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¹utron-proton scattering in the triplet spin state is discussed under the following assumptions about
the nuclear forces: (1) the forces are conservative, (2) they allow time-reversal, i.e., the reciprocity law is
valid, (3) the spin vectors of the neutron and proton enter in a symmetrical way, so that the total spin of
of the system is preserved during the colhsion, and (4) the forces have. a 6nite ringe. We do not assume that
the forces can be derived from a potential function (i.e., that they are velocity-independent).

General expressions are given for the scattering matrix and for the difkrential cross section. The matrix
elements of the scattering matrix are expressed in terms of the minimum numbers of real, independent param-
eters. The energy dependence of these parameters near zero energy can be predicted uniquely on the basis
of assumptions (1) to (4) above.

1. INTRODUCTION

'HE analysis of neutron-proton scattering in the
presence of spin-orbit coupling (e.g., the tensor

force) is appreciably more involved than the analysis
of the scattering in the absence of such coupling. There
ls consldcrablc 1ltcIaturc on this sUb)cct. Thc purpose
of the present paper is to give a general formula for the
cross section in terms of the minimum number of inde-
pendent real parameters and to discuss the behavior
of these parameters near zem energy. %e are preparing
for publication a paper on low cncrgy neutron-proton
scattering with tensor forces, employiri0; the eRective
range theory and giving numerical values of the relevant
parameters for some representative choices of the nu-
clear force law. The general (but rather forrnal) results
obtained in the present paper will be made use of in the
subsequent paper.

Ke shall assume throughout that there are no transi-
tions from the singlet to the triplet spin state of the
neutron-proton system or vice versa. This is of course
only an assumption. There is no absolute selection rule
which would forbid a transition such as V'~ to 'J'I.
However, if the spin vectors of neutron and proton
enter symmetrically into the basic law of force, then
such transitions would be excluded by the conservation
of the spin symmetry character. In view of the- unex-
pected difkrence between neutron-proton and proton-
proton scattering at high energies, it is perhaps worth
while to remark that transitions between the two spin
states can occur in the neutron-proton scattering but
are absolutely forbidden in proton-proton scattering
due to the Pauli principle (e.g. , in the transition cited
above, the 'Pi state is forbidden for two protons).

' J.W. Rarita and J. Schwinger, Phys. Rev. 59, 436, 556 (1941);
C. Kittel and G. Breit, Phys. Rev. 56, 744 (1939);J. M. Jauch,
Phys. Rev. 67, 125 lt94Sl; F. Rohrlich snd J. Eisenstein, Phys.
Rev. 75, 705 (1949);J. Ashkin and T. Y. Wu, Phys. Rev. 73, 973
(1948); Massey, Burhop, and Hu, Phys. Rev. 73, 1402 (1948);
E. H. S. Burhop and H. N. Yadav, Proc. Roy. Soc. (London)
A197, 505 (1949); W. Hepner and R. Peierls, Proc. Roy. Soc.
(London) A44, 712 (1951);S. A. Kushneriuk and M. A. Preston,
Proc. Phys. Soc. (London) A44, 712 (195j.).
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s = (—1)~II. (2.1)

s.=+1 if II=(—)~, and s.= —1 if II= —(—)~. For
each value of J, except J=. O, there are three possible
values of the orbital angular momentum /, namely /=, J,
/ =7+1, / =J—1.The first of these corresponds to s = 1,
the last two to x= —1. If we denote by X the number
of different "channels" (choices of /) consistent with a
given J and m, we get

)V=1 for s.=+1,
%=2 for s = —1, (except J=O, s = —1). (2.2)

The exceptional 'Po state is a single-channel state even

though it has ir= —1.
The spin and angle dependence of a wave function

with total angular momentum J, s component thereof

If we neglect the possibility of such transitions, we
can treat scattering in the two spin states independently.
The singlet state scattering presents no disci.culties since
spin-orbit coupling is impossible in that state. %e shaB
restrict ourselves to scattering in the triplet state from
here on, and all formulas will refer to pure triplet state
scattering. Thus they must be multiplied by the sta-
tistical factor 4, and the singlet contribution must be
added before any comparison is made with experiment.

In this paper we shall use only those arguments which
are independent of the details of the force law (e.g.,
whether or not the force is velocity-dependent). The
results are correspondingly both general and formal.

