23, 27, 31, 33, 37 and 39 for which the ft values were taken from F. I. Holey and D. J, Za8arano, Phys.
Rev. 84, 1059 (1951).

All spins and moments were taken from J. E. Mack, Revs. Modern Phys. 22, 64 (1950) except 0»—F. Alder and F. C. Yu, Phys. Rev. 81, 1067 (1951);
and S'3—moment from Eshbach, Hillger, and Jen, Phys. Rev. 80, 1106 (1950).

limits and interpreted as n' or 1—a' depending on the
location of p, . In the uniform model it is assumed that
a large number of nucleons contribute in a more or less
random fashion to the total orbital angular momentum
which is still a constant of motion. As in the single
particle model, all spins but one are paired off resulting
in a doublet state with a definite value of L (LS-
coupling). The orbital gyromagnetic ratio is just the
fraction of the orbital angular momentum carried by
the protons, or gr, Z/A, which has very nearly the
value 0.5 for most mirror nuclei. Since this is a many-
particle model, states with L=I+,' and L=I 2can-—
have the same parity and hence can enter into a
linear combination.

In a few cases (including Li' and Na") h~s ~s is
probably a better measure of the deviations from pure
L Scoupling than Ds ~Tr. F-or Li~, gr, between 1/3 and
17/42 appears reasonable on theoretical grounds. For Na"
the shell model interpretation of the ground state is
predominantly 'P~ of even parity compounded from
conhgurations containing 3, 5, and 7 nucleons in id
orbits. The moment diagram indicates a substantial
amount of 'D~ component.

III. RESULTS

The numerical analysis and results are shown in
Tables II and III for the S-MW and MW-MW inter-

polation procedures. Table I gives the results of the
same computation made on the basis of pure I;S
coupling, for comparison purposes. In the three tables,
o=((b,')A,) is the standard (root-mean-square) devia-
tion, while e=0.67450 is the probable error. Table IV
summarizes the calculations. No experimental uncer-
tainties are listed for the jt products, but it is likely
that few of the given values are in error by as much as
20 percent.

Let us first dispose of L Scoupling (Tab-le I). Here
the addition of a Fermi-type term makes matters worse
in 9 transitions out of 15 and the best value of r is
clearly 0. The square of the standard deviation is
8.9X10' and C is 4250 with a probable error of 2000.
About —,

' of (6')A, is contributed by the S"—&P" transi-
tion. Actually (BP)A„depends only slightly on r and
r=0.5 is only slightly inferior to r=0. The good agree-
ment between the H' and He' transitions for r=0 is
balanced by the difhculty with the ~0 interpretation
of the 0'~N'4* transition.

In Table II (S-MW interpolation procedure) the
need for a Fermi-type term is clearly indicated by 12
out of 15 transitions. However, even with r=0 the
square of the standard deviation is only 2.0X10' (com-
pare with 8.9X10' for L Scoupling). Much of this-
reduction comes from the greatly reduced value of
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TABLE II. C=ft[r (
J'1 ~'+ (

J'e ~'] from S-MW interpolation procedure.

Transition

e~H'
He'~H'
3e7~Li7
C1~B11
Nl~C13
Q15~N 5

P17~Q17
Ne19~P19
Mg~~wa23
Si27~AP7
S3~P31

l S"
A35~C/3$
K37~CP7
Ca39~K39

AP~~Mg~5

I
1/2
1/2
3/2
3/2
1/2
1/2
5/2
1/2
3/2
5/2
1/2
3/2
3/2
3/2
3/2

5/2

1
0.88
0.76
0
0
0.99
0.95
0.65
0.78
0.45
0.20
0.22
0.18
0.08

0.80

3
3
1.09
0.61
1/3
1/3
1.37
2.65
0.33
0.57
0.22
0.13
0.10
0.16
0.33

0.59

ft

1400
1100
2300
3900
4800
3700
2250
2000
4600
3700
4300
3500
3400
2700
4000

(3000)

1400r+4200
1100r+3300
2300r+ 2510
3900r+2380
4800r+ 1600
3700r+1230
2250r+3080
2000r+5300
4600r+1520
3700r+2110
4300r+950
3500r+450
3400r+340
2700r+ 430
4000r+ 1320

3000r+ 1770

h, =C-C
—1777r+2152—2077r+ 1252
—877r+462

723r+332
1623r—448
523r —818—927r+ 1032—1177r+3252

1423r—528
523r+62

1123r 1098
323r —1598
223r —1708—477r —1618
823r —728

not used in
calculating

C and r

C

5360
4210
4420
5620
5580
4300
4950
6960
5340
5180
4520
3350
3160
2670
4640

4260

Be7~Li7*
C10~B10++
Q1~N14+

3/2~1/2
(~0).
(0 0)

