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higher order reactions in which two or more neutrons
are produced. The evidence for this is as follows. %e
have taken their estimate for the (y,e) cross section and
their measurements of the (y,pe) cross section and
calculated the yield of neutrons to be expected in
Jarmie, Jones, and Terwilliger s experiments. The yield
comes out to be too low by a factor 6ve. Thus, there
seems to be an appreciable cross section from reactions
which Katz and Penfold have not taken into account.
Of course, this yield might come from neutrons produced
by high energy photons in a similar process to the one
we have to postulate above to explain the Terwilliger
transition curve. In this case the high energy process

would have to account for 80 percent of the i1eutrons
observed with 330-Mev bremsstrahlung. This seems
rather high. If we assume arbitrarily, that as for heavy
elements the high energy process accounts for about
40 percent of the neutron yield, then the (y,n) cross
section alone is too small by a factor three to secure
agreement with. Terwilliger's results. Thus, the estiInate
of the (y,e) cross section is either much too low or else
there are higher order reactions with integrated cross
sections comparable to that for the (y,n) process. At
any rate, it seems that it would be premature to claim
disagreement with the Levinger-Bethe formula until
more measurements are made.
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The case of pseudoscalar coupling between nucleons and p-Beld is considered within the framework of
p-pair theory. Besides the usual perturbation treatment, the strong coupling approximation for this case
is developed. Both methods are applied to the problems of scattering of p-mesons by nucleons and the
nucleon-nucleon interaction. Interpolation between the extremes of weak and strong coupling suggests
that this p-pair theory may be promising with an intermediate coupling strength, a condition also required
by the p-pair theory of the x-meson.

1. INTRODUCTION

KSIDKS the Yukawa theory of nuclear forces,
some attention has in the past been devoted to

the so-called pair theories according to which the
interaction between nucleons may be pictured as being
transmitted by a pair of particles instead of a single
particle (s.-meson). The quanta of a pair may be either
bosons' or fermions. ~ The latter were 6rst taken to be
electron-neutrino or electron-positron pairs and later
p-meson pairs. '

One recommending feature of pair theories is the
saturation characteristics of the nuclear forces." ' A
second is the possibility of interpreting the m-meson as
a pair of p-mesons bound together due to a small
admixture of, a virtual nucleon-pair state, ~ and the
possible explanation of the V-particles' B,s excited.
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nuclear states resulting from the binding of p-mesons,
sRy, by R bare nucleon. The fact that. the spiIl of such
excited states may be integral or half-integral, depend-
ing on whether an odd or even number of fermions has
been bound, may be helpful in understanding the long
lifetime of the neutral V-particle (10 " sec), in par-
ticular its stability against y-decay into the neutron
ground state.

The most serious objection against pair theories may
well be the role played by the momentum cutoB which
must be introduced to achieve convergence and which
dominantly RGects the predictions of the theory in the
high energy I'eglon. Since lt turns out thRt the cutofI
also determines the range of the nuclear for'ces and the
density of nucleons in heavy nuclei, 5 its order of
magnitude is roughly that of the meson mass (times c).
Therefore, if one takes the cut-OG prescription seriously
to the extent of applying it, for example, to the scatter-
ing of p;mesons by nucleons, then one wouM expect at
kinetic energies much greater than 100 Mev a very
small cross section, while a substantially larger value
for energies of the order 100 Mev or somewhat less.
According to the measurements of Amaldi and Fidecaro'
the cross section is at most 4.5X10 "cm' per nucleon
for p-energies between 200 and 320 Mev, and above
320 Mev it is at most 2.3&10 "cm' per nucleon. The
cuto8 therefore ofters an explanation for the presently

' K. Amaldi and G. I"idecaro, Phys. Rev. 81, 339 (1951).
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known data, though not a very satisfactory one. Similar
is the situation with regard to the p,-pair creation in

high energy nucleon-nucleon arid photon-nucleon colli-
sions." As a result of the cutoff, p-pairs are much

more likely to come out in the bound state, i.e., as a
m-meson.

