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It is shown that the scattering of neutrons by a system of heavy nuclei may, for neutron energies that
are large compared with the level separation of the system, be described in terms of averages of simple
two-particle operators over the initial state. Expressions are derived for the total and differential cross
sections and for the first few moments of the energy transfer. The expression for the cross section can be
explicitly evaluated even for compJicated scattering systems and leads to an accurate representation of the
energy dependence of the nuclear scattering. The results are applied to the problem of the detection of
small electronic contributions to the cross section.

where the P's are the eigenfunctions of the Hamiltonian
II of the motion of the nuclei in the fieM of the inter-
atomic forces.

For nuclei with spin, (1.3) and (1.4) have to be
modi6ed which will be taken care of in Sec. 7.

The straightforward evaluation of (1.1) requires
detailed knowledge of the eigenfunctions of all accessible
states. It is therefore possible for the very simplest
cases only, and even there it becomes progressively
more laborious with increasing neutron energy. In the
following it will be shown, however, that for systems
of heavy nuclei the cross section may be expressed in
terms of averages of simple operators over the initial
state as soon as the neutron energy is large compared
to the levc1 sc aration of the s stem.

C. INTRODUCTION

K consider the collision of a neutron of mass m,
energy Eo, wave vector ko, and wave number ko

with a system of E nuclei —such as a molecule, a gas,
a liquid, or a crystal —in the state "a" of energy E,.
The standard Born approximation' leads to the scat-
tering cross section,
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The summation extends over all states of the nuclear
system, and the integration variable k is the momentum 2. GENERAL CONSIDERATIONS
transferred to the system, divided by h. The delta-

In the limit of infinite neutron energy, ji.1j goesfunction expresses conservation of energy and the
over into~

scattering amplitude F(x) is given by

F(x)=P a, exp(ix r,) (1.2)

mq
=Xi 1+ (2.1)

where M, is the mass of nucleus s. %e shall have to
determine, in particular, the bchRvior of thc closs section
on thc Rppl'oRch to this limit. While 'ccI'tRln gcncl Rl

statements in regard to this problem may be made on
the basis of the classical particIe picture, ' their appli-
cation to the case of heavy nuclei would appear to be
of limited practical use without a closer investigation.
This may be seen as follows. In classical mechanics the
collision —in our case of contact interaction —takes
place instantaneously and the energy dependence of the
cross section is determined by the momentum distri-
bution of the scattering particles. The cross section of
a system under the inQuencc of forces will thus be equal
to that of a free system with the same momentum
distribution. A necessary condition for the description
of the collision in classical particle terms requires that
the collision time h/E~, where E~ is the classical energy
transfer, be short compared to the periods of the

Here r, is the position vector of nucleus s and a, its
scattering length.

The scattering lengths will be taken to be independent
of Eo and x in the energy region considered, they may,
however, depend on the nuclear spin variables. For
nuclei without spin the scattering length u, is simply
related to the scattering cross section cr, of the bound
nucleus by

and the matrix element of the scattering amplitude
may here be written

F~~= I Py (ry, rg)FtP~(rg, ' ry)dry 'dfy, (1.4')

*The results of this paper were presented at the International
Conference on Nuclear Physics, Basel, September, 1949.

t'Work partially supported by the AEC and ONR.' For the justification of the use of the Born approximation i
the treatment of this problem see E. Fermi, Ricerca sci. 7, 1
(1936);G. Breit, Phys. Rev. 71, 215 (1947).

n ' E. Fermi, Ricerca sci. 7, 13 (1936),
3 'G, Placzek, Phys. Rev. 75, 1295 (1949); and as quoted in

reference 7.
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system. Accordingly, the energy transfer (m/3E)EO has here iFi'=uP, we have from (2.4)
to be large compared to the level separation of the
system, and thus

(2.4a)

Ep))h. (2.3)

For this purpose we start from the static approximation
which results from neglecting the energy changes associ-
ated with the transition of the system. It is obtained
by omitting the last term in the delta-function in (1.1).
The summation over b can then be carried out immedi-
ately by closure so that (1.1) goes over into

2a('= — (F*(x)F(x)),'8((('—2kp x)dx
kp~

E,»(M/m)a, (2.2)

where 6 is the level separation. Indeed, one can see
immediately that unless condition (2.2) is satisfied the
energy distribution of the scattered neutrons must dier
appreciably from the classical energy distribution.

For heavy nuclei (2.2) becomes extremely restrictive
and we shall therefore attempt to study the collision
under the much less restrictive condition,

For systems consisting of several nuclei the evaluation
of (2.4) involves the probability distribution of inter-
nuclear distances in the initial state (pair density). In
the limit of infinite neutron energy the cross section
(2.4) reduces here to

t700 ~8 +sy(~s) —~ (2.6)

which divers from the correct result (2.1) by the absence
of the reduced mass factors.

It will now be our problem to establish the exact
conditions of validity of the static approximation which
neglects the energy changes and to improve it by taking
account of the energy changes. We shall limit ourselves
to systems of random orientation. This will contribute
to brevity and the generalization of the results to
oriented systems such as single crystals will become
quite obvious in the course of the treatment.

For systems of random' orientation we may average
the delta-function in (1.1) over all directions of ko,
whereby (1.1) goes over into

= f(iF(ko —k,Q) i'), 'dO, (2-4)

f Bk &&0+Pe de
I F.'(~)I

2k,
(2.7)

where A is a unit vector. Equation (2.4) represents the
average of the cross section of a system, consisting of
nuclei fixed in definite positions, over the configurations
of the initial state of the real system. It may thus be
referred to as the static approximation. This approxi-
mation forms the basis of the theory of x-ray scattering
by molecules, crystals, and liquids. 4

The cross section (2.4) has to be well distinguished
from the elastic cross section (or more precisely, the
cross section for scattering without change of quantum
state) which from (1.1) is given by

where the subscript a, b under the integral sign indi-
cates that the integration extends over a region in
x-space bounded by the spheres of radius ko+k, & and
ikp —k.bi with

k.p= 2mb '(Eo+E —E(,). (2.8)

Introducing the average P, (,(~') of the square of the
matrix element over all directions of x

(2.9)

(Tet = (2/ko) J i (F(x)). i'8(~' —2kp' x)dx
and putting

(E(, E)/Eo= x,b,
— (2.10)

= I i(F(k,—k,o)). i'dn. (2 5)

In the literature the cross section is frequently
divided into an elastic and inelastic part and the energy
dependence of each part is discussed separately. It is
clear from (2.4) that in the static approximation this
separation is an unnecessary complication which has
to be avoided as far as possible. This situation will be
shown later to hold also in higher approximations.