4/3 X0.88
OI
0

3600

3300

0.88(2P)~'P~)
'Sp~'Sp,. J'1 '= 2
'Sp-+'Sp) J'1 2= 2

4220

5470

( ) assumed value from Table I; Hee, C»(0~1), FIS as in Table I.
C =3177r+2048; (LV)Ay =(122r' —203+194) )(104.
r (for minimum (L2)Ay =0.83; minimum (a')Ay =1.1 )(104.
C (for minimum (b2)Ay =4700; probable error =710.
a A weak branch with energy and intensity about right for the 0-+0 interpretation has been observed recently (private communication from Professor

R. Sherr).

~
Je ~' for the Si"~par transition. The optimum value

of r (0.83) cuts (LP)A„nearly in half and gives C=4700
with a probable error of 700. A more impressive measure
of the improvement resulting from the S-MW interpo-
lation procedure is shown in the bottom line of Table
IU; the square of the relative standard deviation
(6 )Av/C' is reduced by a large factor when the op™m
amount of Fermi-type coupling is put into the calcu-
lation.

Table III shows that the MW-MW interpolation
procedure results in a substantially better fit to beta-
decay theory than pure L-S coupling, but is definitely
less satisfactory than the generally more plausible
S-MW procedure. It is perhaps significant that both
interpolation procedures yield substantially the same
value of C, slightly smaller than 5000 and nearly the
same value for r.

The still sizeable dispersion found in the two mixed

TABLE III. C=jt[r
J
f1['+

f
J'cr ['j from MW-MW interpolation procedure.

Transition

e~H'
H~He'
Be7~Li7
C1 F11
N1~C13
Q15~N18
P17~Q17
Ne19~F19
Mg23~Na"
Si27~AP7
S3~P31
C]3~S33
A35~CP'
K37~Cl3
Ca39~K39

AP'~Mg"

I
1/2
1/2
3/2
3/2
1/2
1/2
5/2
1/2
3/2
5/2
1/2
3/2
3/2
3/2
3/2

5/2

Q2

1
1
0.99
0,85
0.10
0.09
1
0.95
0,74
0.96
0.51
0.41
0.39
0,40
0.29'

3
3
1.61
0.96
0.13
0.13
7/5
2.65
0.55
1.24
0.36
0.01
0.00
0.00
0.03

ft

1400
1100
2300
3900
4800
3700
2250
2000
4600
3700
4300
3500
3400
2700
4000

(3000)

C

1400r+4200
1100r+3300
2300r+3700
3900r+3740
4800r+620
3700r+480
2250r+3150
2000r+5300
4600r+ 2530
3700r+4590
4300r+1550
3500r+50
3400r+0
2700r+0
4000r+ 120

3000r+4200

A=C —C

—1777r+1980—2077r+ 1080—877r+ 1480
723r+1520

1623r —1600
523r —1740—927r+930—1177r+3080

1423r+310
523r+ 2370

1123r —670
323r —2170
223r —2220—477r —2220
823r —2100

not used in
calculating

Candr

5350
4200
5580
6940
4550
3510
4990
6940
6300
7620
5070
2920
2780
2210
3400

6660

Be7~Li7* 3/2~1/2 0 99X4/3 3600 0.99('Z, —'Z, ) 4750

( ) assumed value from Table I; He4, CI'(0-+1), F18 as in Table I; CIo(0 0), 014 as in Table II.
C 3177r +2220; (d 2)Ay = (122r2 —199r+338) )&104.
r (for minimum (b&)Ay =0.82; minimum QP)Ay ~2.6 X106.
C (for minimum (»)Ay =4800; probable error 1100.



IMAGE TRANSITIONS IN P-DECAY THEORY

TAm.x IV. Summary of results from Tables I-III.

L-S coupling S-MW for a2

r 0 1 0 1

8.9+105 11.6&(105 1.9+106 1.1+106
C .4250 7420 2050 5220
{bP)Av/C2 0 49 0 21 0 45 0 041

MW-MW for eP
0 1

3.4 &&106 2.6)&106
2220 5400
0.70 0.089

"H. Feshbach and R. L. Pease, private communication.
"Private communication from Dr. E. Feenberg.
'5 Based on data reported by V. Pere'-Mendez and H. Brown,

Phys. Rev. 77, 404 (1950).

state models can be assigned to three causes in addition
to experimental errors involved in the ft values. One
is the fact that in making the calculations, the same
mixing of states was tacitly assumed in parent and
daughter nuclei. This is the expected relation from the
symmetry principle on which the supermultiplet
analysis is founded; but it may not be exactly correct.
The second, and probably more important, factor is
that the wave functions are in any case not exact. The
true wave functions probab1y contain quartet and even
higher spin multiplet terms, which may make fairly
strong contributions to

~

J'o ~'. Such additional terms
may possib1y not produce scnous a1teration in the
values of either 0 or r in virtue of the averaging process
by which these values are computed.

