
PHOTOD IS I NTEGRATION OF THE DEUTERON

in the literature since the present paper was submitted.
The results quoted lead to values of c/b in agreement
with the calculations of Marshall and Guth, ' while
the values reported for a/b suggest that this coefficient
rises about 0.06 at 6 Mev to 0.14 at 15 Mev, These
results are reasonably consistent with those reported
here.

We are indebted to Mr. Herbert C. Field for his aid
in searching and measuring plates and to Mr. William
Voelker and Mr. J. W. Chastain of the Case betatron
crew, and Professor E. C. Gregg, Jr., for their aid in
obtaining the plate exposures. We are also indebted to
Professor L. L. Foldy for suggestions on the treatment
of the data and helpful discussions of the problem.
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Schwinger s expression of the S matrix in the Cayley form, in terms of a Hermitian operator E, is shown
to be identical with the previous noncovariant expression used in Heitler's theory of radiation damping.
The comparison of the two formalisms leads, furthermore, to a clear understanding of mass renormalization
which is necessary for internal consistency, quite independently of the eventual removal of divergences.
For the computation of X in a covariant way, new formulas generalizing and connecting Gupta s and
Fukuda and Miyazima's results are presented. The nth order approximations of E and S are closely related,
and K„may be expressed in terms of the S„oforder P n or in terms of their anti-Hermitian parts only.

with'

p+QO

( i)n,

S=f+Q S„,
n=l

p+oo
~ H(x1)8+(a1 02)H(x2)

J

where
X8+(~2, 02) ~ 8(x )dx1 ~ ux, (3)

1 if 01 is after o ~

(01& &2)
lO if n1 is before 1r2.

This expression of S has been extensively used

because the presence of 8+ functions alone, which are
closely related to the principle of causality, leads very

simply to the causal D' functions of Stueckelberg and
Feynman enabling a simple computation of (3) to be
made by means of the Feynman rules.

However, even if all the S„have been made con-

vergent by a suitable regularization, it is not known

whether the series (2) is always convergent, although
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1. THE T%0 FORMS OF THE S MATRIX

HK solution of the Schrodinger equation in the
interaction representation

iW L~)/8~(x) =H(x)% 7~3 (1)

by means of the usual perturbation method leads to
the collision S matrix

it has a certain similarity with the development of an
exponential, as was pointed out by Heisenberg. '

In any case, for large values of the coupling constant
as iri meson theories the convergence is presumably slow,
and it is more indicative to write the unitary S matrix
in the Cayley form

S= (l 2iK)/(1+——2iE), -(5)
which is closely connected with the eBect of radiation
damping. For the computation of transition proba-
bilities one usually makes use of the alternative form

S=1—iB, (6)

which is equivalent to (5), provided 8 is deduced from
the Heitler integral equation'

8=K——,'iE It'. (&)

The scattering cross sections are then proportional to
the square of the modulus of the corresponding matrix
elements of R.

The Hermitian operator E can be easily obtained as
a series

E=p E„ (g)
n 1

by a suitable perturbation method. According to
Schwinger, 4

2~ n 1„+w—
H(xl)2(01 02)H(x2)

X2(o2, 02) ~ .8(x„)dx1 ~ .dx„, (9)
~ W. Heisenberg, Z. Naturforsch. AS, 251 (1950).
'%. Heitler, Proc. Cambridge Phil. Soc. 37, 291 {1941).' J. Schwinger, Phys. Rev. 74, 439 {1948).
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I+ 1 if o, is after o~
6 0'y) 02

I —1 if o& is before o2
(10) (klEI0)=(klZIO)

(klelz)(zlal~)" ~ (~lalo)
+Z Z (16b)

(~o-~~)" (&o-R.)
Before the development of the present covariant

formalism Pauli' gave the formula

(klE„I0)=2 ~(z,—Z,)

(kl&lf)(~l&l~) "(~l&I0)
XE (11)

p (go —R&) ~ ~ ~ (R&—R )

where I' indicates that the principal value must be
used in integrating over the energy.

2. EQUXVALENCE OF THE OLD AND NEW
FORMALISM S

The identity of Eqs. (9) and (11), which is not
generally explicitly recognized, is immediately checked
by means of the relation

One finally obtains the Heitler integral equation in
the form (7) by putting

(k I
a

I 0)=2xa(Zo —Z~)(k IR I 0)

(klzl0) =2~a(Z, —Z,)(klEI0).
(17)

This straightforward derivation is easily put in co-
variant form by writing

Inserting this in the Schrodinger equation (1) we
obtain

2E
o($)8

$ CO

(12) R(x)=H(x) —HEI(x) R(x')dx', (19a)

where I' means that the principal value must be taken
in integrating over ou.