For systems consisting of one nucleus only, the static
approximation leads to a constant cross section. Since

we may write (2.7)

~ g, f, &i kP'(i+(i —x~g)~)2

~(ei- y, (,(((')d K'. (2.11)
ko & ~kali —(i x.r)&(2—

If in this expression the quantities x b are neglected
throughout, which implies also the replacement of the
restricted sum over b by an unrestricted one, it goes
over into

p4k02

0 ('=— (Py, (,(i('))d~'
ko'" o

' See the review article by M. Born in Reports of Progress nf
Physics 9, 294 (1943).

p 4k(i~

dP (iF( ) i')„did„,
4ko'"

(2.12)



SCATTERING OF NEUTRONS

which is the result of the static approximation (2.7),
averaged over all directions of kp.

The expression (2.11) has a form suitable for taking
the energy exchanges into account. For heavy nuclei,
owing to the difhculty of large energy transfers between
light and heavy particles, the quantities x,b will be
small for all transitions with appreciable matrix ele-
ment, provided the neutron energy is large compared
to the level spacing and the neutron velocity large
compared to the average nuclear velocities. If these
conditions —the latter of which only implies a very
weak limitation on the admissible degree of initial
excitation of the system —are satished, we may there-
fore expand the integrals in (2.11) in powers of x,b and
replace the restricted sum by an unrestricted one. This
method will be carried out in the following sections.
With appropriate changes it is also applicable to the
treatment of other problems. For the scattering of
x-rays by atoms, in particular, it leads to certain
modi6cations of hitherto accepted results. '

3«AN EXPRESSION FOR THE CROSS SECTION IN
TERMS OF AVERAGES OVER THE INITIAL STATE

To expand (a,b), we expand p in powers of t,
integrate and expand t m. powers of x

=
4 psx (1+px+ ' ' '). (3 &)

Noting that p b(0)=0 for aWb and x,b=0 for u=b,
we obtain

(o,b) X4

uy'(s)+O(xb).
4x 512

(3.7)

The lower limit of the integrals in (2.11) thus gives
rise to a fourth-order correction only.

The quantities 0 b have now to be summed over b.
At the same time we may average the cross section
over the initial states of the system. Putting

P 0(a) (3.8)

S.(t) =P.q&.& &(t) (3.9)

where y, is the probability of 6nding the system in
state "u" before the collision and introducing sums S„
by

With the notations s=4k', t=2, (2.11) may be
written

Zb (Zo+Ea
S-"(t)= 2 (~b—~.)"d.b(t), (3.10)

&ab —gab + &eb—

44r
(&r.b)g= y.b(—t)dt

S Ij p

(3.1)
we obtain for the cross section from (3.1), (3.2), (3.5),

(3,2) (3.7)-(3.10)

0' 1 1 1

(3 3)
—

~

Sp(t)dt Sz(s)+ { Sp(s)+2sSp (s)}
u~o 2Ep 16Eo

u&ab &ah &ab
1+ + + x,b'+ . (3.4)

8 16 128
u —t+ ——

2

t+= (u/4) {1~(1 x b)&}'.

The expansion of (0 b)+ in powers of x,b is obtained by
expanding the integral in powers of u —t+ and expressing
this quantity by its expansion in powers of x b

1
+ {—Sp(s)+sSp'(s) —-', sPSp" (u) }

32EQ

+ {—10S4(u)+u(9S4'(s) —S4'(0))
512Eo4

—4s'S4"(s)+ (4/3)s'S4'"(s) }. (3.11)

We now have to discuss the quantities S„. With
(2.9) we may write (3.10)This yields'

I

(~.b)~ 1 p" x x'
y(t) dt ——y(u)+ —{—y(u)+ 2uy'(S) }

4m' u~ p 2 16

S &'&(~')

Eb &Eo+Eo
=—'da„g (Eb—E.)"

~
(F(44)).b

~

'. (3.12)
4~~x'

+ { 4'(S)—+S—4 (S) pu 4' (S)}
32

g'
+ {—104 (s)+9sg'(s)

512

4y"s(S)—+ (4/3) s'4t "'(S)}
~ G. Placzek, Bull. Am. Phys. Soc. 27, No. 1, 13 (1952).

In order to save indices, @re vrrite in the following x for x q

and p for @sb,. Eb—E,= (H —E,)b'

For freely orientable systems such as molecules, the
averaging over the directions of x is superQuous since
the sum over b will here depend on the magnitude of x
only. For systems showing the type of random orien-
tation present in polycrystals, however, this averaging

(3 5) process is necessary.
Expressing Eb—E, as the diagonal element of the

operator II—E
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= (P*{H—E,}"P), . (3.13)

and neglecting the limitation of the sum in (3.12), we
obtain by closure

g(g, E) (p o~o p(ps), .((Z E }«),op o

4. THE DIPPERENTIAI, CROSS SECTION

The treatment of the preceding section can be ex-
tended to the di6'erential cross section. The dHkrential
cross section associated with the transition u—+5 is
given by

do o/dQ= (1—x,o)&4,o(a,oo). (4.1)
From the argument given at the end of the preceding
section it may be concluded that under the conditions
stated there the error committed by closure will be
quite negligible for heavy nuclei and small n. In Sec.
VI this will also be shown in somewhat greater detail
for a specific example. Combining (3.9), (3.12), and
(3.13) we obtain 6nally

The factor (1—x,o) & represents the ratio of the velocities
of scattered and incoming neutron and a, I5,

' is deter-
mined by the relation,

(4.2)44.o=ko-ko(i-x o)&Q,

where Q is a unit vector in the direction of scattering.

