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The double focusing mass spectrometer previously described has been used to measure 27 atomic masses
in the region from titanium to zinc. When supplemented by our earlier values and nuclear reaction energies
the data give the masses of 81 nuclides between mass numbers 31 and 70. A fit of the semi-empirical mass
formula of Wigner indicates the existence of magic numbers at 20 and 28 protons and neutrons associated
with discontinuities in the binding energy surface. The discontinuities are primarily changes in slope of the

surface.

N an earlier communication' we reported on the
determination of atomic masses in the region about
mass 40. The study has now been extended through zinc
with the result that values are now available for almost
every stable nuclide from S through Zn”. The mea-
surements were made with a double focusing mass
spectrometer. A brief description of the apparatus and
procedure of measurement has already been given'?
and hence will not be repeated here.

DOUBLET MEASUREMENTS

Table I gives the mass doublets investigated together
with the mass differences found. As in previous work a

“run” consisted of 10 or more consecutive tracings of

the mass spectrum with alternate forward and backward
sweep. Since readings are taken from half-height to
half-height of the peaks compared—and on each side
of the peak—the number given for the mass difference
in a single run is the average of at least 20 readings.
Runs were taken on different days over a period of
several months. The errors given are probable errors
computed statistically. As in previous work a given
hydrotarbon peak may have an unresolved satellite
produced by ions containing one less hydrogen atom
but a C' atom in place of one of the C®? atoms. From a
measurement of intensity of the lighter hydrocarbon
fragment a suitable correction may be made to the
peak in question. The last column gives values for the
corresponding doublets as found by other investigators.

ATOMIC MASSES

Table II gives the atomic masses computed from the
present data. In order to follow a consistent procedure
we have employed the masses for H! and C* found in
this laboratory. In our earlier paper! we discuss the dis-
crepancies in the mass values for these atoms as given
by different investigators. Should our values turn out
to be slightly in error, the computed masses for the
atoms now investigated would not change enough to
affect the validity of the conclusions reached later in
the present paper.

*é{esearch supported by the joint program of the ONR and
AEC.
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Table III compares some of our mass differences with
values computed from nuclear reaction data. In general,
the agreement is excellent. However, a discrepancy in
the value for Cr%—V® appears to be present.

COMPARISON WITH THE WIGNER FORMULA

By combining our mass spectroscopic data with
nuclear reaction energies we have constructed an ex-
tensive table of masses from 4=31 to 4 =66 in order
to search for irregularities which could be associated
with nuclear shell structure. This region includes pro-
posed ‘“magic numbers’ 20 and 28 for both neutrons and
protons. The odd-even fluctuations characteristic of the
lighter nuclei make it difficult to see discontinuities in
the binding energy surface or packing fraction curve.
Others®* have attempted to remove these effects by
comparing masses with those predicted by the Bohr-
Wheeler formula. We believe a better approach is to
fit the Wigner formula to the data.

The binding energy of a nucleus may be expressed as
the sum of a Coulomb energy, a kinetic energy, and a
potential energy from nuclear forces. Wigner® proposed
approximations for each of these terms. He computes
the Coulomb energy for a uniformly charged sphere
with a radius proportional to A% The radius constant
may be evaluated from mirror nuclei giving

CE=0.635Z(Z—1)/ A% milli-mass units. 1)

He computes the kinetic energy for a degenerate Fermi
gas occupying the same volume. Using the radius con-
stant from the Coulomb energy we find

KE=14.6404+32.53(T*+15)/4A mMU  (2)
where T'=(N—Z)/2=isotopic spin.

0 for even Z, even N.
1 for even Z, odd M.

1 for odd Z, even N.

2 for odd Z, odd N.
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Wigner expresses the potential energy in terms of two
functions L’ and L, where L’ is the average magnitude
of potential energy between pairs of nucleons from forces
independent of symmetry. L is the average magnitude
of the potential energy from forces which change sign
with symmetry. Thus

PE=—14(4A—1)L'—EL mMU, 3)

where E is the number of symmetric minus the number
of antisymmetric couplings. In our region of 4, E is a
negative number and may be expressed for our purpose
as

E=24—3A—31T(T+4)—3s. 4)
In the absence of spin orbit coupling AL and AL’

TaBirE I. Mass doublets.