The interaction Hamiltonian of fermion pair theories
has the general form

const d'xC*OC $*0$

where C' and P are the field operators of the nucleons

and mesons, respectively. If transitions between neu-

trons and protons are to be considered, the P-field must

be of a mixed charged-neutral type. This also appears
necessary for any p-pair theory if it is to give an
explanation for the m+ meson within its framework.
For the sake of simplicity, however, we shall always
associate f with charged (+) p-mesons, so that any
pair produced by (1.1) will have total charge zero.

Any more complete treatment with respect to the
inclusion of neutral mesons is straightforward and is

easilv carried out in perturbation theory. "The symbol

0 in (1.1) stands for one of the five types of matrix

operators well known from P-decay theory: scalar,
vector, tensor, pseudovector, and pseudoscalar coupling.

All except the last have been extensively investigated
with respect to nuclear forces and p,-scattering. In the
"static" case (nucleons infinitely heavy and at rest),
there exist exact solutions for scalar and vector coup-

-ling, 6" whereas in the tensor and pseudovector cases

only weak or strong coupling approximations are avail-

able. ''" Very little, however, is known about the

pseudoscalar coupling (O=Pyq= iPnin2na) because (1.1)
vanishes in the strictly static limit, and even in the

lowest nonstatic approximation the problems are con-

siderably more involved than in the static tensor and

pseudovector cases.
This paper is intended to fill the gap in our knowledge

at least partially. Weak and strong coupling approxi-
mations will be applied to the pseudoscalar problem,
with emphasis on the more difficult strong coupling

case. The particular problems to be studied are the

scattering of p-mesons by nucleons (Sec. III), and the

two nucleon forces (Sec. IV). The more involved prob-

lems (saturation properties, isobar states, magnetic

moments) have been left aside. Two other reasons may

be mentioned that give relevance to a treatment of the

pseudoscalar case. The first is based on our presently
held belief of the pseudoscalar nature of the x-meson.

The explanation of this particular m-meson type as a
bound p,-pair is only possible with pseudoscalar or

pseudovector coupling types 0, or a mixture of the two, ~

f(x~) = J~(Pxs(x~ x)lP(x). (2 1)

The source function I is given the property of being
different from zero only for

~

x—x
~

A ' and being a
real, spherically symmetric function. With this modifi-

cation

&'=(1/2M)Z. f-( - p-)P*(x-)Pv 4(x-) (2 2)

This is the cut-off procedure customary in pair theories
and we shall adopt it here.

The total Hamiltonian is then

and for pure pseudoscalar coupling, there can be only
one bound state, namely, the pseudoscalar one. Secondly,
if the coupling constant in (1.1) is determined from the
vr-meson mass (binding energy), the pseudoscalar coup-
ling leads to a much smaller p,-scattering cross section
than all other coupling types. This follows from the
fact that the matrix elements of C*PyqC for small

nucleon velocities are proportional to the recoil velocity,
which is small as the meson-nucleon mass ratio y/M.
Therefore, it turns out that in the p,-scattering problem,
a weak coupling approximation is permissible (even
though the m-binding energy requires an intermediate
coupling strength), and the cross section becomes
comparatively small, due to the factor (p/M)'. The
pseudoscalar coupling is unique in this respect. Further-
more, for very small meson velocities the cross section
will practically vanish. This version of the theory is
therefore more likely to be compatible with the fact
that no strong nuclear p-scattering has been observed
so far.

2. APPROXIMATIONS

Inserting 0=/ps in (1.1), in the limit of large
nucleon mass, 4*04 may be replaced by

P„h(x—x„)(e„p)/2M,

where p= —i V and e enumerates the various nucleons

(Mass=M) present. The situation is well known from
pseudoscalar Yukawa theory. Indeed, if the non-

relativistic Pauli approximation for the nucleon eigen-
functions is used, the matrix elements of J'd'xC'*OC'F (x)
are correctly calculated with this substitution. F(x) is

in Yukawa theory the pseudoscalar field operator, and
in pair theory it is the bilinear product P Py&P. There-
fore

II;=P„f„L(e„p„)/2M]$*(x„)Pygmy (x„).