(3 14) For scattering without energy change (4.2) goes over
lDto

S (s')=(P*( )(& & )"P( ))

t o= 1—ro'/2&o'.

where the average is to be taken (1) over the conlguur-
ation of state "a," (2) over the distribution of states
"a"initially Present in the system, and (3) if necessary, i4

' is related to the cosine t4o of the scattering angle by
over the directions of x. Thc first two averaging
processes can sometimes be combined in the customary
way by the use of transformation theory.

With the help of the relation, From (4.2) and (4.3) we have

((a—&.)0}4,=(0(a—&.))4,=0,

where 0 is a time-independent operator, (3.14) may be
expressed in various ways. A convenient form is

a,oo= ko'(1-x) &+1'o'(1-(1-x)&)'. (4.4)

So= (P'P)Av

S,= (PoLPP])A„
So= (LP*II]ÃP])A.
So= (I P*&]L&L@P]])A
S.= (Left*]]LafaP]7).„

(3.15)

where LAB] is the commutator of the operators A and
B.The evaluation of (3.15) will be carried out in Secs.
V and VII.

The quantities S„admit a simple physical interpre-
tation. If a momentum kx is imparted to the system,
the average energy transfer accompanying this momen-
tum transfer is given by Si(44')/So(a') and the u-th
moment of the energy transfer by S„(~')/So(44o). This
will be used later in connection with the comparison of
classical and quantum-mechanical results. The moments
so dered are of course diGerent from the moments of
the energy transfer occurring in an actual collision.
The latter are given by

Ko
—K~y = ~KO Sgy

+4i(xo4:o'—k')x.oo(1+-,'x.o+—,oox.oo+ )

Inserting the resulting expansion for p as well as the
expansion of (1 x.b)& in—to (4.1), one obtains, after
summation over b and averaging over u, the following
result, where again m=440', the scattering angle is
measured by

t=.o'=-', u(1 —t4o) =u sino(e/2)

da 1—=So— (Si+tSi'}
dQ 2EO

(2So—(2t+u)So' —2t'So"}
16EO'

(~')4.=Z. V.Zo(» —&.) '~.o/~ (3.16) (2S, 2tS,'+tuS, "+', toS,"—'}-
32E03

and may be expressed in terms of the quantities S„and
their derivatives by noting that the denominator of
(3.16) is given by (3.11) while the numerator results
from (3.11) by simply replacing S„by S„+4. The
moments (3.16) which are thus, for small u, obtainable
by our method, are also simply related to the moments
of the energy distribution of the scattered neutrons,
given by ((»—8) ')A, .

{2054—2(10t—u)S4'+ (4t'+4tu —uo) S4"
512E04

+4P(-*,t—u)S," (4/3)t'S, ""}. (4.6)—
As a check we integrate this expression over dQ. For
this and other purposes it is convenient to write it in



da 1 8—=So— —tS]+ —{(I—2t)So+2PSo'}
dQ 2EO 8f 168 Bt

one obtains for the commutation relations:

p
PBFj-—p{-,'p+ p,)3f

(5.4)

1 8
+ — — —{(I-2t) (So—tSo') —-', PS,"}

32EO~ N

I' A BV I'
I &t.&Fjj=—E —. + (oI'+0*)', (5 5)

M i 8g 3f

1 8
+ —{(I—2t) (10S4+(I—10t)So'

512E04 Bt

Introducing (4.'!) into

0 1 I
do' 1 f do'

gp
4]r 2" ]dQ l~o dQ

one immediately obtains (3.11).
Under actual experimental conditions, the measured

diGcrential cross section will depend on the variation of
the detector sensitivity mith energy. YVC shall concern
ourselves with a 1/o detector. In this case the partial
differential cross sections have to be multiplied by the
ratio of the velocities of incident and scattered neutron
before the summation over b. This will just colnpensate
the factor (1—x,o)o in (4.1). It can be shown that the
omission of this factor exempts the factors of 5„,5„',
S„",etc. in (4.'I) from the operation 8/8t. We find thus
for the effective dHkrential cross section measured by
a 1/o-detector

y = It'~'/2M =P'/2M. (5 7)

a=-;(a'/M)V V

C= ,'{FP/-M) (grad V)' (5 9)

It is instructive to compare the expressions (5.6) with
their classical value. In classical mechanics the energy
transfer accompanyibg the instantaneous transfer of
momentum P to a particle of momentum y moving in
the potential V(r) is independent of the potential and
given by

t' d0' 'l AS], 1
=So—— + {{I—2t)So'+2PSo"}

& 8Q ) .]] 2Eo 16Eo'
E=(1/2M){&+2P y}. (5.10)

Averaging the t]th power of (5.10) over the momentum
distribution and over the directions of P one obtains

where p, is the component of the momentum of the
nucleus in the direction of P.

The expressions (5.4) and (5.5) are now introduced
into (3.15). Integration by parts with real eigenfunc-

+4PS4")+{4/3)t'S4'"} (47) tions and subsequent averaging over the directions of
]I: (i.e. P) yields

S]/So= y

(4 g) So/So ——y'+(4/3)Zo, y (5.6)
So/So =y'+4&A.y'+&o y
S4/So =y'+&&Ayo+4(o(&') A.+Eo.)y'+2CA y,

+ -{(I—2t)(So' —tSo")—-', PSo'"}
32E03

+ -- {(oo—2t)(10S '+(I—10t)S"
12~0

+4PS "')+(4/3)t'S '"'} (4.9).

P=a, exp(oPs/lt), (5.1)

mhere I =Ac ls the DlomcntuID transfcrrctI to thc
nucleus and s the component of r in the direction of P.
From (5.1) and (3.15) we have

So=a,'. (5 2)

5. SINGLE NUCLEUS

Ke take as the scattering system a single nucleus in
the potential V(r). The scattering amplitude is here
given by a single ternl,

1 ]~lol (I+1 t
— Z 4'I I(&')A.y" ' (5 11)

I+1 ]~ 21+1

where Lo]/2j stands for the largest integer smaller than
or equal to n/2. Comparison with (5.6) shows that
(5.6) is represented by (5.11) plus additional terms
mhlch dcpcnd on thc potcntlRl and which appear for
N&2 only.