Specific numerical results can be obtained only by
making more definite assumptions about the neutron-
proton force. Such results are deferred to a second paper,
now in preparation,

2. THE SCATTERING MATRIX AND ITS EIGENSTATES

I'ollowing Rarita and Schwinger, we classify the
triplet states of the neutron-proton system according to
their total angular momentum J and parity O. Instead
of the actual parity II= (-)' it is useful to introduce
the quantum number
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B=SA. (2.6)

Since in pure elastic scattering the Aux of the outgoing
wave is equal to that of the ingoing wave, we get
I
Sl'= 1 and hence S can be written in the form

S=exp(2$8gp), , (2.7)

where the real quantity Bg, o is called the phase shift.
The asymptotic behavior of sg(r) is found by substi-
tuting (2.6) and (2./) into (2.5), giving (C=constant)

sg(r) =C sin(kr ,'Jor+8J, —p)-(2..8)

We now apply the same method to the states with
m = —1,where the orbital angularmomentum can assume
two values, i=J—1 and i=J+1. Corresponding to
these two values of L there are two radial functions. The
wave function as a whole for a state with total angular
mo mentum J and pr= —1 t parity=( —1)~+'3 can be
written as

4 =r 'st~(r)'&, ~-1,1"(8~ &» ~)
+r 'toy(r) 'tip, g+I, 1~(8, P, o). (2.9)

' E. U. Condon snd G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935).

equal to 3II, orbital angular momentum L, and spin
angular momentum s (s=1 for triplet states) is given
by

'yet, ~(8, y, n) = g (isrttrtt4 t isJM)

XFlat(8, y) X~,(o), (2.3)

where (&sots pt4
~
lsJM) is a Clebsch-Gordon coefficient in

the notation of Condon and Shortley, 2 the F's are
spherical harmonics de6ned as in Condon and Shortley,
and x~, ls a spin function for spin s and 8 component
of the spin equal to m, .

Now consider a typical single-channel state with
or=+1 and hence i=J. The wave function for this
state can be written in the form

P=r 'I (r)g-„,"(8,y, ). (2.4)

No other state can be "mixed in" because of the selec-
tion rules. The radial function oq(r) has a complicated
behavior as long as r is less than the range of the forces.
For large values of r, however, sq(r) can be written as
a linear superposition of an ingoing and. an outgoing
wave

og(r) Aex=pL —i(kr ——,
' Jpr) g

BexpL+i(kr ———',Jpr) J. {2.5)

If the incoming wave has a given. amplitude A, the
amplitude of the outgoing wave 8 is determined
(mathematically the ratio of B to A is determined by
the condition that v be that solution of the radial wave
equation which vanishes at r=O). The scattering
matrix, which in this case becomes just an ordinary
number) is defined by

BI=SIIAI+SI&s,
BR SslA 1+SssA sf

or, in matrix notation'

(2.11)

(2.11a)

According to general theorems the scattering matrix
S must be unitary (conservation of probability) and
symmetric (reciprocity). The most general unitary and
symmetric 2-by-2 matrix contains 3 real independent
parameters and can be written in the form

S=U 'exp(2ih) V, (2.12)

where U is an orthogonal matrix depending on only one
real paranmter which we shall call ~z or just ~, whe~
tll value of J ls Understood,

cose . sIIle )
(—Sllle COSe J

(2.13)

and 8, is a diagonal matrix whose diagonal elements are
real and are the "eigen-phaseshifts" for the state J,
x= —I'

pbbs 0 q ~8 Oy
(2.14)

( 0 8gp) L 0 8p)

These parameters have the following interpretation:
We can construct an incoming wave with a ratio A2. A~
such that the outgoing wave is a mixture of the two
states i=J—1 andi= /+1 in the same proportion, i.e.,
such that Bg.8~=32'.A~. Such a state Is an e~genstate
of the scattering matrix, in the sense that the scattering
matrix produces merely a change of- the phase of the
outgoing wave with respect to that of the incoming
wave, without admixing new states. There are two
such eigenstates, which we shall call o. and P, given by

As~/A I~= tane, A op/Alp ——cote. (2.15)

The equations connecting the amplitudes of the out-
going waves to those of the incoming waves then are

B1 =exp(2i8 ) A1, Btp=exp(2ibp) Arp. (2.16)

' We use small letters, a, b for vectors (column matrices) and
capital letters 5, U', etc., for linear operators (square matrices).' The use of the eigenstates of the scattering matrix is due to
J, Schwinger iunpublished lectures, Harvard, 1947l.

