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-(p) = -'(p)+&-"p". (3)

In a band e for which some of the X I' are different from zero, the
treatment of (I) requires that across some plane in the Brillouin
zone the phase of the wave function P&„jumps by the increment of
X„"p"across the zone. The diKculty noted in the footnotes to (I)
is that derivatives of the P&„by k do not converge on this plane.

There is, of course, an arbitrariness in the definition of the Bloch
functions $1,„on which the theory is based, since it has been as-
sumed of them only that they are eigenfunctions of Ho and are
continuous periodic functions of k. An equally suitable set of
basic functions PI, are obtained from the P& by multiplying them

by a factor U(kk, e) which is any continuous and periodic function
of k with modulus unity. If U{Ak, e) is chosen to be

U(ltk, e) =expL —ss„'/it/,

and the &I, used as the basic functions one gets

(4)

(5)

Further, by a suitable choice of U(hk, e), X & can always be made
so small that if plotted from the center of unit cell it does not
extend past the surface of the cell. The change of phase of basic
functions is accomplished by transforming all operators in the
%annier theory ~ith the unitary operator

U=Z e„„U(p)e). (6)

As a consequence of the argument above, one can now show
that the treatment of the problems discussed in (I) is essentially
correct. In particular, the chief modification in the equation of
motion in a magnetic field is that Luttinger s Hamiltonian should
involve E„(p+(e/c)C(x+X„)) rather than E„(p+(e/c)Q(x)). By
proper choice of the origin in unit cell one could always arrange
that for any one band X"=0. Therefore, the conclusions originally
drawn as to the validity of Luttinger's form of Wannier's one-band
theory remain unchanged.

~ E. N. Adams, II, Phys. Rev. 85, 41 (1952).
2 G. H. Wannier, Phys. Rev. 52, 191 (1937); William Slater, Phys. Rev.

m, 1592 (1944).
3 J. M. I uttinger, Phys. Rev. 84, 814 (1951).

The mean value of the coordinate of the electron taken over the
Wannier localized function qt„(x) is

(rpt„(x), x~p)„(x))=x)"yXrs".

Thus X„"is the mean displacement of the center of charge from
the origin in unit cell.

It was shown in (I) that for any choice of phase of the Bloch
functions p&„so that they are periodic in p space, there exists a
function y„(p) svch that

a~-~=—~.(p).
/pe

The error made in (I) was to treat 2l as a periodic function of P&

whereas it had been proven only that & „"was a periodic function.
Since g„„ is periodic, however, the most general form of g„ is

m omenta pi —h, p2+k via a neutral scalar meson field is given by

df(P)f(P)o f(P -&) jo -fthm+-&ll(~.E{pi) —E{pl—k) —o)y

+ expi(k, x2 —xI) (|I'I'*ppI) {A'*pA).
E(p.)-E{p.+»--.

Here f(p) is the probability that the state p is occupied and E, co

are the energies of the nucleon and the meson, respectively. The
interaction potential between two nucleons having momenta
pl, p& within the Fermi sphere is given by

V(1, 2) =g'Pn'P"' JL1—f(P —&)7D —f(P +&)3

X +
E(pI) —E(pI —k) —coI, E(p2) —E{p2+k)—cuI,

dk
g expi(k, x2 —xI) —

),
—.

If we apply the energy law, two nucleons within the Fermi sphere
cannot go over to the states outside the fermi sphere. However,
according to Araki and Huzinaga, ' the energy law cannot be made
use of in general when forces between fermions in bound states
are to be derived. In nonrelativistic approximation we, get the
following potential

V(1, 2) = —r'J Ll —f(pr —&)jL1—f(p~+@3
expo(k, x2 —xl) dk

{2x)'
We now calculate the mean energy of V=-,'2;, I,V(i, k) using the
Fermi gas model.