(The coupling parameter f„may be chosen difFerent

for neutrons and protons. )
The momentum cutoR which will now be introduced

is equivalent to replacing P(x ) by a spatially averaged
operator

' P. WolB, Phys. Rev. 81, 1056 (1951).
u N Kemmer, Phys. Rev. 52, 906 (1937).
"J.W. Weinberg, Phys. Rev. 59, 776 (1941);J. Jauch, Helv.
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where
V=II„+H;,

d'zP(x) L(u p)+ ~84(x).

(2.3)

(2.3)



The spinor components of the 6eld operators obey
the usual anti-commutation relations

4'*( )4' ( ')+4'.( ')4'*( )=&..&( —x'), «c (24)

commutators containing these are

(2.12)

)I d'xg'(x)u(x —x„)=0 (2.6)

"d'xP'(x) V'u(x —x )=0. (2."l)

Next we shall develop the strong coupling approxi-
mation. In doing so, we may closely follow a paper of
Blatt" in which the tensor coupling case is treated
along similar lines.

The erst and common aim of all such theories is the
isolation of the modes on which the dominant term H;
depends most. This is achieved by splitting the field
operator P(x) into parts having the -x dependence of
the various source functions u(x—x„) and of their
derivatives, and another part f'(x) orthogonal to every
source function and its derivatives.

y(x) =P„N-&Q„u(x—x„)
+P„g—

&(C,„V)u(x—x„)+f'(x) (2.5)
'th (2.14)

as is easily seen from (2.4) and {2.11).Similarly,

LQ„„Q,*(x)j+=N &8„u{x—x„),
2.12'

[C,„p&z", f,~(x)jp=9t &8p.(8/Bxj)u(x —x ).
From (2.4, 12, and 12') it then follows that

L4."(x),4.'(x') j+
=B„P(x—x') —P N-'u(x —x )u(x' —x„)

—5-'V'u(x —x.)7'u(x' —x„)j. (2.13)

The Hamiltonian (2.2, 3) may now be split into three
pal ts~

H= Ho+H'+0,
O'=Q Ho(N),

H'(zz) = z(f/2M){N9t)&ir fG, Py Q +Q ~Py 6, }
+z(9t/N)&(Q. '(zz C,.) (6—,.* z)rQ. }

+.&Q'PQ+~*W, ). (2.15)

d'*4"*(x)L(u p)+uPj4'(x) (2 15')

Note that due to (2.6, 7) the f'-part in f(x„) and in
p„ij(x„) vanishes, and therefore H; (2.2) causes no
coupling of the iP'-6eld with the bare nucleons.

This kind of separation is characteristic of all strong
coupling theories. The term zz in (2.5) will describe the
mesons bound to the zzth nucleon, whereas f'(x) de-
scribes the free mesons whose interaction vrith "real"
or "physical" nucleons turns out to be weak. The
normalization factors N and % in (2.5) are conveniently
defined by

d~(u(x)), m=-;&"d*(Vu(x)['. (2.8, 9)

d'xu{x—x„)u(x—x )=0 (zzzWzz). (2.10)

Then it follows from (2.5, 6, 7, 8, 9) that

Q„,=N —
&)"d'zap(x)u(x —x )

d'xg, (x)(zt/Bx;)u(x —x ).

(2.11)

The spinor operators Q, and C}„,~" are the variables
of the "physical" nucleons; the nonvanishing anti-

Assuming for the present that the distance between
nucleons is larger than A ', no overlap between the
various sources will occur.

+c.c.j. (2.15")

Similarly, the expressions for the charge and the angular
momentum of the system may be split up (with no
cross terms such as 0 appearing), but they will not bc
needed here.