For large values of r each radial wave function is a
linear superposition of an ingoing and an outgoing
wave) I.e.q

Ng(r) =Al exp( —iLkr ——,'(J—1)prj}
—B1exp(+i$kr —xs(J—1)prj},

(2.10)
tub(r) =As ezp{—it kr —sr(J+1)pr j}

Bs exp—(+i[kr ,'—(J-+1)orj}
H the amplitudes of the incoming waves (A1 and As)
are given, the amplitudes of the outgoing waves (B1
and Bs) are determined by the wave equation. The
scattering matrix is now a 2-by-2 matrix, de6ned by
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In each case B2 is determined by (2.15) coupled with
the condition that the ratio Be/Bt is identical with
A2/At.

It hardly needs to be emphasized that the eigen-
phaseshifts 8 and bp are not to be thought of as phase-
shifts for the states l= J—1 and l= J+1, respectively.
There are no such phaseshifts, since neither of these
two states is an eigenstate of the scattering matrix. The
"mixture parameter" e which determines the "correct"
mixtures of these two states is an essential parameter in
the scattering matrix and enters explicitly into the
differential cross section.

It remains to identify the parameters 8, 8p, and c,
which enter into the scattering matrix, in terms of the
behavior of the radial wave functions ug(r) and wg(r)
for large values of r. We substitute (2.15) and (2.16)
into (2.10) and get, apart from constant factors,

uq. (r) = cos(eq) sin[kr —-', (J—1)s+8g.j,
(2.17)

tpq (r) =sin(eJ) sin[kr —~(J+1)s+bg j,

u~p(r) = —sin(eg) sin[kr ——',(J—1)s+8gpl,
(2.18)

w~p(r) =cos(eg) sin[kr ——,(J+1)n.+bop].

Equations (2.17) and (2.18) show that the radial wave
functioiis for the eigenstates of the scattering matrix
are distinguished by having the same phaseshift 8

appearing in the asymptotic formulas for both uz(r)
and wg(r).

It is apparent from (2.17) and (2.18) that there is a
relation between the ratio of the amplitudes of m to I
in the "o." state and in the "P" state, namely

(tp/u). = —(u/w) p (for r +eo) -(2..19)

This relation is a consequence of (2.15) and is an ex-
pression of the fact that the eigenvectors of a unitary
matrix (such as the scattering matrix S) are orthogonal
to each other. The orthogonality relation reads

At. Atp+A2~*Agp 0 —— .(2.20)

Equation (2.19) follows from (2.20) together with the
additional observation that the eigenvectors are real;
the latter observation follows from the reciprocity law

(from the time reversal symmetry). We emphasize that
these considerations do not depend on the particular
force law (e.g., on the assumption that the force can be
written as the gradient of a potential function), even
though the usual proof depends on such assumptions. '

Finally, we observe that there is the following am-

biguity inherent in the developments so far: There are
two eigenstates of the scattering matrix, but so far no
prescription has been given for calling one of them the
"n" state and the other the "P" state. Indeed, all for-
mulas so far are invariant under the interchange of 8

' The usual proof employs the constancy of the Wronskian of
the pair of coupled second-order differential equations for u(r)
and zo(r). We need not assume that I and m satisfy any differential
equations.

and bp, provided that e is simultaneously changed into
e' =e+ ~2s . We can make the assignments n and P unique
in the following way: In the limit as the collision energy
approaches zero, the differenc between the centrifugal
barrier effects for l=J 1an—d l= J+1 is so pronounced
that these two states become eigenstates. According to
(2.17) and (2.18) this means that e approaches either
0 or ~~x in that limit. We now define the assignments 0.
and P so that in that limit the n-wave corresponds to
the state /= J—1 and the P-wave to the state i=J+1.
That is, we require

lim eg=0 (every J). (2.21)

Near zero energy the a-wave is then predominantly
l=J 1, the—P-wave is predominantly f=J+1. Of
course, this is true only fairly close to zero energy, since
e& is in general quite energy-dependent.

In addition to the above ambiguity which is now
taken care of, there is the usual ambiguity inherent in
all phaseshifts which is that we can add any integral
multiple of m to 8 or bp or both, as well as to c, without
changing the scattering matrix.