V= Vord+Vexc

Vord= Z JA1 (»)gns*(xs) V(1, 2)Ai(xi)d'n2(x~)dxAx~
Pl& P2

e

+ &' 'J Ivy*(xg)Png"(xs) V(1, 2)In'(x&)gnat(xs)dxidxg
Pli P2

+&z '&' 'fA '(+)A*( )v'(1*, 214 (**)A (*)d d*),
Pl 212

—1
Vexc= Z J4'nl (x1)4'n2 (x2) V(1, 2)|Puu(xi)urn(x2}dxldxI

Pl~ P2

+ &' 'JA'i )A'( )&(&2)I4 ( )A ( )& d ),
Pb P2

where f„(x)=0 & expi(p, x) and Z&+&, Z~ & represent summations
extending over the occupied neutron states and proton states, re-
spectively. If we first perform the integration over x, we find that
only 4= 0 contributes to V„d, but L1—f(PL) j)1-f(Pa) j vanishes
because of f(PI)=f(P2) =1. So the nonsaturating V«d vanishes,
but V, , does not.

The details will be published elsewhere.

~ G. Araki and S. Huzinaga, Prog. Theoret. Phys. 6, 673 (1951).

The Saturation Property of Nuclear Forces
HIDEO KANAZAWA

College of General Education, Tokyo Unifjersity, Tokyo, Japan
(Received February 25, 1952)

I N the Fermi gas model of heavy nuclei all the lowest states of.. neutrons and protons are occupied up to those with a maxi-
mum momentum. On account of the Pauli principle the inter-
action potentials between nucleons in heavy nuclei are expected to
be different from those between free nucleons.

The matrix element for the transition from an initial state in
which two nucleons have momenta pI, p2 to a final state with the
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S PIN and parity predictions from the nuclear shell model are in
good agreement with nearly all experimental P-decay data. '

For mirror nuclei the ft-values agree within a factor two with the
theoretical nuclear matrix elements for suitably chosen P-decay
coupling constants. 2 3

It is the intention in this note to base a determination of these
coupling constants on those mirror nuclei which have closed shells
{0,2, 8, 20) in both neutrons and protons+one particle. For these
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The nuclear wave functions are thus taken as single particle
wave functions, and the normalization of the coupling is evident
when it is noted that the square of the Fermi matrix element be-
tween sJ/s states is given by

I
FI'=

I (s&q& I
1

I
s&~2) I' = 1 and that the

corresponding Gamow-Teller (G—T) matrix element squared is
IGIs= I(susIeIsus) I'=3. The results are given in Table l.4

The decay constant is given by

ln2 g'm'c4 [(1-*)I
& I'+*IG I'j/,

t 27rsk7

where x is the relative contribution from the G—T coupling; i.e.,
the partial coupling constant for 6—T transitions equals gl xJ&,
and correspondingly g[1—xj& is the partial Fermi coupling
constant.

With

we get

B=2xsS' ln2/(g'm'C4),

B=fr[(i-x) IF I'+*IG I'3

Ysi&
~ZZ r.

0'
PO

Frc. 1. 8 as a function of x for some mirror nuclei. The mass number is
given in a circle at each curve and the experimental uncertainty in ft is
indicated. represents data in Table I. rep-
resents data in Table II. - ~ represents data in Table III.

nuclei one would expect the shell model to prescribe the wave
functions with the least ambiguity. The view that these nuclei
have a simple structure is also supported by the fact that their
magnetic moments lie close to the Schmidt lines.

In an x, 8-diagram this represents a straight line connecting
B=f$ I

F I' for x= 0 and B=ft I
G

I

' for x= i. For each of the transi-
tions listed in Table I this straight line is given as a full drawn
curve in Fig. 1. If the data are consistent with a single value of
x and 8 all these lines ought to pass through a common point.
This is actually the case within the limits of the experimental
uncertainties. A least square Qt of the data yields 8=2600~85
and x=0.50+0.05, where the errors given are mean square devia-
tions computed from internal consistency of the data. From this
value of 8 we find g= (2.19~0.03)&(10 erg cm3.

These values dier somewhat from those given by Moszkowski~
who based his determination on H3, Be~ (see below) and on Hee.

It should be emphasized that the above uncertainties of course
do not contain the changes which might arise from refinements in
the nuclear wave functions.

It is clear that more precise experimental investigations would
be of great value in deciding whether the shell model is su%ciently
accurate to provide a unique intersection point for the transitions
listed in Table I. At the same time one would obtain an improved
determination of B and x.

TABLE I. Mirror nuclei with closed shells 0, 2, 8, 20~one particle.