The term 0, in II, which is bilinear in the bound and
free meson variables, describes the emission or absorp-
tion of free mesons by the physical nucleons. 0 must
bc R weak perturbation if thc separation (2.14) ls to be
useful. This leads to the "strong coupling condition"
which, following the argument of Pauli and Hu, turns
out to be

(f/2M)A'»1, (2.16)

provided that A &p. In any strong coupling calculation,
condition (2.16)'will be assumed to hold, that is to say,
0 will be disregarded. In this approximation there is a
complete separation of the variables describing the
various physical nucleons Q „G. ,&'& and the free
meson variables f'(x). The Hamiltonians concerning
the various nucleons (Ho) and the free meson field (H')
may be studied separately.

In the following applications, namely, the p-scattering
and two-nucleon forces, we will be concerned wi.th the
II'problem only. IIO can be considered an additive
constant. A general scheme for solving the H' problem
rigorously is the following: Introduce a complete set
of orthonormal functions (spinors) p subject to the



orthogonality restrictions incoming wave plus an outgoing spherical wave

d'xy„, ,*(x)N(x—x„)=0, (2.17) y(x) =y e*&oo'&+ d'ka(k) e'&'*I (3 2)

d'xy„, ,o(x)(a/ax;)N(x —x )=0, (2.18)

d'xp„*p„—1=0. (2.19)

where, p —1 2 3 4 s—f 2 3 m —i 2 and
e= 1, 2, ~, In addition, of course,

@0 obeys the "source free" equation

('»+.~-E)~.=0, E=+(p"+")o (33)
and C denotes the countour to be taken in the complex

I kI plane which gives rise only to outgoing waves.
Multiplying (3.1) with (e p+Ilp+E), one finds

(P'—Po)4( x)=(~ 1+IP+E)(&++ p)N(x) (34)

These functions, together with

S &oI(x—x„)C( ) and 5 &(8/Bx;)N(x —x.)C( )
Io(x) =

J
d'kg(k)e'&" *'. (3 S)

d'*4-'(x)L(~ II)+i Pje.(x)=0, (2.21)

with the constraints (2.17, 18, 19). Introducing for
these constraints, respectively, Lagrangian multipliers

X„„A„,&'& and 8, one obtains the set of linear equations

(~ 1+~&)0=E4+Z-(1.+&. 11)N(x—x-) (2 22)

Then, with (2.20) inserted into (2.1S'), H' assumes the
diagonal form

H g e uE„( )

Note that the coupling parameter jdoes not appear
in the H' problem. Finally it may be noted that the
introduction of an additional neutral meson 6eld
(doubling of all P-components, with 0 involving isotopic
spin operators) causes no computational changes in the
H' problem. Of course, the number of eigenvalues E,
per interval dE, is doubled.

In the one-nucleon case (2.22) reduces to

(e p+p, P—E)y=(X+A. y)N(x). (3.1)

To study the il-scattering, we insert for $(x) a plane,

(wllcl'e C(II)(II= 1, 4} designate follr splllol's obeylllg
C*(o)C(o')=8, e.g. C,(o.) =8,.) form a complete set
sllltalllc fol tllc cxpallsloll of tllc complete fiel IP I scc
(2.S)$. For the part IP', subject to the orthogonality
conditions (2.6, 7) and to the commutation rules (2.13),
the most general expansion is

4,'(x) =E o 4-. ,(x), (2.2o)

where the e's obey the well-known anticommutation
relations

I
o-', ~- j+=~-, Lo-, o- j+=Lo-* o- *3+=0.

The @ 's are conveniently constructed as eigen-
functiovs of the variational problem

Inserting (3.2, S) into (3.4) yields at once

a(k) g=(k) (e k+ IIP+E)(x+4k.)/(O' P—o'); (3.6)

X and A. are stiH to be determined from (2.19, 20)

J
d xs(x)@(x)= ) d xs(x)pp(x) =0

Choosing the "3"axis in the po direction one finds

g(Po)
LPo~o (E IP)3e-o, -

p I(p.)-»(p.)
Po 'g(po)

L~'~o(E—i P) Po—~' j4 o—,
P"1(Po)-»(P.)