Finally, we have to include the exceptional 'Po state
(J=O, e.= —1) into the formalism. This can be done
most simply by including it with the s.=+1 states,
since it is a one-channel state. However, for purely
formal reasons involving convenience of writing the
formulas later on, it is advantageous to use a somewhat
different procedure. We define, for J=O and x= —j.,

eg= ep=—0, Be~=—0, 8pp —=8('Pe). (2.22)

oo

do =—Q BzPz(cose)dQ,
3 L=O

(3.1)

where Bz, is given by formulas (4.25) and (4.26) of
reference 6. We can simplify the appearance of the final
formula somewhat by a notation which allows us to
treat states of the same J but opposite parity together.
We introduce an index p which can assume the three
values p=n, p=P, and p=0. The phaseshift b~ is then
equal to bq, bye, and bgo, respectively. We also intro-
duce the eigenvectors xg corresponding to these three

4 I. M. Blatt and L. C. Biedenharn (to be published).

This is equivalent to the introduction of a formal state
with I= —i and associated phaseshift equal to 0. Of
course, this formal state has no physical reality and
drops out of the 6nal formulas.

3. GENERAL FORMULA FOR THE CROSS SECTION

We are now in a position to write down the general
formula for the differential scattering cross section for
neutron-proton scattering in the triplet spin state. We
use methods developed before. ' The cross section can
be written as a sum of Legendre polynomials of type
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values of p
xq = (coseg, 0, sine'),

sees= ( slIleg) 0) coseg),

xJp=(0, 1, 0).
(3.2)

X(inin, 0) =@3(cos'ei+sin'ei) =%3, (3.6)

7 Actually this argument is oversimplified. We shall derive the
energy dependences of all the relevant parameters in Sec. 4 of this
paper. When these energy dependences are substituted into the
formula for the cross section at low energies, it can be seen that
the approximations made here (neglecting all parameters other
than bi~ and e&) are not really consistent, i.e., there are other
terms in the cross section which are of the same order, or even
lower order, in the energy than the terms we have kept in (3.8).
Some of these other terms are connected with scattering in the
P state (1=1); the present experimental data indicate that the
P state scattering is very much smaller than expected and may
even be altogether absent. However, the interference terms between
the a-wave and the P-wave, as well as the interference terms
between the n-wave and other waves involving D states, are of
the same order in the energy as the angle-dependent term in (3.8)„
and they should be taken into account. Thus (3.8) should be con-
sidered an illustrative example rather than a consistent approxi-
mation formula.

In each bracket the 6rst symbol is the component of x&

belonging to l=J—1, the second is the component be-
longing to f=J, the third is the component for f=J+1.

We now introduce the quantity X(Jipi Jep2, I)
de6ned by

Jy+ i J211

X(JipiJ2pep I)= P P Z(liJileJQy 1L)
~1 =Jl —i 12 =J2 —i

X (&z„,) i, (xg„,)g„(3.3)

where the components (xz,)& are given explicitly in
(3.2), and the Z coeKcients for s=i are tabulated in
reference 6. The coefficient Br, in (3.1) is then given by

Ji +L
B.= Z Z ZZ[X(Ji iJ2c., L)7

Ji -0 Z2 —
)Ji —I'1 P& P2

Xsin8~„, sinhJ„, cos(b~„,—8~„,). (3.4)

In order to illustrate the use of these formulas, we
calculate explicitly the diQ'erential cross section for
neutron-proton scattering in the triplet spin state at
low energies. For low energies we can make the assump-
tion that all phaseshifts vanish with the exception of
the n-wave phaseshift 8, associated with the 'Si+'Di
state (J=1, m. = —1). The P-wave phaseshift can be
neglected at low energies, since the P-wave is a mixture
of S and D with a predominant D component, and we
shall show in Sec. 4 that b~p behaves like a typical
D wave phaseshift as far as its dependence on energy
is concerned. Thus there are only two parameters neces-
sary to describe the scattering, the phaseshift b~ and
the mixture parameter ei.~ Equation (3.4) then becomes

Bi,——[X(lain L)7' sin'(bi~). (3.5)

%e now use the tables in reference 6 to compute the
relevant values of I

X(lnla, 2) =OXcos'ei+% cosei sinei
+v3' sinei cosei+gs sin'ei

=V3 sinei(2 cosei+2-& sinei). (3.7)

All other X vanish because of selection rules for the
Z coeflicients. Thus we get from (3.1)

do = lt' sin'(t', .)[1
+sin'ei(2 cosel+2 & sine, )'P&(cos8)7dQ. (3.g)

We see that the n-wave scattering is not equivalent
to pure 5 wave scattering. It reduces to pure 5 wave
scattering only if ~&=0.