We are noir ready for the evaluation of the cross
section. Observing that the value yo of y corresponding
to K =%=4' 18

yo =4Eo/t] (5.12)

where tI, =]]o/M, we obtain from (3.11), (5.2), (1.3),
and (5.6)

0 2 1 ( 1 t]Eo,g 1 ( 2]I,EA, 'l-=1—+-I 3+--
I

—
I
4+-

3 Eo J p'( 3 Eo )
%'ith the Hamiltonian

H =p'/2M+ V(r), (5 3)

I IJ+Av 1 P CAv t+—' 5+- —— + (5 13)„l E, 32 E,
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The terms containing (E)A. and BA have canceled,
one-half of the term containing CA, is contributed by
the term 44S4'(0) which arises from the lower limit of
the integral in (2.11) and the other half by the terms
S4(N) and NS4'(I). The terms starting with 1/44" repre-
sent the terms containing S„and its derivatives in
(3.11).The expansion of the partial cross section 0.o in
powers of x,~ is thus found to lead to an expansion of
the cross section o in powers of 1/It4, where the char-
acteristic energies of the system are measured in terms
of Eo/p. It is, however, important to observe that the
quantities EAv/p

—'E, and CA„/(p, 'Eo)'—the former of
which represents the square of the ratio of the momenta
of nucleus and neutron —may be large. The terms of
(5.13) have therefore to be rearranged, by writing

2 3 4 Sq
+ +

1EA ( 2 3) 1 CA,

i
1—-+—

i
—— . (5.14)

3 Ep k p yo) 32 pEoo

Here the 6rst term represents the reduced mass e6ect,
mentioned in Secs. I and II, the second term, of the
order of the square of the velocity ratio, the Doppler
eHect and the th1rd term the eRect of the potential.

Introducing the cross section of the free nucleus at
rest by

For the differential cross section one 6nds from (5.6)
and (4.7)

4ordo 4 1 ( IA EAv)——=1—+—
I 2p+6p+

r dQ p p'& 3 Ep i
eEAv

P——3P+ (1—P)E.
2 3p+Av

+—P'(3+ 1oP SP'—)+ — P(1—P)
4

AID p CAv

+ (1-6P+6P')+ (5.18)
8Eo' |54Eo'

P= sino(tI/O)

D= ,'(E')„„+8„„-.

Rearranging terms and introducing (5.15), one has
from (5.18)

d0' 0'fvoo ( 1 EAv CAv

i
1+—2cos8+ — +

dQ 4or 3Ep 32Ep' I

2 EA, (E')A,+(5/4)BA„+—Po(cos8) 1+- +
P' 3 Eo 5Eo2

«...=~.(1+1/4) ', (5.15) &Av

+—Po(cos8) + ~

3E, I

&/«-. =1+oEA./I Eo o'oC"/pEoo (—5 16)

The cross section is thus approximately equal to the
cross section of the free nucleus with the same momen-.
tum distribution and the direct e6'ect of the binding
manifests itself only in the last term, which decreases
as ~o 3.

For the average energy transfer one obtains from
(3.16) by replacing, in (3.11),S„by S„+&

2t ( p, ) 4 ( 17
(Ev)A =- Eo~ I

—EA. I
1—+"

yt Ep+1) 3 E 4y

BA„( 8 q 4 (E')A„
+ 'I 1—+ i

— (1+0(1/.)) . (5.1n
8Ep & 344 ~ 15 pEo

In the higher moments of the energy transfer the
direct inQuence of the binding becomes rapidly more
important at low neutron energy. Here a potential term
is appreciable in the second moment and leading in the
third moment. The energy dependence of these higher
moments shows how these quantum effects disappear
as the neutron energy increases to a value large com-
pared to p, times the level separation, as can be studied
in detail on the basis of the data for an oscillator given
in Sec. VI.

1 (5 «s'e —1)(1—cos'e)
+"

1 (5 19)
A44 8

Equation (5.19) contains two terms depending on the
potential which are again small and the remainder is
identical with the difkrential scattering cross section of
a free nucleus with the same momentum distribution.
Solving the latter problem in the usual way by trans-
forming from center-of-mass to laboratory system and
expanding the result in powers of the velocity ratio and.
the coefncients of this expansion in powers of 1/p, one
indeed Gnds again (5.19) except for the two potential
terms,

The relative order of the various terms in (5.19)
depends on the neutron energy and the degree of
excitation of the system. For high excitation and low
neutron energy, for example, it will not be consistent
to carry the last two terms of (5.19) since under these
conditions they will be smaller than terms which would
arise if the original expansion (5.18) were carried to
higher order than the fourth. Nevertheless, however,
the terms contained in (5.19) are more than amply
sufhcient for an accurate representation of the di6'er-
ential cross section of heavy nuclei at all neutron
energies satisfying the conditions stated at the end of
Sec. II.
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The eGective differential cross section, obtained in
the same way as (5.19), turns out to be
/do�'f

1 K.„=1+— 1+cos8i 1+
!dII), ff 3Ep

BAv SCov
+ + +"

SEo' 32Epo )
cos8 2Ko„Bo„+(2/5)(E')o,

+ 1+ +-- +
p,
' 3 Ep 2Ep'

fifo (Ko) =a og" exp( $—)/n!

$= hff'/2Mfd =P'./2Mhfd =y/hfo

Introduction of (6.5) into (3.1)—(3.3) yields

(6 5)

(6.5a)

o (ff+ 1)' f.v&

P {11.((.f-&)-11.(g„f+&)}, (6.6)
ITfree 4PgP n P

The asymptotic expression (6.4), valid for large np,
may now be compared with the exact one. The transi-
tion probabilities are given by'

cos8 +Av

+ sin'8+ (11—9 cos'8) +
2p, 3Ep

cos8
+ {sin'8+ }. (5.20)

2p,'

where
~-'"=(2/ ){ .—', ~L o( o- )j-:}

n g
II„(x)=—'

g"e—ddt= e
—*g-

n!0, f=o I!

From the results of this section it appears that, while
the collision is describable in terms of the classical
particle picture only if the neutron energy Ep is large
compared to p, times the level separation 6, the quantum
characteristics of the collision will, in the energy region
A«Ep« pA, manifest themselves primarily in the
energy distribution of the scattered neutrons. The
higher moments of the energy transfer show a strong
explicit dependence on the binding potential. In the
cross section and the differential cross sections, on the
other hand, this dependence is much less pronounced
and the binding affects these quantities mainly through
its inRuence on the nuclear momentum distribution.