(o=1, 2), (3.7}

Poo
A)

P'I(p.)-»(p.).
k'g'(&) r k'g'(k)

I(Po) = Igk, J(Po) =-,', dk . (3.8)
u o jp—poo p

The contour C is of course the same as in (3.2).
From (3.6, 7)

b(k)
a(k) =-

go po
(3.9)

where

r(t)g(po)
b(k)= — (oI k+Ilp+E)

Po'I(po) 3~(po)—
(~ k)(~ »)

X (»)-(E-~t)- (E-&P)+( k)
po

Po'I(Po) 3~(po) t'k»i—
I(E-.~) .

J(po) ( po' )

1 1
~o= Po 'g(po) —(E I»P)I —-+

~J(po) Po I(po) 3~(Po)~—
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We have evaluated the cross section for the simple
cut-off law

g(k) = (1+k'/A') —'

which corresponds to the source function

u(x) = 2w"-A'(e —"*/Ax)

as defined by (3.5). In this special case

I(p p) =i~'L~P p iA (1 Po—'/A')]g—'(Pp)

(3.12)

(3.13)

3J(Pp) = ipr L2PpP —iAP(1+3P /A )]g'(Pp)
(3.14)

do cosPB(1+cos8)—= 72pp4
dn

I
4pp'+A'(1+3pp'/A')']

where 6= pp x/I p,
l I

xl. Integrating over all directions
gives

p'= 96pr pp'
L4pp'+A'(1+3p, '/A')']

(3.15)

It is evident that this strong coupling value of the
scattering cross section is much larger than the observed
values. As was mentioned earlier, the cut-off momentum
3 cannot be taken much larger than p, on account of
the actual range of the nuclear forces. It is true that 0,
with pp increasing above A, falls off as pp ', but this
decrease is not fast enough and sets in too late to make
the numerical values compatible with the measurements
of Amaldi a,nd Fidecaro at 200 Mev and above. A

sharper cutoff would improve the situation for high
energies, but for p A p Eq. (3.15) would still give
an unbelievably large cross section. A computational
check of this point was made for g(k)=(1+kP/A') —'
which bears out the correctness of this conclusion.

Everything mentioned above about (3.14, 15) applies
also to a more general interaction involving the isotopic
spin operators. The scattering of either charged or
neutral mesons without charge exchange would again
be given by (3.14, 15) in the strong coupling approxi-
mation.

Finally one may in the usual way evaluate the k

integral in (3.2) for the wave zone (I k
I I

x
I
))1)

@(x)= [p'" *+2~'b(~) exp(il ~l I xl)/I xl]@p.

Here, x stands for the momentum of the meson scattered
in the x direction r.=

I ppl x/I xl. Note that if $p refers
to a positive energy state (E)0), then also the scattered
wave contains only positive energy states, as is indicated
by the factor (8+a x+pP) in (3.9). Therefore, the
scattering cross section averaged over the initial polar-
izations, is simply

do/dn= 2pr4 Sp[b*(v)b(x)(E+ n pp+ pP)/2E]' ( pp)'
=Spr4 ——(pp'+L pp)g'(pp). (3.11)

J(po) I

LP'g—(P')]'. . . , (3 17)
Hp "+ ')'+(p"+iaaf') ]'

All primed quantities are meant to refer to the center-
of-mass coordinate system. (6'= scattering angle. ) Equa-
tions (3.16, 17) were already obtained by WentzeP (his
value in Eq. (22) of reference 7 should be multiplied
by 4; g= f/2pr)'). As mentioned in the Introduction,
this approximation is even valid for intermediate coup-
ling strengths, and the numerical values are not incom-
patible with the observed cross sections.

