
ELECTRON SPECTRA FROM A Coco SOURCE IN H&O

the lower energy electrons and the rate at which the
spectrum changes becomes less and less. In fact, at
distances of a meter or more, the changes in the shape
of the spectrum are too small to be measured with this
low resolution spectrometer.

White' has already made some measurements in a
similar experiment, using shielded ionization chambers,
and found that the spectrum is still changing as far
out from the source as 135 cm. These data do not,
however, contradict the results of the present experi-
ment since the ionization chambers are sensitive mostly
to very soft radiation, so soft in fact as to have had no
eGect in this experiment. Furthermore, the spectra of
photons calculated by Spencer and Fano' show the

features' of both experiments. The calculated spectra
show a peak below 100 kev the height of which, relative
to the high energy portion of the spectrum, is still
changing at large distances; this component is pri-
marily the one measured by %'hite. ' On the other
hand, the shape of the calculated spectra at high
energies change very slowly with distance, too slowly
for any variation to be observed with the spectrometer
used in the present experiment.
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It is pointed out that the Ornstein-Zernike-Gibbs formula, which is commonly used to connect the
intensity of coherent scattering of radiation in a liquid with the thermodynamic functions, is not valid for
liquid helium. Alternative formulas involving the radial distribution function are discussed.

' 'N the coherent scattering of radiation by a monatomic
~ ~ liquid, the scattered intensity is proportional to

$+~ [g(r) $]gi(kl—k2) fd3r

where I is the number density, g(r) the radial distribu-
tion function, and hi and t2 the incident and scattered
wave vectors. Consequently, for large wavelengths the
scattering cross section is multiplied by the factor

S(T) —=1+n)~(g—1)4~r'dr,
a

and the scattered intensity can be related to the thermo-
dynamic magnitudes of the liquid by the formula

S=ekTX~, (3)

where p~ is the isothermal compressibility. This
formula (3) is valid for "classical" conditions, but has
recently been applied to the analysis of scattering in
liquid helium. '

*This work was begun at the Royal Society Mond Laboratory,
Cambridge, England, where it was supported by the Department
of Scientific and Industrial Research, and it was completed under
contract between the ONR and Duke University. I would like to
express my thanks to Professor F. 'London for the hospitality of
his department.

'A general reference on the results (1)-(5) is: J. de Boer,
Reports on Progress in Physics 12, 305 (1949), $10.' Goldstein, Sommers, King, and Hoffman, Proceedings of the
International Conference on Low Temperature Physics, Oxford,
1951, p. 88; see L. Goldstein, Phys. Rev. 84, 466 (1951), Fig. 1.

It is the present purpose to point out that this
application to a qluetum liquid is incorrect. To see
this, we break down (3) into the two equations from
which it derives. Consider a small fixed cell of volume
e in the liquid, which is supposed homogeneous, and
define the function f(r) such that f is unity when r ends
in the cell and zero otherwise; and hence the function
F=P,f(r,), summed over the position-vectors r, of the
atoms, whose expectation is the average of the number
of atoms in the cell, (F)=F;;=ee Then the flu. ctuation
of the expectation of F, over the probability distribution
of the r&, can be shown to be given by (2):

(4)

This result (4) is true equally for "classical" and
"quantum" conditions [as is (l)], and depends on the
assumptions that (i) there is a radius o beyond which

g(r) tends to its (normalized) limit of unity, and such
that J;"(g—1)4irr'dr is negligible; and (ii) v is large
compared with 4wa'/3 and small compared with the
volume of the whole liquid. For a quantum liquid the
left-hand side of (4) must remain finite even at absolute
zero, owing to the zero-point motion of the atoms, since
the probability distribution of the atoms is essentially
positive. This shows that (3) cannot then be true, since
for a quantum liquid ep~ remains 6nite, and hence

. ekTX~ becomes zero, when T—&0. AnotheI' case to which

the same argument applies is that of the ideal Fermi
gas. To arrive at (3) we would have to combine (4) with
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the Gibbs formula for the Quctuation of the number of and the virial theorem' gives
atoms S, in the cell,