No. of
Doublet n?n: Am in 10™4 amu Previous work
CH,S—Ti* 3 354.0 0.4 349.04 9.52
CH,;S—Ti¥ 4 438.3 0.9 4442+ 9.4+
C4—Ti®® 6 522.0 0.6 521.61+ 4.62
CH—-Ti#* 4 599.3 +0.5 588.3+ S5.12
C4Hy— Ti%° 6 708.924-0.29 694.6- 3.6*
CH;— Ve 6 792.8 £0.5
C4Hy—Cr5 5 695.6 0.6 673.2 '3.7°
714.5% 2°¢
CHy—Cr® 4 908.8 +0.9 920.34 4.2
908.4+ 2¢
CH;—Cr5 5 983.8 +£0.8 1008.7- 4.1b
C4Hg— Crtt 1 1079 &2 1100.0+ 4.6
C4H;—Mn% 5 1165.8 £1.1
CiHe—TFed 8 1072.0 +0.5 1065.34 4.7°
1075.14 2.24
CHg—TFe® 6 1278.2 +1.0 1235 +£17e
1284.14 3.9¢
1271.3+ 2.3°
CHy—Fe¥ 6 13509 +0.9 1338.1+ 5.0
C4H,o—Fe®® 1 1448 +4 1458.8+ 4'7b,
C,Hjo—Ni®® 4 1433.8 0.9 1371.2+ 3.9s
1434.34+ 2.3f
. 1447.68"
Cs—Nifo 5 702.0 +2.9 g95i19:l: 3.1#
14
C;H—Nift 4 7829 +2.3 735 +152
807.642 -
C;H,—Nif? 4 886.9 0.8 860.74-3.72
913.88h
SO, —Ni# 3 346.9 30.7
CsHsz—Cu® 6 9439 +0.5
CsH;—Cu® 7 11159 +0.5
SOy —Zn% 4 326.8240.20
0p—Znf/2 4 252.464-0.22
CsHg—Zn% 4 1208.7 +0.5 1213.84+ 3.9®
CsH7—Zn% 4 1280.8 +0.5 1280.1+ 6.3P
CsHg—Zn% 4 1375.1 0.6 1355.54+ 6.3
CsHo—Zn™ 4 1528.8 +0.5 1346 +16b
2 T, Okuda and K. Ogata, Phys. Rev. 60, 690 (1941).
b K. Ogata, Phys. Rev. 75, 200 (1949)
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>0t

. E. Shaw, Phys. Rev. 75, 1011 (1949).

THROUGH Zn 409

TasLE 1. Atomic masses computed from data in Table I assuming
H'=1.008146+3 and C*?=12.0038424-4.

Tit 45.96697+ 5 Nis® 579534510
Ti¥ 46.96668-10 Niso 59.949014-29
Ti® 4796317+ 6 Nist 60.949074-23
Ti%® 48.96358+ 5 Ni% 61.94681+4 9
Tis0 49.96077+ 4 Ni% 63.94755+ 7
e 50.96052+ 5 Cu® 62.949264 6
Croo 49.96210+ 7 Cu® 6494835+ 6
Cr® 5195707+ 9 Zn% 63.94955+ 2
Crt3 52957724 8 Zn® 65.94722+ 6
Cro 53.9563 + 2 Zn® 66.94815+ 6
Mn% 54.955814-10 .Zn% 67.94686+ 7
Fest 53.95704+ 5 Zn™ 69.947794 6
Fet® 55.95272+10

Fe¥ 56.95359+10

Fe® 57.9520 + 4

TasLE III. Comparison with some nuclear reactions.

From From nuclear
Table I reactions Reactions used
Ti¥—Ti% 1-0.000294+11 1—0.00028411 Ti*(d,p)Ti¥"»
Ti®—Ti¥ 1—0.003514+12 1-0.00355+14 Ti¥(d,p)Ti®a
Ti®—Ti® 1.00041+ 8 1.00045+ 8 Ti®%(d,p)Tiv»
Criz—Vsl  1-0.00345410 1-—0.00262 V51 (,7y) VE2b
) Ve2(B) Créze
Mn®—Fe#* 1—0,001234+11 1—0.00138+ 4  Mn%(p,n)Fessd
Feb(n, 'y)Fe“b
Fed"—TFe 1.00087+14 1.00098+ 1 Fe“(n ) Festb
Niét— Niso 1.00006437 1.000204 3  Nif(n,y)Nisth

a J. A. Harvey, Phys. Rev. 81, 353 (1951).

mesey Bartholomew, and Walker Phys. Rev. 78, 481 (1950).
¢ A, C. G. Mitchell, Revs, Modern Phys. 22, 36 (1950

¢'H. T. Smith and R. V. Richards, Phys. Rev. 74, 1275 (1948).

should be approximately constant and should be smooth
functions of 4. The sum of terms (1) (2) (3) is the
binding energy

BE=CE+KE-+PE. (5)

The binding energy and potential energy are negative
quantities.