For (5.16) we have thus for the cross section

T,ff 1 (hop $ o

=1+
2ffEp 16 LEp I&free

(6.3)

The corresponding. expressions for the diGerential
cross sections and the moments of the energy transfer
follow directly by insertion of (6.1) into the general
formulas of the preceding section and will thus not be
written down here.

For T=O, (6.3) goes over into

0 free

where n p Ep/hop——

1 p 1
=1+

4ffnp & 16np'~

5, ISOTROPIC OSCILLATOR

As an example we consider a three-dimensional
isotropic harmonic oscillator of frequency ~ at a
temperature T. For this system one finds easily

Ko„',T,ff
——B-= (hfp)'

(K')„,= (15/4)Tvff Cov —pBKov ——(hof)'Tllff)
(6 1)

where the effective temperature T,ff is related to the
temperature T by

T ff/vT(hfd/2T) coth(hfp/2T). (6.2)

x"+'e * ~ (n+I)!=1- xm. (6.7)
(n+1)!m=p (n+m+1)!

Since for large p the variation of the cross section with
energy is a small effect, it is convenient to write the
cross section in the form,

0 0Rp
=1+

&free
(6.8)

and discuss c(np) rather than o.
From (6.4) we have then

c(np) = —,'{1—1/(4np)'} (6 9)

Numerical comparison of these two expressions (see
Fig. 1) shows, that for ff=12 their difference becomes
negligible at np=4. 2 and in the limit of large p already
at Np=2. Analytically, this may be seen as follows:
Expanding (6.10) in powers of I/ff,

one finds
C =Cp+Cf/ff+Co/ff'+ (6.11)

(2np
—1)(np(np —I))& 2np(np —1) for no) ]

(6.12)
2np(1 —np) for 'sp& 1.

By expansion in powers of 1/np, (6.12) goes over into
(6.9). The quantities c„/ff" contribute asymptotically
only to terms of higher order than (6.9) but reach their
asymptotic form for ep))m only. Consequently, the
deviations of (6.10) from (6.9) will extend to higher
and higher np .as ff decreases. For y, = 1, c(np) becomes,
for large ep, a periodic function of np, with period 1 and
average —,'."

' A. Messiah, J. phys. et radium 12, 670 (1951).

while from (6.6)

(p,+ 1)o !vvvl

c(no) = —ffno+ p {11.($ )—II ($ +)}. (6.10)
n,=p



G. P LA CZEK

.Z5-

I
I
I

t

I

l

)I

Ii

jl
1

IP 1(

where e varies between 0 and 1 and using Stirlings' formula,

~o= (~ ao) '(4fl/p) '((4P/p) exp(1-4tt/p) &"' (6 19)

If p is large, bp will thus decrease exponentially with increasing
energy for all values of P.

If 4P/p is no longer small, we have to revert to the original
expression (6.17). From the integral representation of II it is
then seen that for 4P/p&1, So does not vanish for large ss, but
tends to the limit ~. A more detailed analysis, taking compensation
effects into account, shows, however, that the closure correction
to c{no) decreases for all p&1 as exp( —anp) where

~= —g-log(1 —g), g=t:(p—I)/6+1)3' (62o)
For 1-g«1, n= log(4/ga) 1, —
for q«1, a =s((p—1)/(p+ 1)]'.

-05
2

Po

FiG. 1. The coefhcient c(np) in Eq. (6.8) for the cross section
of isotropic oscillator at zero temperature; asym-
ptotic, Eq. (6.9); —————— p=12, Eq. (6.10);—
p= oo, Eq. (6.12).

It may also be noted that for the ground state of the oscillator
the sums S~ can be evaluated explicitly. From (6.5) and {3.10)
we have for' the restricted sums

~ o~

S((f, I,)=a,se f Z (I'/I 1)p, (6.13)

where p is related to 8 and y by {6.5a).
For 1=0 (6.13) becomes with (6.7)

So(c, n.)= .'Di-, ~(s). (6.14)

S& may be expressed in terms of Sp by decomposing n' into binomial

coeKcients. In this way one 6nds

V. SEVERAL NUCLEI

%e now have to generalize the results of Sec. V to a
system of X nuclei with the Hamiltonian

H= V(rt, rs, ~ ~ r~)+g, p, '/2M, . (7.1)

At this stage it becomes necessary to consider the spin
dependence of the scattering lengths. For a nucleus of
spin j„the scattering length is given by

((j+1)a.'+'+j.a.' '
2j,+1

+2(e .n, )(a, '+' —a ' '). (7 2)

a,&+& and a, & & are the scattering length associated with
scattering processes leading to 6nal states of the system
nucleus plus neutron with spin j,+-', and j,—-'„respec-
tively, and 0;, and 0. are the Pauli spin operators for
nucleus and neutron.

Averaging over the orientations of the neutron spin,
we have, with

S,(p, n,)= &S,(g, n, -1)
S2((, np) = PSp($, np —2)+P'o($, no —1)

S {$,no) = $ So(p, no —3)+3pSo{$,np —2)+$$p($, np —1)

S ($, np) = $'Sp(f, n —4)+6&'So($, no —3)
+7@So($,np —2)+(Sp((, np —1}.