Transition

Pni —1H'
1Hs —sHes
so» —7»6
«F17 sQ17

s«Cas« —1«Ks«
siSc41 —soCa4'

Spin

1/2
1/2
1/2
5/2
3/2

$1/3
$1/sb
01/3
as/s

-ds/s
f7/s

0.782 &0.001
0.0191+0.0005
1.68 +0.01
1.72 +0.03
5.13 ' ~0.15
4.9 ~0.3

Configuration Maximum kinetic energy, Mev Half-life, t

12.8 ~2.5 min
12.45 +0.20 yr
2.1 &0.1 min

70 +3 sec
1.1 &0.2 sec
0.87 +0.05 sec

fta

1280+20%
1240+ 9%
3750~ 7%
2300 +10%
3990~24%
2570 +29%

lFl I Gl'

3
3

1/3
7/5
3/5
9/7

The Fermi integral f is determined from the formulas of Feenberg and Trigg (reference 4}.
&The symbol —si/s indicates that one si/s particle will fill up the shell.

TABLE II. Mirror nuclei with closed shells 6, 16&one particle.

Transition

6C11—6'811
7N13 6C13
isS31 —isP"

17Cl» —i«S»

Spin

3/2
1/2
1/2
3/2

Ps/3
P 1/3
S1/2
fts/3

0.975 +0.010
1.24 &0.02
4,06 &0.12
4.43 +0.13

Configuration Maximum kinetic energy, Mev Half-life, t

20.5 +0.2 min
10.1 +0.2 min
3.2 +0.3 sec
1.8 +0.1 sec

4130+ 5%
4700+ 4%
4320 ~18%
3440 +16%

lFls I Gl'

5/3
1/3
3

3/5

TABLE III. Unique J-T multiplet mirror nuclei.

Transition

48e7 —sl i7
isA36 —17C136

l«K lsA

Spin

3/2
3/2

(P'3/3) 3/3'"
($33/2) 3/sl/3

(ft'«3) 3/3'/'

0.863 &0 002b
4.4 ~0.2
4.57 +0.13

Configuration Maximum kinetic energy, Mev Half-hfe, t

54 ~i day
1.90&0.05 sec
1.2 +0.2 sec

2330m 3%
3220+25%
2700 +23%

IF l' lal'
121/135
121/375
121/375

The upper right index 1/2 means T ~1/2.
b K-capture.
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I'EW possibilities of testing the hypothesis of charge independ-
J~

'

ence1 arise in connection with studies of pion production in

~ ~

nuclear collisons. Formally, charge independence is most conveni-
ently expressed with the help of the isotopic spin formalism which
can be extended to include pions; it amounts to assuming that the
total isotopic spin is a good quantum number in reactions involving
nucleons and pions only. ~ If this assumption is true, it turns out
that the cross sections for the production of charged and neutral
pions in nuclear collisions must satisfy rather stringent relations.

Thus, consider a production process,

¹+N2—+N+m,

where NI and N2 designate the colliding nuclei and N the out-
going nuclear fragments (bound or unbound). We designate by
tI, t2, t, 8 the isotopic spins of ¹,N2, N, and m, respectively,
(o)= 1& and by T the total isotopic spin (Itr —to I ~& T&~t&+to).

The simplest case is tI=O) t2=0 (e.g. , 8+a, a+a, d+C'2, ~ ~ );
then T=0 and the cross sections 0.+, o.p, 0, for the production of
m+, ~', m at a given solid angle and with a given energy must be
equal since there exists no preferred direction in charge space:

0'+= 0'p = 0' (2)

The, equality of 0.+ and o is merely a consequence of charge
symmetry; therefore one must measure the ~' yield if one wishes
to use (2) as a test of charge independence.