Before concluding the discussion of the one-nucleon
problem, a few remar"ks may be added regarding the Bo
problem, i.e., the "binding" of mesons by a single
nucleon leading to excited nucleon states. The main
term in H Eq. (2.15) is the one arising from the original
interaction term ( f); neglecting the other terms in a
erst approximation, one is confronted with the eigen-
value problem

Hp'E'= E'F'
IIo'= i(&&):(f/2~) f&*Pv Q+Q*Pv &);

iP&p may of course be chosen diagonal. For the sixteen
operators Q, and G,, '*' which obey the usual Jords, n-
Wigner anticommutation relations (2.12) it seems
simplest to take Q,*Q, and Q.,"'*Q.,&" diagonal. So
the problem which must be solved is the diagonalization
of a matrix of 2"+' rank. The various constants of
motion reduce this Ho' to submatrices which are more
manageable. The great number of these, however,
makes the computation an almost impossible task.

4. THE TWO-NUCLEON INTERACTION

Ke consider two nucleons at the positions x~ and x2,
with nonoverlapping sources, i.e., I

xq —
xp I))A '. Then

the 8' part of the Hamiltonian (2.14, 15') can be
disregarded in the interaction problem, since it has no
dependence on Ix&—xpl. H', however, gives rise to an
interaction, because the vacuum f'-field is changed by
the presence of nucleons and this modi6cation depends
on the distances of the nucleons. Referring back to
(2.17—23), let E (r) be the energy of a stationary state
rg, as a function of r= Ix~ —x I; then the interaction
energy J(r) is given by

~(r) =2-&-&L&-(r)—&-( )] (4 1)

The sum is extended over all occupied negative energy
states. 4

For calculating the eigenvalues, E, it is initially
necessary to introduce a periodicity condition giving

Equations (3.14, 15) may also be compared with the
weak coupling value, obtained by ordinary perturbation
theory (first-order approximation)

f (1 cos&9')'
LP'g(P')]'

dn 16~' Dp"+p')'+(p"+~')'*]'
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rise to Fourier series. Therefore, let

u(x) =82rpV Ig g(k)e'&"
with g(k) =g*(k) =g(—k) (4.2)

()= ' ' () ""*' (4.3)
V is the usual periodicity volume. The variational
problem (2.21) then leads in the Fourier series repre-
sentation of (2.22) to

n=2

(n k+ pP —E) &&2(k) =g(k) P (X +A. k)e '&" *"&

n=1

(4.4)
(n k+Iip+E) n=2

2 (k) =g(&) P (X.+~. k)e-'&'*.&.

P+u2 E n I

The counterclockwise path of this integral in the com-
plex E plane is a loop chosen so as to enclose all the
zeros of h(E, r) and A(E, pp) on the negative (real)
axis. x may now be evaluated in the limit V—+~. This
process causes y to become discontinuous along the
real E axis due to the continuous spread of the zeros.
Explicit computation of y shows that the limiting
values, as the real E axis is approached from either
side, are complex conjugates to each other. So if ~ and
» are defined by E= I

—(»2+p )2l+ie7, and introducing
the notation

x+(»2, r)= lim x(E, r),

4 p"
J(r) = ——

I d» —21(»2, r).
Il jp (K+@)'

(4.9)

it turns out that (x+)*=x . Therefore, we may define
Note that no solution of the homogeneous equatio11& f ctjon Q/ 2 yi
like the plane wave in (3.2), need be added since we are
interested in determining stationary states m having a x+= x

—exp[2Ã(»2 r)7
vanishing current density at infinity. Now, as before in
the scattering problem, we resubstitute (4.4) into the and (4.8) may then be written as

Fourier transform of the constraints (2.17) and (2.18).
These are

d'xl9$/Ox u(x —x )~pg(k) Ip(k)u e'&"'""&=0

The phase 21 (»2, r) is uniquely determined by the
requirement

One thus gets from them, respectively,

(n k+uP+E)
ZE I

g(k)12
k $2+ ~2 g2

X(l&„+W„k)e-'"&*--*- l =0

(n k+iip+E)
EZ I g(&) I'»

n 2 P+u2 —E2

X(l&„+An k)e—'" &*"—*»'&=0.