{6.15)

for the scattering cross section of the bound nucleus

0'g—=(a.')"= . ((j.+1)(a."')'+j.(a.' ')'& (7 4)
4w 2j+1

If Sp($, np —j) is replaced by Sp($, c}=a,', (6.15) goes over into

{5.6) which can also be checked by introducing (6.1) into (5.6).
The derivatives of S& with respect to g may also be expressed in

terms of Sp with the aid of the relation,

&Si'= Sf,+j.—&So. (6.16)

From (6.14) we have for the relative error in Sp caused by the
closure approximation

So($ ~)—Sp{$,np)
1 & (4~ / ) (6 17

So(4, ~)
where

P= ss/4ko'= yf/4NO &1

If 4P/p is small compared to one, which for large p will be true
for all values of P, (6.17) goes over into

1 4Pn [nol+1
exp( —4P'no//p). (6.18)

'.(t noj+1) I p,

For large ao we have, expressing (aoj by

fnoj=no —1+~,

The definition of the matrix element (1.4) has now to
be modi6ed by inclusion of the spin coordinates. If the
spins of diGerent nuclei are not correlated —and this
excludes homoeonuclear molecules at low temperatures,
the averaging of (3.12) over position and spin coordi-
nates may be carried out independently. As a conse-
quence, the product a,a, has to be replaced by

(a,)s„(a, )A„=a,&'&a, i'& for s'Ws
(a,a, )A,

—— (7.5)
(a,')A. = a,/4w for s'=s,

where the coherent scattering length a,(' is defined by

a,&'&=(a,)s„—— ((j,+1)a,&+&+j,a, '—&) (7.6)
2j,+1

and (aP)A„ is given by (7.4).
8 M. Hamermesh and J. Schwinger, Phys. Rev. 69, 145 (1945).
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The expressions of Sec. V for the total and the differ-
ential cross sections of a system containing a single
nucleus will thus directly represent the incoherent
cross section of a system of several nuclei with' uncorre-
lated spins, if ag„, is replaced by the incoherent cross
section o f,(') of a free nucleus at rest

f t. )'i.V.+1)
og, i'&=4z

I

—
I

(g 1+1—g f &)'. (7.7)
0 p,+1) 2j,+1

The averages entering these expressions are then to be
taken for nucleus s and, in particular, the diBerentia-
tions in the definitions (5.8) and (5.9) of J3 and C with

respect to the coordinates of nucleus s. For the total
incoherent scattering cross section we have thus

1(Z,)„„1(C,),„
Io.(o —Q o (o 1+

3 p, ,EO 32 p,E0'
(7.8)

As an example let us consider a Debye crystal con-

taining a single type of nuclei. One has then

36T4
E„= I x' cothxdx

Q~s

&A =50'
96Ts )HI2T

CAv =
I

s cothug
Q~s J

(7.9)

(I~ )"=(5/3)(j~A.)',

where 0~ is the Debye temperature.
For T«0

9 8 )~Ty'I
Its, =—O 1+—

I15&8) I

for T)&O

1 32 )AT~
'

c.„=-o
4 21EO)

(7.10)

(7.11)

The cross section (1.1) and the differential cross
sections may then be written as a sum of two parts
which are usually denoted as the coherent and the
incoherent cross section. The coherent cross section is
obtained by replacing u, with u, &'& throughout, while in
the incoherent cross section the product terms with
s'/s are omitted and u,' is replaced by

j.(j.+1)
(g.') .—((g.)")'= . (g.'"—g ' ')'.

2j,+1

The incoherent cross section per nucleus becomes then

EA„
=1+

g gree 3@~0

v (OH

24 EZ,)
(7.12)

S1IlKf
Gs'"'=(f. *f.)A.=

K~eev Av

Gi'"'=(f' *I &f.])"
Gsi"'& = ([ f, "H]prf, ])A.

Gs"'= Kf"*&X&L&f.jj)".

(7.14)

' The statements made so far on the basis of the usual theory
of neutron scattering by crystals fJ. M. Cassels, Progress in
Nuclear Physics, Vol. I (edited by O. R. Frisch, London-New
York, 1950)j about the behavior of the cross section at high
energies are either entirely erroneous because of inconsistent
approximations PR. Weinstock, Phys. Rev. 6S, 1 {1944l; R. J.
Finkelstein, Phys. Rev. 72, 907 (1947)), or very incomplete. PA.
Akhiezer and I. Pomeranchuk, J. Phys. (U.S.S.R.) 11, 167 (1947);
D. A. Kleinman, thesis, Brown University (1951).j Akhiezer and
Pomeranchuk have given an integral representation of the cross
section. From its discussion they conclude that the neutron
energy, at which the direct binding effects in the cross section
become negligible, is determined by a condition which is essentially
identical with Eq. (2.2) rather than (2.3) and which is therefore
much too restrictive. Furthermore, their treatment leads to the
same energy dependence for coherent and incoherent cross sec-
tion at high energy. Actually, however, the derivatives of
these two quantities with respect to the energy have opposite
sign at high energy. The evaluation of the asymptotic interference
term (7.21) for crystals LPlaczek, Nijboer, and Van Hove, Phys.
Rev. 82, 392 (1951)j shows that this term, which has negative
sign, is for heavy nuclei of considerably larger size than the
Doppler term. At high energy therefore the coherent cross section
increases with increasing energy, in contrast to the incoherent
cross section which decreases with increasing energy.

"Adding the diagonal terms of the coherent cross section to
the expressions (7.8) for the incoherent cross section is equivalent
to replacing Oy, ('& by the total free cross section yy, .

The coeKcient v depends but little on the temperature;
it decreases from v=1 for T«O~ to v=9/10 for T))O".
For heavy nuclei (7.12) will hold as soon as the neutron
energy is slightly larger than the Debye temperature.
In the eGective diGerential cross section the direct
binding eGect is somewhat larger as a result of the
presence, in the first line at (5.20), of the term con-
taining BA„which at low temperatures and ED=2(~)
amounts to twenty percent of the Doppler term. '

Returning now to the general'problem it will be
convenient to abandon the customary division of the
cross section into a coherent and an incoherent part.
Instead, we shall distinguish between diagonal terms
(s=s') and interference terms (sos'). The diagonal
terms are represented by the results of Sec. V,"so that
we only have to calculate the interference terms. For
this purpose we express the quantities S„by

p (g s) G (ssi+.p~, g (elg, (eiG les') (7 13)

G„t" is given by (5.6). For G„t'"1 we have from
(3.12) with the notation

f,=exp(sx r,)=exp(its, /is),



The commutation relations of f, with the Hamiltonian
(7.1) are identical with (5.4)-(5.5),

The expression for 64 is longer and will not be given
here. The discussion of the higher approximations in
the preceding sections was necessary mainly to gain
clear insight into the structure of the theory. This

N', having been achieved we can limit ourselves, in the
dlscussloI1 of thc lntcrfcrcncc cGects to thc tel Ins