The first few terms of the series (3.4) have been
written by Rohrlich and Eisenstein (reference 1) and
also by Biedenharn. e The quantity i& used there is
equal to tan&+ in the present notation.

4. THE BEHAVIOR OF THE SCATTERING MATRIX
NEAR ZERO ENERGY

%e now investigate the behavior of the parameters
entering the scattering matrix (the phaseshifts 8q, bqp,

bqe, and the mixture parameter eq) at very low energies.
One of the results of this section has been stated already
in formula (2.21).

%e shall make the assumption that the forces have
a limited (even though perhaps a large) range, i.e.,
that there exists an inter-particle distance R such that,
for r ~&E, the particles do not exert any forces on each
other. We emphasize that this assumption does not
mean that the forces must be derivable from a potential
function. Velocity-dependent forces are permitted,
provided that they have a 6nite range.

We use the derivative matrix of Wigner and Eisen-
bud. ' Consider erst the single-channel states, i.e.,
~=+1, 1=J. The wave function is given by (2.4). But
instead of the decomposition (2.5), we now decompose
the radial wave function s~(r) in a different manner.
Following Wigner and Kisenbud, we de6ne two func-
tions $&(r) and 6&(r) by the requirements that both
satisfy the radial equation for orbital angular mo-
mentum l in the absence of forces between the particles
and furthermore that they satisfy the following bound-
ary conditions at r=E 0

3,(Z) =0, e,(Z) = (iV/2a)'-,
(4 1)

Si'(E) = (lV/25) &, ei'(R) = —(l/E) (M/2k) &.

Since $&(r) and 8&(r) both satisfy the force-free radial
equation for orbital angular momentum /, both of them
can be written as linear combinations of the standard

8 L. C. Biedenharn, M.I.T. thesis (1949).
9 E. P. %'igner and L. Kisenbud, Phys. Rev. 72, 29 (1947);

E. P. Wigner, Phys. Rev. 73, 1002 (1948). The developments of
this section are a straightforward application of the methods of
the second reference. We give the details of the derivation merely
because the simple problem discussed here allows the use of an
appreciably simpler notation.

& These are identical with the definitions of reference 8, if one
observes that the "3P' of that reference is the reduced mass in
the channel, i.e., in our case equal to —,'3l.
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regular and irregular solutions of that equation, F1(r)
and G1(r), where Fg(r) and G1(r) are defined by their
asymptotic behavior

introduce the derivative matrix as before by a decom-
position of the radial functions us(r) and ws(r) in terms
of S(r) and e(r)

F1(r)—sin(kr —-', Lv), G1(r)—cos(kr —12hr), (r-+oo). (4.2)

Indeed, simple substitution gives the relations"

sg(r) =k-'(M/2k) t[G1(R)Ft(r) —F1(R)G1(r)7, (4.3)

81(r) =k '(M/2l't)'{[F1'(R)+(t/R)F (R)7G (r)
—[G1'(R)+(t/R)G1(R)7F1(r)) (44)

us(r) =A1'gs 1(r)+B1't's 1(r),

sos(r) =A s'Ss+1 (r)+BI'as+1(r),

with the relations

B1 = tR11A1+ (R12As',

B2'——Rg1A1 +g2A s'. {4.11)

We now write the radial function vs(r) in (2.4) as a
hnear combination of Ss(r) and 8s(r)

vs(r) =A'8 s(r)+B'es(r) (4.5)

and define the derivative matrix (which is a simple
number here) by

8'= 6t4'. (4 6)

The coefficients A' and B' in (4.5) are of course
related to' the coefficients A and B in (2.5), and this
relation can be determined by straightforward use of
Eqs. (4.2), .(4.3), and (4.4). We then get a relation
between the derivative matrix and the scattering matrix
5= exp(2i5s0) which can be stated as follows:

(kR)' (R12

2J+1 {2J—1)tR11—R
(4.12)