[N', '—(S,)') /1V „=nkTxr, (5) 3p =2E—q'n' g(r)rp'(r)d'r.

by equating their left-hand sides. It is this step which
is clearly not permissible in general, because (5) refers
to-a thermal Quctuation between diferent quantum
states (what is meant by fluctuation" in statistical
thermodynamics); while the average ( ) in (4) is given
by a trace of the von Neumann density matrix, and at
absolute zero becomes an expectation of the ground
state. There is no difference when the variable in ques-
tion is the energy, or another constant of the motion,
but for the local density these two Quctuations are the
same only in the classical (high temperature) limit.

In the absence of an adequate understanding of the
excitations of a quantum liquid, an at least plausible
formula to replace (3) in the low temperature range
may be constructed as follows. We suppose that only
"phonon" excitations are involved in the density Quc-
tuation, and attribute S(T)—S(0) to their eifect A.
phonon causes a Quctuation of the mass density p, for
which we suppose the macroscopic formula

energy density= c'(bp)'/p, (6)

where c is the velocity of sound, to hold. ' Accordingly,
putting U=—E(T)—E(0), where E is the total energy
density, we would expect

S(T)—S(0)= U,h, /pc'

Eliminating E between these two equations,

2E 3p=—2n' ~g(r) [2g+rp'$d'r.

From Kramers' results, the change in g(r) below 0.6'
implied by (8) is consistent with that given by (7'), in
dependence on T4, and also in order of magnitude. The
implications of (8) at higher temperatures are also of
interest. For liquid helium at saturated vapor pressure
the left-hand side of (8) is —43.7 atmos at absolute
zero, and increases by 0.3 atmos up to 1.4' and by a
further 7.8 atmos between 1.4' and the lambda-paint.
This large increase of (8), and hence appreciable change
in g(r), in the high temperature range of helium II
suggests (if (7) is correct at lower temperatures) that
either the other kinds of excitation of the liquid also
induce density Quctuations or they are strongly coupled
to the "phonons" so that the .energy contribution of
the latter increases faster than the Debye expression.
The increase of (8) seems to demand a large change in
g(r) between 3 and 6A. On the other hand the absence
of a latent heat at the lambda-transition implies, by
(8), that g(r) is continuous through it, as expected.

Applied to a gas, (3) leads to an expression for the
second virial coeKcient,

to give the variation of (2) at low temperatures. Using
the speci6c heat data of Kramers' for liquid helium, (7)
gives

B(T)=Lim t
—,'ill "[1—g(r)$d'rt, (9)

S(T) S&0)=1.05X10 '—deg 4T4. (7')

The tentative formula (7) may be compared with an
exact one, valid for both classical and quantum condi-
tions. If E is the kinetic-energy density and p(r) the
potential of the interaction between two atoms, then
the energy equation gives

E=E'+-'n' g(r) y(r)d'r,

'This step was made, long ago, for solids: A. Einstein, Ann.
Physik 33, 1275 (1910).It is curious how close this paper came to
anticipating the Debye theory.

4H. C. Kramers, Proceedings of the International Conference
on Low Temperature Physics, Oxford, 1951, page 93; and private
communication.

which has been used' to obtain a formula for B(T)
under quantum conditions. It appears from the dis-
cussion above that this application of (9) is not per-
missible.

Note added in proof:—It is conceivable that a (the range beyond
which g=1) is, for liquid helium, some orders of magnitude
greater than the range of p, corresponding to a long-range order
of quantal origin. This would lead to unusual effects in the scatter-
ing of radiation, in the soft x-ray to visible range; and would
make possible anomalies in the scattering of light, as a function
of temperature, not reQected in the left-hand side of Eq. (8).

5 There has been some controversy over the applicability of the
virial theorem in quantum conditions. See H. S. Green, Proc. Roy.
Soc. (London) A194, 244 (1948};P. J. Price, Phil. Mag. 41, 948
(1950).' B. Beth and G. E. Uhlenbeck, Physica 4, 915 (1937).