Ig 8t/' I' represented by So, 5», and 52. In this approximation
L&L&f,jj= fs —— + (sI'+P«)' . (7 16) one finds from (3.11) for the contribution of the

interference terms to the cross section

With the aid of the relation

(ff"*('I'+p-. *))"=(jJ'"*(l& p"*)—) .=o

obtained through integration by parts, one finds from
(7.14) and (7.15):

S QS cos2kol'8~r
(r;,i ——8rr Q a,('(r, "

2~O ~as' Av 2~O ~as' Av

(2/roses' sin2~osas"saat(a'z)av

G (ae') 0

Q (88, ') l (gs')Go
4M,M,

(7.17)
sin2kor„+ — —+cos2ksr„. . (7.20)

Pa' 2kor~s' Av

k2

+ — —(exp(sit r„)(y, .i() (p,' it))a, . (7.18)
M,3f,

From (7.17) it follows that the first-order reduced
mass correction does not apply to the interference
terms. The second term in (7.18) is the analog of the
Doppler term encountered previously and represents
an effect caused by the correlation of the momenta of
different nuclei. In classical statistics there is no such
correlation and the term will thus vanish at high
temperatures.

In a diatomic molecule, for example, the translational momenta
of the two nuclei are fully correlated and the momenta of relative
motion fully anticorrelated. At high temperatures, when the
relative motion is fully excited, these two effects cancel out while
at low temperatures the negative correlation prevails. The result
of the evaluation of the term for a particular case will be given
in the discussion of the cross sections; now let us just consider
the average of the product of the momenta alone.

Expressing the momenta p1 and p2 of the nuclei in a diatomic
molecule by the momentum y, of the center of gravity and the
momentum y of relative motion, we have

3II Mg

M+PI ' &+M
Jtj/II&2

(y1 y2) Av=
&~ +~ ),(p'&Av —(p')Av=2~. (E~-K),yr, +~2)2

where E~ and E; are the average kinetic energies of translation
and internal motion. At high temperatures E;=E~——~3T; at low
temperatures, T«Ace, Ei Z,= 'Itch/4+ T/2 or ha—r/—4+3T/2—
according to whether the temperature is large or small compared
to the rotational quanta,

For G3 one Ands

Here eo denotes the neutron velocity, and v„and e, ,
components of the nuclear velocities; s„stands for
r„"hs/j4 and s„ for v, its/ks. It will of course be
kept in mind that the quantities v„and ~, , do not
commute with s„.The first two terms in (7.20) repre-
sent the static approximation and the rest the correc-
tions resulting from 62. At high temperatures the third
term vanishes. For short neutron wavelength all the
terms except the 6rst one are not only rapidly Quctu-
ating but also . their magnitude goes to zero with
decreasing wavelength. " The cross section is then
represented by

4@S QS

(r;„a Q———(t,('~a, ('~(r„')a, .
&o' '" (7.21)

82
+2P' — (Pv i+I'vs) (7 22)

2

The wavelength at which (7.20) goes over into (7.21)
depends upon the nature of the scattering system and
its determination requires rather careful considera-
tions. "

Introducing (7.13) and (7.18) into (4.7) or (4.9), one
obtains simple but somewhat lengthy expressions for
the contribution of the interference terms to the diGer-
ential cross sectiog. .' In an abbreviated form they may
be written as follows:

I'2 P2 O'V
G (ss') . .r (sa'i+,

3f, M,M, 2 Bz,8s,.
(

'I +2~ 1+24 1(A~i—+f1'vs),—(7.23)
dQ & dQ ),(( ( Bp)

' This also holds for systems with long-range order; see refer-

M, a, "Plscsejt, ¹ijhoer, and Van Hove, Phys. Rev. 82, 392 (1931).
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where /=sin'-, 'e. The quantities 0) are functions of
K '=4k 'P

sinI{;Or„.
g (s)g, , (s)

$, $I ' 1(0rss' Av

s' gs
001 2 p (is (is' (COSKOzss'&sz&s'z)Av/&0

S, $

$'&s a,&'& a, {."& sinaor„
00=2 E

$, $' jM, p, ~ Kpras Av

For a diatomic molecule the diAerential cross sections
may be expressed in terms of functions simply related
to the error function of complex argument; if, in
particular, the effective wavelength 1/K0 is large com-
pared. to the vibrational amplitude the evaluation of q 0

and y2 is trivial and for p~ one then 6nds for tempera-
tures large compared to the rotational quanta

v i ——2(ii('a0(') ((cosK0&i0)()iz&0') Av/&0' =

(E;b—T) ( ir—a~"a2&'&

3(ill+ p0)E0 (2K0r0)

X{Ji(0(K0r0) —250)0(K0r0)). (7.24)

Here ro is the equilibrium distance of the nuclei and
E;b the average total vibrational energy. (7.24) pro-
vides a simple example for the structure of momentum
correlation term. For T))&co, E;b—T=0 and
vanishes.

8. APPLICATIONS.

The isolation of small electronic contributions to the
scattering cross section, which may be caused by ordi-
nary magnetic e6ects,""scattering by spin waves"
and the spin-independent interaction between neutron
and electron"" requires a very precise theoretical
determination of the dependence of the nuclear scat-
tering on neutron energy or scattering angle. 06
hand this may seem too pretentious a task if the scat-
tering system is as complex as in the transmission
experiments of Rainwater, Rabi, and Havens on liquid
bismuth. '~ On the basis of the results derived above,
however, it can be approached with reasonable assur-
ance. The characteristic temperature of liquid Bi,
corresponding to the Debye temperature of a solid, is
of the order of 100 degrees abs. The expressions (5.16)
and (7.20) for the cross section will thus be valid for
neutron energies large compared to 10 ~ ev. Since

~ O. Halpern and M. H. Johnson, Phys. Rev. SS, 898 (1939);
O. Halpern, Phys. Rev. 72, 746 (1947).