Again the constants A', B' in (4.10) are related to the
constants A, B in (2.10) through (4.2) and (4.3). The
derivative matrix {R;; is real and. symmetric and. ap-
proaches a constant matrix as the energy approaches
zero. Given the derivative matrix, the computation of
the scattering matrix 5 is a straightforward. procedure;
the necessary relation is given in reference 8 but can be
derived here directly without trouble. Ke then express
the scattering matrix in the form (2.12), (2.13), (2.14),

' and approximate the radial functions by (4.8). We omit
details. The results are"

F~(R) tst[Fs'(R)—+ (J/R)Fs(R)7
tan8gp=— (4.7)

G,(R)—1!t[G,'(R)+ (J/R)G, (R)7
[(2J—3)!!7' R

0 cot6g = Rll-
(kR)'s ' . 2J—1

(4.13)

We now use the asymptotic forms of I' and 6 for small
values of kr

Ft{r) (kr) +&/(2t+1) t!
(for kr« t)

G (r)-:(2l-1)!!/(kr)',
(4.8)

where (2t+1)!!=—1X3X5X X(2l+1). In addition
we use the fact that the derivative matrix (R approaches
a constant value as the energy approaches sero. This
can be seen from the fact that the derivative matrix
can be dered in terms of "interior" quantities only,
i.e., in terms of a boundary value problem for the
domain 0&~r&~R.' Substitution of (4.8) into (4.7) then
gives the following relation which is valid near zero
energy '.

L(2J—1) '!7'
k cotbso — (for kR«J). (4.9)

(kR)2s[tlt —R/(2J+ 1)7

Thus the phaseshift 6gp is, in general, proportional to
k'~+', which is the usual result for scattering with orbital
angular momentum /= J. An exception occurs when
the asymptotic value of the derivative matrix (R at
zero ellel'gy 1s eqllal to R/(2J+1). Tllls corresponds to
a scattering resonance at exactly zero energy. We shall

ignore this possibility in the remainder of the discussion.
We now proceed to the two-channel states, x= —j.,

t= J+1.The wave function is given by (2.9), and we

"%e use the Kronskian relation Pg'(r)G~(r) —F~(r)G~'(r)=k,

[(2J+1)!!72
k CONJ.p—

(kR)'s+'

R ((R12)'
(4.14)

2J+3 !R11—R/(2J —1)

These expressions, valid near zero energy, show that
the mixture parameter ~g vanishes'near zero energy;
for low energies ~J is proportional to k', i.e., to the
energy. The mixture parameter is proportional also to
the oG-diagonal matrix element $tj2 of the derivative
matrix, as should be expected. The a.-wave phaseshift,
8J'~ ls pl'opol tlonal to k ) i.e.) lt behaves like a
phaseshift for a pure l=J—1 state. Similarly the
p-wave phaseshift use is proportional to k's+' just like
a phaseshift for a pure t= J+1 state. This is to be
expected, of course, because the fact that e~o as the
energy approaches zero means that the eigenstates of
the scattering matrix become pure t=J—1 and t= J+1
states, respectively.

Expressions (4.12), (4.13), and (4.14) suffer from the
defect that the quantity R, the radius of the "interior"
region, appears explicitly. Unlike resonance reactions,
in neutron-proton scattering we can hardly expect to
be able to give a good physical definition of E which is

~Equation (4.12) really contains ~~tan(2') on the left-hand
side. Hence eJ approaches either 0 or qm as the energy approaches.
zero. %e then make the choice (2.21), i.e., eJ 0 and replace
$ tan(2~g) by ~g.



free from ambiguities; the mathematical de6nition of
E is quite inde6nite. If E=R1 satis6es the conditions of
thc derivative IQatrix theory, then any RgQEy ls also
an acceptable value of E.. Thus we need to dt.'6ne
parameters which are invariant under the choice of R,
i.e., parameters which are directly related to the scat-
tering matrix. We de6ne two scattering lengths, eg„
and cJp, and R pRrRIDctcl' gg by the f0110%'ing rclRtlons,
valid near zero energy:

eg—qgk',

bs ——(kag )'~-I/D2J —1)!!|s,
b~p'= (ka~—p)"+'/L(2J+3) 'G'.

(4.15)

{4.16)

(4.17)

In the special case of J=1, the 'SI+'DI state,
eg = a~ is just the usual triplet scattering length, and
we shall show in a subsequent paper that the quantity
Q ls to R 6x'st Rpprox1matlon proport1onal to thc quRd-
rupole moment of the deuteron.