In the two-nucleon ca,se (4.5) and (4.6) form a system
of 32 linear equations for the 32 components of X„,arid

A„,(') whose nontrivial solution is determined by the
vanishing of the determinant of their coefficients. The
negative values E for which this determinant, denoted
b'y h(E, r), vanishes are the eigenvalues E„(r) in (4.1).
The calculation of d, (E, r) is lengthy but straightforward
and leads to the following simple result:

~(E, r)=~(E, ~)j x(E, r)7' (47)
The function y will be described below.

When x is known, one is able to find J(r) by making
use of the method of Wentzel. ' Pauli and Hu' used
this procedure to obtain for J(r) the expression

&(E, r)
J(r) = — dE ln

22ri j c g(E, ~)
2

= ——
I

dE 1nx(E, r). (4.8)
~i"c

In (4.9), strictly speaking, a contour integral over a
small circle in the E plane around the point E= —p,

should be added. But it can be shown, with the formulas

given later, that no contribution to J(r) arises as the
radius of the circle tends to zero. The k-space integralsf
contained in y+ and 8 are expressible in terms of the
following two types of integrals after angular integra-
'tloli:

w l'pneikrg2(P)

I +(»2, r)=lim
~

dk (n=1, 2, 3, 4)
„k2—(»2&i')

(4 1o)
tI

tn $2&I+n)g2(P)

(2m+1)Jn+(»2) = lim —dk (22=0, 1).("~2&)—
[Note that for »2(0, or E)—u one obtains I +=I
J„+=J„;this is the reason why only the region f~.

"-)0,
or E(—u contributes to the integrals (4.8) or (4.9).7

For further evaluation we choose again the simple

source function (3.12); which allows one to carry out
the k integration in (4.10) as contour integrations. The
poles k=iA in I+(»2, r) give rise to terms proportional

to e ~" which will be neglected under the assumption

r))A ' Lsee (2.10)7. Then the integrals of (4.10)

hm V 'g~—
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become
(I,++I, ) = in-s 'g'( s)[e'""+(-1) 'e '"'j

(I + I ) = isrka lg2—(x)[etn'( 1)a le —Ear—j
(2&+»(I-++I ) = ~A'"+'( —1)"+g'(x)

X [(rt —-,')+ (st+-', )«'/A']

(2rb+1)(J„+—J„)=in 'x" +' o( )s

We can now summarize the results for the function
x+ in (4.8) with the choice (3.12) for the source function.

x+=(x )*=xi+xs+=(xt xs )*

36 ( 4iy—'+ 14y'+ 18iy 9)—
xi+= &+- e2'Lg

(2iy'+»'y+")'

36 (2iy' 17—y4 68—iy'+ 142y'+ 162iy 81—)
xs+=1+——

(2;ys+3s'y+ s')'

where y=zr and z=Ar. The complete expression for
y2+ also contains a term with an e4'& factor, which
gives, however, a completely negligible contribution to
J()

'

In (4.9), xi and xs contribute in an additive manner
(tS= eti+ets). The qualitative behavior of xi+ and xs+
is similar, and it will be sufhcient to discuss x~+. Three
separate intervals on the ~ or y axis may be distin-
guished.

(a) The neighborhood of the point y=yi defined
such that the real part of xi+ vanishes: (R(xi+(yt)) =0;
y,—18/z'«1. In this region the imaginary part,
8(xi+(y)), is positive so that ttt(yt)=n/s. The region
(a) occupies a y domain, Ayt, which includes all points
where

I (xi+(y)) I
=!~(xi+(y)) I.

(b) If y, starting from yt, increases toward infinity,
pl+ very rapidly approaches 1, i.e., 8& approaches 0.

(c) To the other side of yi, y approaching 0, est tends
rapidly toward the value m.

The region (a) is very narrow (hyt yi'«yi«1) and
therefore a good approximation for the integral (4.9)
is obtained by setting ttt=(xi+ —xi )/2i in the interval
&a: y~~&y(~, and 8g—~ for cg.'0&y~&yg.