'4 E. Fermi and L. Marshall, Phys. Rev. 72, 1139 (1947).
'5 R. G. Moorhouse, Proc. Phys. Soc. (London), A64, 207, 1097

(1951).' Havens, Rainwater, and Rabi, Phys. Rev. 72, 634 (1947).
'7 Rainwater, Rabi, and Havens, Phys. Rev. 75, 1295 (1949);

82, 345 (1951).
'

Ai= 209, the last term in (7.20), which is quadratic in
the mass ratio, may be neglected. Since the melting
temperature is 544 degrees abs and thus large compared
to the characteristic temperature, the eGect of the
correlation of the momenta, given by the third term in
(7.20) disappears, while in the second. term of (5.16)
EAv ——3T/2. With a slight modification' ' of the first
two terms of (7.20) which is equivalent to neglecting
deQections by an angle ko'd', where d is of the order of
the total linear dimensions of the scattering system,
the scattering cross section per nucleus is thus given by

r ( CA
vr=(r&v«' 1+

2)(AEo 0 16TEo')

2x'—0 «b— (1—cos2k0r) {p —g(r) )dr. (8.1)

Here Of„, is, as before, the total scattering cross section
of the free nucleus at rest and sr„b=40r(u, ('))' the
coherent cross section of the bound nucleus; g(r) is the
density at distance r from a given nucleus and p the
ordinary density. The evaluation of the interference
term in (8.1) has bien carried out by Placzek, Nijboer,
and Van Hove. "The third term in (8.1) depends on
the average square of the force acting on the nucleus
which cannot be calculated precisely for a liquid. Even
the crudest estimates, however, are sufhcient to show
that at the relevant neutron energies this term cannot
amount to more than a fraction of the Doppler term.

The discussion of the electronic contributions to the
cross section has, in part, been given previously. '&"
For an isolated rare gas atom paramagnetic scattering
is absent and diamagnetic scattering negligible. " For
liquid bismuth, on the other hand, the ordinary mag-
netic sects are hardly accessible to a satisfactory
theoretical analysis. Although they do not interfere
with the nuclear scattering the possibility that they
might be of relevant size can by no means be excluded
a priori Since t.hey are entirely caused by the outer
electrons, however, their energy dependence will dier
from that of the contribution of the spin-independent
neutron-electron interaction which comes from all the
electrons. The energy dependence of the latter has been
calculated on the basis of the ordinary form factor."Its
isolation would thus seem to require a study of the
variation with energy of the difference between the
observed cross section and (8.1).

Among other applications of results derived here,
the problem of the energy dependence and angular
distribution of neutron scattering by heavy molecules

might in particular be mentioned. The theory in the
form developed here is valid for neutron energies large
compared to the vibrational quanta, while many of the

"F.Zernike and J. A. Prins, Z. Physik 41, 184 (1927).
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experiments"" carried out so far concern neutron
energies large compared to the rotational but small
compared to the vibrational quanta. In order to extend
the theory to this region the Hamiltonian (7.1) is
replaced by the Hamiltonian of a rigid molecule. The
results for the diagonal terms obtained in this way agree
for high temperatures with the semiclassical mass tensor
approximation" and dier from it for low temperatures

"K.Melkonian, Phys. Rev. 76, 1744 (1949).
~0 N. Z. Alcock and D. G. Hurst, Phys. Rev. 75, 1609 (1949);

SB, 1100 {1951).' R. G. Sachs and E. Teller, Phys. Rev. 60, 18 (1941).

to which it is not directly applicable. In addition one
obtains the interference terms which are not given by
the mass tensor approximation and which are particu-
larly important for the angular distribution. The dis-
cussion of these results and their comparison with the
experiments and with the approximation of Alcock and
Hurst'- will be given in a separate paper.

This paper is based on work begun at the General
K1ectric Research Laboratory and carried out at The
Institute for Advanced Study. I am indebted to H. A.
Bethe for helpful discussions and to G. F. Chew and
R. Jost for a critical reading of the manuscript.
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Triton Binding Energy by a Randomized Net-Point Method*

S. L RUBINOwt
Universiry of Pennsylvania, Philadelphia, Pennsylvaniu
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A numerical procedure is investigated for solving Schrodinger s equation for a system of particles. A net-
point analysis is applied directly to the integral equation equivalent to Schrodinger's equation. A unique
feature is the introduction of the concept of a "randomized" net of points. This is designed to cope with
the problem of obtaining adequate covering of the space when many dimensions are involved.

The method is applied to the problem of finding the binding energy of the triton with the assumption of
central forces. The result obtained for an exponential potential as determined by the most recent low energy
scattering data is approximately 10 percent too deep. It may be concluded that more effective repulsion
must be introduced into the "equivalent central potential" to bring about agreement with experiment.

L THE RANDOMIZED NET-POINT PROCEDURE

A NUMERICAL net-point procedure for solving
Schrodinger's equation has been investigated

with special regard towards 6nding the lowest (ground
state) eigenvalue for a system of three (or more) par-
tic1es. The spin-free time independent Schrodinger
equation for a system of particles may generally be
written as

(6 P)P= VP—
arid can be transformed into an equivalent integral
equation by means of the appropriate Green's function

G(P, Q). Thus,

~~(p) =- "dQG(p, ev(e~(e,

where P is a point in an arbitrary n-dimensional space.
If V is an attractive well, than the largest eigenvalue
Ao corresponds to the binding energy of the system, The
integral may be replaced by a sum over a discrete set of

*This work was carried out in partial fu1611ment of the require-
ments of the degree of Doctor of Philosophy at the University of
Pennsylvania.

)Now at the Massachusetts Institute of Technology, Cam-
bridge, Massachuset ts.

N points P; yielding

~~(P.)=Z ~Q,G(P;, Q;) V(Q;V(Q, ),
1

where EQ; is the volume element associated with the
point Q;.

Because the number of dimensions e may in general
become large, the following unique manner of selecting
the points P; was introduced: Consider the set of X
equally spaced points in each dimension. From each
such set, choose a point at random; the aggregate of n
of these taken together constitutes a single point P; in
e-dimensional space. This process is repeated with the
remaining points until they are all exhausted. The anal
result is a set of E points in n-dimensional space.

The purpose of this mode of selection is to aGord some
compromise between the desires of having the points P;
equally spaced throughout the volume and of having
the points randomly distributed throughout the volume.
The latter desideratum is suggested by a random sam-
pling procedure (Monte Carlo) for evaluating a multi-
dimensional integral. It should be noted that the pre-
scribed procedure selects points which are equally
probable from the random sampling point of view. An
advantage of randomly spacing the points is that it
maximizes the number of coordinates chosen in each
dimension.