The binding energy of the nucleus may be computed
from the atomic mass M, neglecting the electronic
binding energies,

BE=M— (ZMy+NM.), ©)

where My is-the mass of the hydrogen atom and M,
is the mass of the neutron. In the absence of an adequate
theory of nuclear forces we cannot compare the binding
energies computed from expressions (5) and (6). Instead
we combine the expressions and calculate the potential
functions L and L’

Table IV gives the data used to compute L and L.
The second column lists reaction energies giving the
mass defects (4— M) of unstable nuclei. If no reaction
is listed the mass defect is from our mass spectroscopic
data. The potential energy in the fourth column is
computed by subtracting from the binding energy the
Coulomb and kinetic energies. With 1.008146 for the
mass of hydrogen and 1.008987 for the mass of the
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TasiLe IV. Data used in comparing experimental results with Wigner formula.

Mass defect —-PE Mass defect -PE
Nuclide Reaction Mev mMU mMU —~Z | Nuclide Reaction Mev mMU mMU -
Sst (vm) —14.8 40 10.9 +4 779.15 60 | Cr%0 37.90+7 1294.87 215
P32 8 1.7124-82 15.93+1 803.44 68 | Vot 39.4845 1316.06 232
Ss2 17.761 808.37 64 | C? (p,m) —1.5344-32 38.675 1319.73 228
S8 17.8745 832.36 72 | V= (n,7) 7.30 3P 38.344:6 1339.94 246
Nig 21.2445 859.10 79 | Cr® 42,9349 1347.76 240
S8 B 0.167» 19.785 882.42 88 | Mn% B+ 4.116» 37.4149 1348.32 238
CI» 19.964-5 886.11 85 | Cr® ' 42.284-8 1371.79 254
ClIss (n,7) 8.56 3P 20.1546 910.55 94 | Mn® (p,m) —1.3808° 41.644-8 1375.97 250
A3 21.0043 915.28 90 | Fe® (v,n) —13.8 2@ 37.1 +2 1377.81 247
Cl#7 22.3445 936.49 102 | Cr™ 43.7 +2 1397.53 267
A¥ (p,m) —1.5984-32 21.4645 939.49 99 | Mn% (p,m) —2.16245¢ 42.2 42 1400.84 264
CJ3 (n,7) 6.11 3P 19.914+6 959.09 112 | Fe™ 42.96+5 1406.75 259
A% 25.09-4-4 966.43 107 | Mn% ) 4419411 1426.83 277
K3 (v,m) —13.2 +2» 18.8 +2 966.07 107 | Fe® (n,y) 9.28 43P 43,9646 1431.71 273
K® 239443 994.08 114 | Co% + 2428 40.244-6 1434.65 270
Ca® (v,m) —159 A4e 16.5 +4 992.89 114 | Mn% (n,y) 7.25 +3b 42.76£7 1450.25 292
A% 248743 1014.88 126 | Fe®® 47.28+10 1458.73 286
K0 (n,7) 7.76 5b 23.26-+4 1017.49 124 | Co® gt 3.598 42.334+10 1460.38 284
Cat 24.5549 1023.37 120 | Fe 46.414+9 1482.38 301
Au d,p) 3.84 43¢ 22.3944 1037.67 137 | Ni¥ (ym) —11.7 H2» 43.0 X2 1491.36 294
K4 25.10+4 1042.99 133 | Fe® 48.0 4 1508.21 315
Catt (d,p) 6.092 24.60420 1047.07 130 | Ni% 46.554+10 1517.95 307
Sc#t gt 4.94» 18.204-20 1047.19 130 | Fe® 1.562 47.0 £3 1532.16 331
K42 @,p) 5.12 +10*  24.01+10 1066.72 144 | Co® (n,7) 7.73 44b 48.7 +3 1538.15 326
Ca®? 27.844+4 1073.54 139 | Ni® (n,7) 9.01 +3* 47.24+11 1542.52 322
Ca® 27.49+6 1097.59 150 | Co®® g 2.811# 47.974£29 1562.15 342
Ca* 30.7646 1124.84 160 | Ni® 50.99-+29 1569.85 336
Ca® B 0.254» 29.6346 1148.75 172 | Co% B 1.421 49.514£23 - 1588.06 357
Sc® 29.9045 1152.42 168 | Ni® 50.934-23 1594.18 352
Ti* 33.035 1183.96 175 | Ni® 53.19£9 1620.53 367
Ti¥ 33.3210 1208.48 187 | Ni® g 0.063= 50.6746 1642.85 384
Ca 32.22£10 1226.74 208 | Cu® 50.746 1647.92 379
Sc B 2.954s 33.71£6 1230.32 204 | Zn% g+ 2.362 471146 1650.64 375
Ti* 36.884+6 1235.90 198 | Ni# 524547 1669.18 400
\'% B+ 3.03= 32.53=£7 1237.05 196 | Zn% 50.4542 1677.49 390
Ti* 36.42+5 1260.29 211 | Ni% B 2.10= 49.39£6 1691.35 418
Cr# (vym) —13.4 42¢ 32.5 2 1266.33 204 | Cu® 51.65+£6 1697.64 412
Tis0 39.231+4 1287.57 223 | Zn% (p,m) 217 1= 50.166 1701.47 407
Vo (y,m) —11.15 £20¢  36.5 2 1288.98 220 | Zn% 52.78+6 1728.07 423