Actually there is evidence, '4 based on calculations
with tensor forces, that the ground states of H' and He'
contain Rn Rdn1ixtul c of R D& con1ponent wlt11 R

statistical weight of 4 percent. The beta-decay matrix
element for the 'D~ component is identical with that of
'P~, so that Eq. (13) can be used without change if
1—0,' is identi6ed with the statistical weight of the
4D~ component. '5

A third and perhaps most important source of error
is the probable inaccuracy of the interpolation pro-
cedures used to determine the amount of mixing.
Recognition of this possibility is helpful in restoring
some freedom of action. To discover in. which direction
to go consider fthm%~ for He~—+Li' from Table I. This
value, "3300, may be compared with | computed from
Table II:

C=2050, r =0
=5220, r= 1.

To bring 0 into agreement with the He' transition
requires r' 0.5 (or 0 3600). Similarly ftltlf I' for
Q'4-+N"* is reduced to 3300 for r=0.5 in line with 0
and the Hc' transition. These considerations suggest
sccklDg R coIDploIDlsc solutloD with r=0.5 Rnd e2

adjusted slightly from the 5-HER' values to improve
the over-all constancy of fthm%~'. Actually the adjust-
ments, shown in Table V, are generally rather small.

One may conclude that a variety of errors, both
theoretical and experimental, tend to an overestimate
of r in the analysis of Tables II and III. A compromise
solution with r=0.5 6ts all the data fairly well except

Transition

N~H'
H8~He3
Be ~Ll
N18~C13
Ql5~N15
P17~Q17
¹

19~F19
Na2 -+Ne2'
Na2~¹ 1

Mg~Na23
Al25~Mg25
S~27~Al27
P29~Sj29
P29~Sj29
SP1 P31
CP3 S3
A35~Cl35
K'V~A"
Ca39~K89
Sc4~Ca4'

Be~~Li'*
He~Lie
C1a Bso+
C'0 BM
Ql~@14+
P1~Q18

(

1/2
1/2
3/2
3/2
1/2
1/2
5/2
1/2

(3/2)
{5/2)
3/2
5/2
5/2

(1/2)
(3/2)
1/2
3/2
3/2

(3/2)
3/2

(7/2)

3/2~2/2

(~1)
(0 0)
(0-0)
(2~0)

S-MW) (adjusted) I
J'+l2

1 1
0.95

0.85 0.85
0.76 0.68
0 0.05
0 0
0.99 0.95
0.95 0.90'

0.70
0.75

0.65 0.60
0.80 0.80
0.78 0.73

0.52
0.07

0.45 0.48
0.20 0.10
0.22 0.12b

0.00.
0.08 0.08

0.88

X(2I')~I'))
'So~351

y('So 'S )
'So~'So
'So~'So

s(3S,~&S0)

3
2.61
0.96
0.40
0.21
0.33
1.17
2.35
0.45
0.46
0.22
0.59
0.40
0.39
0.40
0.28
0.32
0.28
0.60
0.33
0.79

fMl»

3.5
3.11
1.46
0.90
0.71
0.83
1.67
2.85
0.95
0.96
0.72
1.09
0.90
0.89
0.90
0.78
0.82
0.78
1.10
0.83
1.29

ftlMl2

4900
3400
3350
3500
3400
3200
3800
5700
3400
3400
3300
3300
3300
3400
3400
3400
2900
2700
3000
3300
3300

4800'o
3300

12000y&

3300
7400m'

( ) assumed value.
a b—a good fit would require excessively large adjustment,~x 0.7 consistent with 85 percent 2I'3/2 and 85 percent 2P&~2.

0.3 consistent . with 30 percent ttSy in the hnear combina-
tion 3S1+3D1+~Ps.~s~.45 consistent with 45 percent 3S~ in the linear combina-
tion 3St+IDy+'P t.

'7 J. M. Robson, Phys. Rev. 83, 349 (1951).

for e +H' C"(0)~B"*(1) F"(1)—+0"(0) and Ne"-+
I"'9. The first exception may be improved by a sub-
stantial reduction in the measured half-life of the
neutron just outside the present reported limits of
error. '" The second can be interpreted in terms of a
linear combination, 'S~+'D~+'P~ for the excited state
of 8"with '51 having a statistical weight of 30 percent.
This makes the lowest I= j.state of 810 intermediate in
mixing properties between the ground states of Li'
(almost pure 'S~) and N'4 (relatively little 'S~). A
similar explanation its the F" transition. The fourth
exception may perhaps indicate a small error in the
measurement of the transition energy.