When tI=O, t2=$ (e.g. ) P+d, P+e P+C' ~ ~ ~ 4+Be )
~ ))

T $; therefore t may assume two values: $ or q. For convenience,
we treat the particular case of p-fg collisions; it will become
apparent that the general case leads to identical results. The 3-
nucleon system leads to one quartet and two doublets; the corres-
ponding charge functions wiQ be designated by the symbols $„

We have also calculated
I
F I' and I G I

' for mirror nuclei having
6 protons and neutrons+one nucleon and 16 protons and neu-
trons+one nucleon, since the numbers 6 and 16 are assumed to
represent closed configurations. The data are listed in Table II
and shown in Fig. 1. Especially for the nuclei of mass numbers
11 and 31 the fit is bad. This can hardly be explained without the
assumption of a rather strong distortion of the nuclear wave func-
tions. Also the magnetic moments of these nuclei show that one
does not have pure single particle states. Estimates indicate that
perturbations of the order of magnitude required may arise from
the coupling between the single particle motion and nuclear sur-
face deformations. '~

For the more complicated mirror nuclei the shell model wave-
functions are more ambiguous. However, in a few cases included in
Table III the states are given uniquely by the j—j coupling shell
model together with the charge symmetry requirements. The
results for these nuclei are plotted in Fig. 1, and it is seen that the
matrix elements are slightly too small.

A more detailed account of p-matrix elements derived from
nuclear shell models will appear in Dan. Mat. Fys. Medd.
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C'Hes = |t '$~'+Q"$s",

where p', @"are functions of the space and spin coordinates of the
nucleons. That the same ft)', tgf)" appear in both wave functions in
the way indicated is a consequence of the assumption of charge
independence of nuclear forces. To find the desired cross sections,
we take the scalar products of the scattered wave (4) with CHs8+
and with CH, s8p obtaining,

F.(r) =V'lE&d'I g"&+(d"I g
"&7

Fo(r) = —v'o C(e'I +'&+&4"I g "&7

Since, according to (6), F+(r) = 2Fo(r), the sa—me relationship
holds between the scattering amplitudes; taking then the absolute
squares,

0 (p+d~H'+m+) =20.(p+d~He'+m. p). (7)

It is c1ear that relation (7) would hold if one replaced the two
final states considered above, H' and He', by any other charge
doublet. ' In the same way, one finds that the cross sections for the
production of m+) H, m leading to nuclei in charge quartet states
go as 1:2:3,to be compared with the ratios 2:1:0found for
doublet transitions. It follows that the cross sections o-+, op, 0'

defined above satisfy the relations,

~+7(2+2I )=«l(2+0) =~-P (8)

where p is the ratio of the doublet to quartet contribution.
Equation (8) leads to the (rather weak) inequality. r &30+ and,
by elimination of p, to

~o= o L~-+~+7. (9)

The type of derivation given above applies to the more com-
plicated cases and relations similar to (9) can be derived for any
value of tI and t2. In particular, in nucleon-nucleon collisions one
finds

Op I +0'pI)I Sg+I P+g+ rt.

where the superscripts indicate the charge of the colliding nucleons,
the subscript the charge of the meson produced. Equation (20) is
valid provided the initial beams (n or p) have the same energy, and
the mesons are observed with the same energy and at the same
angle. An interesting particular case of Eq. (20) is obtained by
considering wP and x+ production with deuteron formation 5 then

o.(n+p—+8+m') =$e(p+ p~d+~+). (11)

Relations (2), (9), (10) and their particular exemplifications
like (7) and (11) provide many possible tests of the charge inde-
pendence hypothesis. In order to eliminate small uncertainties in

&'„&"„respectively) where the subscript q stands for the total
charge of the nuclear system (with the convention that the proton
has isotopic spin +$, q=t, +~) and 8+, 8p, 8 will designate the
charge functions of the 3 types of pions. Only 3 mutually orthog-
onal charge states can be formed with 3 nucleons and 1 pion,
having the proper values T= ~» T,=~s:

X=V'tobe+ —V'sobeo+V'toblt

x v ob tt+ v ob So (3)
x"=Mob"tt+ —+sob"&o.

Therefore, the scattered wave function assumes the form 0&
++'z +0 "& where O', 0 ', and 0"' depend on the nucleon spins,
the relative coordinates of the nucleons and the coordinate r of the
pion relative to the center of mass of the nucleons. Using Eq. (3),
this scattered wave can be rewritten in order to separate the terms
corresponding to mesons of di8erent charge, namely

Lv'!g b+v'l(g 'S '+g "S ")7tt+

b-/o'Pb+V's(g"b'+'ft"b")7tto+b/o+b70 (4)

Let us consider first the cross sections for producing ~++H' and
m +He', respectively. In this case, t=q and the nuclear wave
functions in the final state assume the form