a Nuclear Data, Natl. Bur. Standards Circular 499 (1950).

b Kinsey, Bartholomew and Walker, Phys. Rev. 78 481 (1950)
°W. E. Ogle and R. E. England, Phys. Rev. 78, 63 (1950).

d Sher, Halpern, and Mann, Phys. Rev. 84, 387 (1951).

e Lovington, McCue, and Preston, Techmcal Report No. 54, Laboratory of Nuclear Science and Engineering, M.I.T. (September, 1951).

f Smith, Haslam, and Taylor, Phys. Rev. 84, 843 (1951).

neutron the expression is

— PE =mass defect+8.146Z-+8.987N
+CE+KE mMU. (7)

The final column gives the value of the symmetry
function & which is an integer from its definition.

From Eq. (3) one sees that the potential energy dif-
ference of isobars does not depend upon L'. Thus, using
the data of Table IV, we have calculated L for many
mass numbers from

L=A(—PE)/AE, 8)

excluding pairs which jump over the possible magic
numbers 20 and 28. In the cases of three or more isobars,
we computed the best value of L by least squares.
Figure 1 shows the values of L (and 4 L) plotted against
A. Contrary to expectation, L is not a smooth function
of 4 but shows large discontinuities which are definitely
associated with magic numbers 20 and 28. Region I
contains nuclei with 20 or less neutrons, region II

nuclei with 20 or more neutrons and 20 or less protons,
and so on. The jumps are associated with 20 neutrons,
20 protons, 28 neutrons, 28 protons in order with
increasing A. L increases on crossing a neutron number
and decreases on crossing a proton number. The energy
involved is surprisingly large, for example ALE for the
28 neutron jump is 75 mMU. Between the discon-
tinuities we have simply approximated L (or AL) by
straight lines as shown. We assume AL is constant in
regions I and II, but L is constant in regions IIT and IV.
Region V does not have sufficient data to permit any
approximation.

By substituting the average values of L.or AL in the
potential energy formula (3) we have computed L’
Figure 2 shows AL’ plotted against 4. Because we do
not observe jumps of 75 mMU in the masses we expect
L' to show discontinuities which almost cancel the
effect of the discontinuities in L. Figure 2 shows that
AL’ can be represented in each region by a straight line
with a small slope. In this way we arrive at the empirical
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equations
(—PE)=(4—1)(a:+a24)+ (E/A)as regions I, I, (9)
(—PE)=(4—1)(a1}0a24)+Ea; regions ITI, IV, (10)

where a;, as, and a3 are constants characteristic of each
region.

By means of the empirical equations we can inves-
tigate the effect of magic numbers upon the binding
energy with due allowance for symmetry. The first step
is to determine by least square the constants which best
fit all nuclei of each region excluding magic number
nuclei. The constants in mMU are:

region I, AL=40.31, %AL'=25963+0.08484;
region I, AL=55.52, 4AL'=27.363+0.07854;
region IT[, L=0.8980, 1AL'=23.316+0.14074;
region IV, L=1.2316, 1AL'=23.106+0.17524.

