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-(p) = -'(p)+&-"p". (3)

In a band e for which some of the X I' are different from zero, the
treatment of (I) requires that across some plane in the Brillouin
zone the phase of the wave function P&„jumps by the increment of
X„"p"across the zone. The diKculty noted in the footnotes to (I)
is that derivatives of the P&„by k do not converge on this plane.

There is, of course, an arbitrariness in the definition of the Bloch
functions $1,„on which the theory is based, since it has been as-
sumed of them only that they are eigenfunctions of Ho and are
continuous periodic functions of k. An equally suitable set of
basic functions PI, are obtained from the P& by multiplying them

by a factor U(kk, e) which is any continuous and periodic function
of k with modulus unity. If U{Ak, e) is chosen to be

U(ltk, e) =expL —ss„'/it/,

and the &I, used as the basic functions one gets

(4)

(5)

Further, by a suitable choice of U(hk, e), X & can always be made
so small that if plotted from the center of unit cell it does not
extend past the surface of the cell. The change of phase of basic
functions is accomplished by transforming all operators in the
%annier theory ~ith the unitary operator

U=Z e„„U(p)e). (6)

As a consequence of the argument above, one can now show
that the treatment of the problems discussed in (I) is essentially
correct. In particular, the chief modification in the equation of
motion in a magnetic field is that Luttinger s Hamiltonian should
involve E„(p+(e/c)C(x+X„)) rather than E„(p+(e/c)Q(x)). By
proper choice of the origin in unit cell one could always arrange
that for any one band X"=0. Therefore, the conclusions originally
drawn as to the validity of Luttinger's form of Wannier's one-band
theory remain unchanged.
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The mean value of the coordinate of the electron taken over the
Wannier localized function qt„(x) is

(rpt„(x), x~p)„(x))=x)"yXrs".

Thus X„"is the mean displacement of the center of charge from
the origin in unit cell.

It was shown in (I) that for any choice of phase of the Bloch
functions p&„so that they are periodic in p space, there exists a
function y„(p) svch that

a~-~=—~.(p).
/pe

The error made in (I) was to treat 2l as a periodic function of P&

whereas it had been proven only that & „"was a periodic function.
Since g„„ is periodic, however, the most general form of g„ is

m omenta pi —h, p2+k via a neutral scalar meson field is given by

df(P)f(P)o f(P -&) jo -fthm+-&ll(~.E{pi) —E{pl—k) —o)y

+ expi(k, x2 —xI) (|I'I'*ppI) {A'*pA).
E(p.)-E{p.+»--.

Here f(p) is the probability that the state p is occupied and E, co

are the energies of the nucleon and the meson, respectively. The
interaction potential between two nucleons having momenta
pl, p& within the Fermi sphere is given by

V(1, 2) =g'Pn'P"' JL1—f(P —&)7D —f(P +&)3

X +
E(pI) —E(pI —k) —coI, E(p2) —E{p2+k)—cuI,

dk
g expi(k, x2 —xI) —

),
—.

If we apply the energy law, two nucleons within the Fermi sphere
cannot go over to the states outside the fermi sphere. However,
according to Araki and Huzinaga, ' the energy law cannot be made
use of in general when forces between fermions in bound states
are to be derived. In nonrelativistic approximation we, get the
following potential

V(1, 2) = —r'J Ll —f(pr —&)jL1—f(p~+@3
expo(k, x2 —xl) dk

{2x)'
We now calculate the mean energy of V=-,'2;, I,V(i, k) using the
Fermi gas model.

V= Vord+Vexc

Vord= Z JA1 (»)gns*(xs) V(1, 2)Ai(xi)d'n2(x~)dxAx~
Pl& P2

e

+ &' 'J Ivy*(xg)Png"(xs) V(1, 2)In'(x&)gnat(xs)dxidxg
Pli P2

+&z '&' 'fA '(+)A*( )v'(1*, 214 (**)A (*)d d*),
Pl 212

—1
Vexc= Z J4'nl (x1)4'n2 (x2) V(1, 2)|Puu(xi)urn(x2}dxldxI

Pl~ P2

+ &' 'JA'i )A'( )&(&2)I4 ( )A ( )& d ),
Pb P2

where f„(x)=0 & expi(p, x) and Z&+&, Z~ & represent summations
extending over the occupied neutron states and proton states, re-
spectively. If we first perform the integration over x, we find that
only 4= 0 contributes to V„d, but L1—f(PL) j)1-f(Pa) j vanishes
because of f(PI)=f(P2) =1. So the nonsaturating V«d vanishes,
but V, , does not.

The details will be published elsewhere.
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I N the Fermi gas model of heavy nuclei all the lowest states of.. neutrons and protons are occupied up to those with a maxi-
mum momentum. On account of the Pauli principle the inter-
action potentials between nucleons in heavy nuclei are expected to
be different from those between free nucleons.

The matrix element for the transition from an initial state in
which two nucleons have momenta pI, p2 to a final state with the
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S PIN and parity predictions from the nuclear shell model are in
good agreement with nearly all experimental P-decay data. '

For mirror nuclei the ft-values agree within a factor two with the
theoretical nuclear matrix elements for suitably chosen P-decay
coupling constants. 2 3

It is the intention in this note to base a determination of these
coupling constants on those mirror nuclei which have closed shells
{0,2, 8, 20) in both neutrons and protons+one particle. For these