However, a more detailed comparison of the old and
new formalism will be useful for the discussion of the
mass renormalization. To derive the expression (11) of
E„in the old formalism Pauli wrote the wave function
as the sum of an incid. ent wave and. an outgoing wave
as follows:

$ p+
R(x) =H(x) —-B(x)

00

R(x')dx'

$ p+
-B(x)—
2

e(o, o')R(x')dx' (19b).

or by introducing the function o given by (10)

(kl el o)= a~,—2~i(klR I 0)8+(Ro—R&)
with

1 ~" 1 1
8+(&o)=— e'"'dt= h(&o)——

2s' 4p is.&o I

'
Z P+

R(x) =Z(x) —-P(x) R(x')dx'
2

Inserting this wave function in the Schrodinger equation

(z—z~)(klelo) =Xi(klall)(llelo) I+
Z(x)o(o, o')P(x')dx'

00and assuming the energy 8 to be equal to the energy
Eo of the unperturbed incoming wave, one gets

(13a) Putting in the last term the value of R(x') given by
the erst member of the same formula, we get

(13b)

(klRI0) =(kl elo) —ix P,(kl all)(flRIO)a(Z, —Z,)

(klalt)(tIRI0)
+Z (15)

&o-~i

—00

B(x)o(o, o')Z( )dxx' R(x.')dx'

The solution of this equation by repeated substitu-
tion in the term containing the 8-function of the value
of R given by the 6rst member of (15) leads to the
Heitler integral equation in the form

(kIR I o)=(kIEI o)—~~ Z~(k IEI l)(KIRI o)~(~o—~~)
(16a)

Xo(o', o")R(x")dx'dx".

Inserting again in the last term the value of R(x")
given by the 6rst member of (19b) and repeating this
operation indefinitely, we get the Heitler integral
equation

~%. Pauli, Phys. Soc. Cambridge Conference Report 5 (j.947);
%.Pauli, Meson Theory (Interscience Publishers, Inc. , New York,
4948}.

~+o0

R(x)=E(x)—-E(x) R(x')dx'
2

(20)



z(h) =H(x)+g[ —[, ~ ~ ~

& 2)
H{x)

Xe(o, o')H(x')e(o', o") ~ H(x&" '&)

Xdx' ~ .dx&" '&. (20b)

Finally (20a) reduces to P) by putting

)a+QO ~+00

8= E(x)dh E= E(h)dx. (21)

The convergence condition of the series (g), representing
Z, is no better known than that of the series (3), repre-
senting 8. The two conditions might be diferent. If
they are both fu16llcd, the two developments will lead,
of course) to the same unitary matrix S. However, for
practical coDIputations wc have to break up one of
them somewhere. In the case of series (8) this operation
mill not aGect the hermiticity of X because each term
X of the development is separately Hermitian„as is
immediately verified by looking at formulas (9) or {11).
Then the Cayley form might be morc advantageous,
because it is always unitary to any degree of approxi-
mation. This is no more true for the exponential-like
development (3).

X MASS RENORMALIZATION

The consistent subtraction of thc self-energy ln the
construction of the 8 matrix in Caylcy form, has
already been treated'7 in the old noncovariant forrxiu-

lation. We remarked that the form (15) of the wave
function is only consistents with the picture of an in-
coming wave plus an outgoing wave if in b+(Ee—Ee)
the energies of the system of "bare" particles are re-
placed by the actual total energies Eo' and E~' with

AE~ being the contribution of the self-energies of the
particles.

Moreover, in the Schroeedinger equation the energy E
of the system must be put equal to the perturbed energy
Zo' of the incident vive. The Schrodinger equation cari
therefore be written in the form

(Eo'—Ee')(k[%'[0)=P)(k[H'[l)(l [4[0),
similar to the usual one, except that the perturbed

6 J. Pirenne, Helv. Phys. Acta 21, 226 (1948).
m. Heitle: and S. V. Ma, Phl. Mag. 4O, tsi (1949).

8 Heitler and Ma (see reference "l) start from analogous argu-
ments of self-consistency but their treatment is somewhat different.