Table V (a), (b), (c), and (d) give the differences
between the observed and computed binding energies
in 10~* atomic mass units. A positive value indicates
that the nucleus has greater stability (more negative
binding energy) than given by the empirical fit. The
entries in heavy type are the residuals for the fitted
region. The fit is satisfactory except, perhaps, in
region IIT.

The next step is to extrapolate the empirical equa-
tions to the magic number nuclei and beyond. Table V
also gives the differences between these computed and
observed binding energies. Let us consider nuclei with
20 neutrons. Table V (a) shows that they can be grouped
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F16. 1. Variation of the Wigner constant L (and AL) in mMU
with mass number 4 for nuclides in region near magic numbers 20
and 28. Region I contains nuclides having 20 or less neutrons;
region 17, 20 or more neutrons and 20 or less protons; region 111,
28 or less neutrons and 20 or more protons; region IV, 28 or more
neutrons and 28 or less protons; and region V, 28 or more protons.
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Fic. 2. Variation of the Wigner constant L’ in mMU with mass
number 4 computed from formula (3) with average values of L
given in Fig. 1.

with nuclei having less than 20 neutrons, Table V (b)
shows that they also can be grouped with nuclei having
more than 20 neutrons but less than 20 protons. Each
magic number shows similar properties. The errors
become large when we extrapolate beyond the bound-
aries of the regions. From this we conclude that the
effect of magic numbers is, primarily, changes of slope
in the binding energy surface (however, with this form
of empirical equation not more than two or possibly
three nuclei could fit both ways exactly).

In our empirical equations we have attributed all of
the effect of the magic numbers to the potential energy.
The kinetic energy should require some modification
and it is very possible that the assumptions of uniform
charge and uniformly increasing radius used to compute
the Coulomb energy should also be modified. These con-
siderations do not invalidate the conclusions of the last
paragraph but they do point out the doubtful theoretical
significance of the empirical constants. Even as a
method of predicting reaction energies, the empirical
equations are limited. The residuals in the least square
fits exceed the probable errors in the measurements and
more accurate masses probably would not reduce them,
so that we can expect predictions of individual masses
to be in error by as much as 1 Mev.

From this attempt to fit a Wigner formula to our
mass data we have reached the following conclusions.
Both 20 and 28 are “magic’” numbers associated with
discontinuities in the binding energy surface. These dis-
continuities are primarily changes in the slope of the
surface rather than discrete jumps in the binding energy.
The regions between the magic numbers do not all
have the same shape; the two regions below 20 protons
require a different form of empirical equation from the
two regions above 20 protons. Finally we believe the
accuracy of mass measurements in this region now
requires a considerable modification of the semi-em-
pricial mass formulas before an adequate fit can be
obtained.

The authors wish to acknowledge the very able
assistance of Ruth C. Boe in making some of the
measurements reported here. The construction of the
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TABLE V. Difference in 10~* amu between a fitted Wigner formula and experimental masses. The Wigner constants L and L’ are
obtained in each case by a least squares fit of the nuclides indicated by heavy type.

(a) Constants fitted to nuclides with less than 20 neutrons

Neutrons

P ‘s

Cl1 A

K

Ca

Sc

(b) Constants fitted to nuclides with more than 20 ncutrons and less
than 20 protrons

Neutrons

S Cl

A K

Ca

Sc

—-53

—20
-1 0
2 -3
3 5

17 18

Protons

-57
-39
-25
-4
-3

19

—55
—55
—36
—28

—6
—16

20

~175

—27

21

-17
—-29

-1
—11
—28

16 17

—-25

19
Protons

16
3

3
-1
3
-9

20

3

21

14

22

Neutrons

Cl

(c) Constants fitted to nuclides with less than 28 neutrons and more than 20 protons
Ca

A K

Sc

Ti v

Cr

Mn

Fe

-8
14
17

17

—26
-7
21
17
23

18

-21
-9
1

20
17
28

19

20

-11

21

22
Protons

23

-9

24

-30
—12
-3

25

26

27

—34
-19
—19

-3

28

Neutrons

Ca

(d) Constants fitted to nuclides with more than 28 neutrons and less than 28 protons

Sc Ti

\%

Cr

Mn

Fe

Co

Ni

Cu

Zn

17

-30
20

8

—15
—29

21 22

-1
-3
—15
—28

23

—-15
—18
—36

24

-6
-1

-5
—16

25
Protons

-1
-1

-1

-3
—24

26

-3
-9

27

-3
—11
5

1

2
-6
-2
2

28

—26
—22

29

—45
—49
—43
—44

30
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