The end results are values for Gp' and Ggp2. Com-
puted from Table II on the basis of the S-MW interpo-
lation procedure they are

Ggr' ——(1.16+0.15)+10 ",
(1))Gg'=(0.96+0.13)+10 ".

The error is simpIy the statistical error in the evaluation
of C. The compromise solution yields what are thought
to be more reliable values

Ggr'=1.65X10 ~, Gy'=0. 82X10 ". (18)

The compromise ratio, r=0.5, is just outside the
upper lln1lt dellvcd by Moszkowski from RD RDRlysls

TABS.E V. Compromise solution: r=0.5 and n2

adjusted for best 6t.
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using only a small part of the available data, ' Equation
(17) is roughly consistent with the Wigner-Critchfield
interaction containing equal weights of the scalar, axial
vector, and pseudoscalar combinations. However, recent
analyses"" seem to favor the tensor over the axial
vector. In any event tentative conclusions that the
correct interaction is a pure Gamow-Teller type shouM
be carefully re-examined.

The author wishes to express his appreciation to
Br. Eugene Feenberg for suggesting this problem and
for much valuable advice and criticism. Thanks are
due Dr. D. C. Peaslee and Dr. C. S. Cook for helpful
and stimulating discussion. He also derived much of
value 'from unpublished notes on the image transitio'ns

by E. P. signer and A. M. FelngoM.

APPENDIX. DERIVATION OF EQUATION (13}

If a vector operator Q satisfies the commutation
relations

[I* Q*3=o [I* Q.l=&Q., [I*,Q.'j=~Q.,

and. others obtained from these by cyclic permutation
of subscripts, then the general theory of angular
momentum gives"

(~'I~'~ Q (~I~)
= (Im'

~
I

~
Im) {y'Im

t
I Q

~
pe)/[I(I+1) j, (A1)

& (YtaiY„)=(L+S) S(stair„)
= (L.S+S')(stair „).

(A4)

L.S=1/2(P L2+S2)

so Eq. (A2) becomes

2

I
~'(Tr'I-»~ & (Y&~iY„)

~
T„IsI)

I(I+1)
+(1—+)(T 'I'SI

f
& (Y(+~Y„)t TrZ, 'SI) J'. (A3)

It is now possible to make use of an important
feature of the supermultiplet formalism, namely, that
the values of the matrix elements of any operator
connecting only states within a supermultiplet depend
only on the quantum numbers of the states involved
and the character of the supermultiplet. It is thus
possible to calculate these matrix elements using func-
tions and operators appropriate to the simplest con6gur-
ation capable of generating the supermultiplet. For the
nuclei involved in the image transitions, these are
either one- or three-particle functions. In the one-
particle case, the calculation can be carried out without
recourse to explicit functions, as shown below; the final
results are the same for the three-particle case, as has
been verified by direct calculation.

For one particle, the operator I (Yt&iY„) takes the
form

where the 6rst factor on the right is independent of so Fq (A4) b
y and the last independent of m; y and y' represent all
the additional quantum numbers necessary to specify ~'(Y&~fY.) =(T&+~T.)(&'—L'+S')
the state completely. Since the operators Yt&iY„are Insertion of this into Fq (A3) gives
of this type, the rule (A1) can be applied to the matrix
elements ln Eq. (6) giving 1

Tr T$
I(I+1)

~ T„[T„)[ [.(I.SI[P-L+S tI.SI)

+ (1—n') (I.'SI
)
P—L'+S2[I.'SI)

[
'. (A5)

Z I
(I~'I &II~) I'I ~'(Tr'ISII &

I2(I+1)' ~~

~ (Yt+~Y„)) TrISI)+(1—n') (Tr'I.'SI
I I

Now for the mirror transitions,

I (Tr'I T~~~T.
I Tr) I'=1;

where only the Parameters on which a matrix element moreover the partial a e fumoreover, t e partia wave functions are chosen to be
depends have been retained. But

Q (
(Im'~ I [Im) ('= (Imt I'(Im) =I(I+1)

'8 S. A. Moszkowski, Phys. Rev. 82, 118 (1951).
» H. %'. Fulbright and J. C. D. Milton, Phys. Rev. 82, 274

(1951).
20 L. M. Langer and R. J.D. Morat, Phys. Rev. 82, 635 (1951).
» E. U; Condon and G. H. Shortley, The Theory of At'omit

Spectre (Cambridt, e University Press, London, 1935), p. 61.

2

I
~ (I(I+1)—I{I+1)+S(S+1))

I(I+1)
+(1- ')(I(I+1)-I'(I,'+ 1)+S(S+1))

~
.

Insertion into this of the assumed values 5=—,', I,=I—g,
I+S gives just Eq. (13).