%c now wish to determine the asymptotic forms of
the radial functions Ns(r) and Ioq(r) for the cr. wave -and
P-wave solutions in the limit of zero energy. Thc
asymptotic forms in question are given by (2.17) and
(2.18) fol' values of r Sile!i tlla tkr»'J. Tllis condition
cannot be fulfilled when k approaches zero. Hence we
must first rewrite these asymptotic expressions in R

form valid for RQ r~&E. Using (4.2), we get

ng. (r)=cos(eg)Leos(ag. )Pg, (r)+sin(aJ )GJ I(r)j,
log. (r) = sin(eg) icos(h~. )FJ+,(r)+Sin(g~„)Gg+, (r)j.

(4.18)

This equation reduces to (2.17) for kr))J but is valid
for all r ~&It, Wc now usc the asymptotic forms (4.8)
which are valid for very small k (more precisely, for
kr&&J) together with (4.15) and (4.16).,

We omit a
common factor ks/(2J —1)!!in both NJ and log, to
gct the result

"-()="—("-)"-/L(2J-1)"-'j,
(k=0, r~&E) (4.19)

los (r) = —(2J+1)qg{ag )'s-I/r~+I.

Thus 1k' 0!-'NQV8 MINION Cf Sent'0 8Ã8f"gf $$ f8Cog-

nisable by the fact that log (r) does not contain a cont-
Ponent ProPortlonal to p+ . T!118 colldltloll leads 'to RI1

eigenvalue problem for eg and qJ. Fortunately, this
eigenvalue problem is of a very simple type and can be
solved immediately if any two linearly independent
pairs of solutions (n, Io) are known at zero energy. Call
them (Ni, Iol) and (Nl, Iol). For r~&E, they assume the

form (gi, gI, hi, hs, etc., are constants)

n.(r) —
g rz+.k r—J'+I

{i=1,2)
Io,{r)=g r~+'+h r-~-l.

The solution (n, Io ) is that particular linear super-
posltloll of (nl, Iol) Rlld (Ql, Iom) fol' wlllcll tllc coef-
ficient of rs in n(r) is unity and the coef!Icicnt of r~+' in
Io(r) ls zcl'0. TllRt 18

n-(r) =Lg 'll(l)rg—'ll(lr)3/Lglgl' g—lgl'j,
(4.21)

~-(r) =Lg2'~I(r) —gi'~s(r)l/Lglgl' —gal'j.

By comparing (4.20) and (4.21) with (4.19), we can
express the quantities cJ and qg in terms of the g's
and h's. This illustrates the advantage of starting the
numerical solution of problems of this type at some
energy E&~0 (E=O is most convenient practically but
any non-negative E could be treated by a similar
method) rather than trying to start with numerical
solutions for the energy of the bound state of the
dcutc1 on.

All clltll'cly sllnlIR1' dcvcloplnellt fol' tllc p-wave
leads to the following expressions valid at zero energy
)we have omitted a common factor k~+'/(2J+3)!! in
both u~p(r) and Igp(r)$:

nsp(r) = —(2J+1)(2J+3)qgr~,
(k=0, r&R) (4.22)

( )= '+' —( )'"'/H2J+3) "'j.
Thus the p louse solltio-n at sero energy is recognisaMe

by lhe fact that u~p(r) does not contain a conIPonent
proportional to r ~+'. Notice that the decreasing (with
r) component is absent in Nqp(r), whereas the increasing
component was absent in log (r). Given the numerical
solutions (ni, ioi) and (nl, lol), we can construct the
sollltloll (Qp, lop) by R lllleR1" superposltloll RI1R!ogolls
to (4.21), namely,

np(r) =Lh,l,(.) h», ( )—j/rLhigl' h,g,'j,—
(4.23)

lop(r) = Lhlloi(r) —kilos(r) j/Lhlgi' —hlgl' j.
By evaluating the quantity qs first by the use of (4.21)
and (4.19), then again by the use of (4.23) and (4.22),
we obtain the following identity between the coeKcients
in the numerical solution (4.20):

(glhl —glhl)/(gi'h~' —g~'hi') = —(2J+3)/(2J —1). (4.24)

This (Wronskian) identity serves as a useful check on
the accuracy of the. numerical solutions (4.20).