This expression can bc considered also as the solution,
by iteration, of the integral equation

+CO

E(x)=H(x) —— H(x)e(o, o')J (h')dx'. (20c)

~+oo re+cO

—eE„=(—e)" i

~ ~ ~

) H(x,)(8+{op,o,)—-', )

&&H(he){8+(oe, ae) —-', } ~ H(x„)dhg ~ dh . (26)

The terDl contalnlng all thc 8+ ls obviously Identical
with the expression (3) of S„.Another term, containing
r factors ~~, is easily identified by means of the same
Eq. (3) with a product of r factors S„or lower order,
Spy ~ Sp„with pg+pe+. ~ +p,=n. We so obtain the
general formula

which is for e= 1, 2, 3, 4, identical with the particular
expressions given by Gupta. '

' S. ¹ Gupta, Proc. Cambridge Phil, Soc. 47, 454 (1951).

cncI'gics have bccn substituted for thc unpcrturbcd
energies and that (k[H[l) has been replaced by

(~[H'[1)=(Z[H[&)—8„~E,. (23)

It was also shown that this substitution is necessary
and sufhcient to make (k[X[0) free of singularities on
the energy shell EI, =Eo, a condition which ls Indeed
implied in the assumption that the second term of the
wave function (13}describes an outgoing wave only, all
the singularities being necessarily contained in the
factor 5+(Eo'—Ee'). Finally, it was found that this
condition of continuity is suKcient to determine com-
pletely the self-energies.

Now the substitution (23) is equivalent tothe present
coval lant onc

H'(x) =H(*)—%(h)e(x)8m'. (24)

H properly carried out, both should lead to the same
results.

We see also now that the mass renormalization is not
merely introduced, as is often believed, in order to
subtract in6nities and to obtain in this way finite
physical results. In fact, it shouM stiB be performed, if
the sclfwnergies were made 6nite but difkrent froIQ

zero, as would be the case, for instance, in the non-
relativistic theory of extended particles. The actual
mass renormalization is, therefore, only unsatisfactory
because the self-energies. are in6nite and are neverthe-
less treated as smaB.

4. COVARIANT CALCULATION QF X
As S„can be easily evaluated in a covariant way by

means of the Fcynman rules, it mill be suScient to show
how to derive K„from the 8„.

To do this let us insert

e(x) =28+(x)-1
in the expression (9) of E„.We get
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Another useful general formula can be obtained by a
suitable grouping of terms

n—I
iK—„=S. ,' —Q—S,(s„—-', Q S, ,sq+ ~ }. (28)

q=l

it follows that El=0. Therefore, the second term of
(34) will only bring a contribution if all the three
indices are at least equal to 2. In other words

E„=—A„ for m~5. (36)

By (9) the bracket is equal to iK—~ Th.erefore,

g, n—1
iE—„=S„+ Q-S„+„.

2 P=l
(29)

K6= —A6+4A a' (37)

This simple rule was given without proof by Fukuda
and Miyazima. io (34) is its generalization. For instance,
for n= 6 we have

But by a simple change of notation in the summa-
tions contained in (27) and a diiferent grouping we can
also obtain]

$ n—1

iE„—=S„+ QE-g„„.
2 5 1

(30)

This is not surprising as t S, K(=0 and therefore

g LS„„,K„j=o. (31)

—K.=A.+ g H„~„ (33a)

O=H ——,
' Q A. ~„.

y=l
(33b)

Using now in (33a) the value of H„~ given by (33b),
we obtain the general formula

E„=—A„——,
' Q A„„~~q, (34)

P&0, q&0
P+q &n —1

in which the order of the factors in the last term is, in
fact, irrelevant because of (31).

This formula simplifies a great deal for low values of
e. As

Taking the Hermitian conjugate of (30) and using
the fact that K„is Hermitian, we get

$ n—1

+i%„=S„+ ps„„+E—,— (.3ob)
2 9=1

Now let us introduce the Hermitian and anti-
Hermitian parts of 5„:

S„=H„+iA„. (32)

By adding and subtracting (29) and (30) we find

n-1

In writing (35) we have implicity assumed that there
is no external (static) Geld; if such a Geld exists, the
Fukuda-Miyazima rule only applies for m&2.

Ke have thus a rather simple way to compute X up
to a certain degree of approximation p from the de-
velopment of S limited to terms of the same order
(which are themselves easily written down by means of
the Feynman rules).

But, finally, for practical purposes we have to
introduce that K into the Cayley formula (or into the
Heitler integral equation) in order to obtain a certain
S matrix, because it is S that we really need to compute
transition probabilities.

It might therefore seem at first sight that we have
not gained anything new. However, it must be realized
that the S we have now obtained is unitary and con-
stitutes, therefore, a quite diferent approximation
from the initial nonunitary approximation of S from
which Xwas derived. In addition to the limited number
of terms considered in the initial development of S the
new S will contain terms of higher order than p, arising
from the successive powers of X in the development of
S in terms of X. These higher order terms result from
the prod@et of lower order process for each one of which
the conservation laws of energy and momentum are
both satisfied, as is the case for real processes. The ap-
pearance of these new terms corresponds to renor-
malization of the probability amplitudes of these low
order real processes, which are really the only ones con-
sidered in the chosen approximation. This renormaliza-
tion is an improvement which is the more necessary, the
larger the transition probabilities.
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and hospitality.
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