Similarly one finds the contribution of x2+ to be
tts—(xs+—xs )/2i in the interval bs.' ys&~y& oo, and
tts=n for cs. 0&~y&~ys (there ys=54/ss). Then, accord-
ing to (4.9)

J(r) =Jb(r)+J.(r)
J,(r) =Jet(r)+ Jes(r) = 4/r I—2tsr+ (ts'rs+yi—s) h

+(t 'r'+y ')'j
Jb(r) =Jbi(r)+ Jbs(r) = —(288/A'rs) f($)

where

drt ( sinrtx)
I(x)=, i —

I
costtx-

Jo (st'+1)h & stx )
and Ep, E~ are Hankel functions of second kind with

imaginary argument. " These are the same types of
integrals as appear in the earlier work on pair
theories. ""

For two distinct r-intervals simpler expressions for J
may be derived by inserting the asymptotic expansions
of the Hankel functions: If ys«1«$; r&)1/2tsW(54) 1/A

(supposing, here, A» tt),

144 (ts)' 1J()=-
(srtsr)h (A) Asrs

If, however, $«ys«1; (54) t/A«r«1/2ts (again: A» ts),

J(r) = —288/(A 'r') .

For all values of r covered by our calculations, i.e.,
r))A ', the potential is attractive.

At smaller values of r the source functions of the
nucleons overlap and also FP contributes to the po-
tential. This problem is even more complicated than
the one-nucleon FI' problem mentioned at the end of
Sec. III."

One inadequacy of a really strong coupling assump-
tion appears rather certain, and this is the absence of
long range spin-dependent forces of the proper magni-
tude. The 0-interaction (2.15") between ' the P'-field
and the physical nucleons will certainly produce some
spin-dependence of the forces, derivable by a second-
(or perhaps fourth-) order perturbation treatment, 's

which, however, requires the knowledge of the HD

eigenvalues and eigenfunctions. As long as the strong
coupling condition (2.16) is fulfilled, the resulting spin-
dependence will presumably be quite weak.

Since we would actually expect the coupling to be of
intermediate strength, we want to present, in addition,
the results of a weak coupling calculation, carried out
with the usual perturbation methods. Here we adopt a
charge-symmetric theory, " involving both charged and
neutral mesons, because otherwise no resemblance with
reality is obtained. The spin and isotopic spin depen-
dence of the potential turns out to be the same as known
from the pseudoscalar Yukawa theory, namely:

(8n')'J(r)

=(nt ns)(tst &)(tss &)U(r)

f(e, r)(ts, r) 1 q d t'1dU)

y' 3 ) dry. r dr)
1 1.d t' dU)

+-(~t ~s)——
I

r'
I (4 13)

3 rsdrE dr j

f(x) = 90I(x)+xEt(x) [101/2+ (19/16)x']
+x It, (x)[41/4+a/16j

'4 See G. N. Watson, A Treatise ots the Theory of Besset Fstrteti orts
(The Macmillan Company, New York, 1944)."J.Jauch (see reference 12).

'6 See Appendix II of reference 2.
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The spatial dependence of U(x), instead of being given by a simple momentum space integral as in
Yukawa theory, is now expressible by the double integral

f' " g'(p)g'(q)~* ""''* (p q)+I '
U(x) = d'p d'q- . 1+-

L(p'+ p')'*+(q'+ p')'j (—p'+ p')'(q'+ p') '

After angular integrations this expression may be written as

(4.14)

16m f' t ( g'(P) g'(q)U(')=, i PdP qdq
(p'+ p')'+ (q'+ p') '

I1
sinpx sinqx( 1+

(p'+ p') l(q'+ p') l) x'

(px cospx —sinpx) (qx cosqx —sinqx) 1
(4.15)

(p2+ p2) p (q2+ p2) 2 X4

Again, the cutoff due to g'(p), g'(q) is essential for
insuring the convergence of the integrals. In previous
calculations' this was overlooked, and the results are
therefore doubtful. Even for simple functions g, as
(3.12), the integral' (4.15) are not expressible in terms
of known functions, for arbitrary values of the param-
eters x, p ', and A '. A erst approximation for x(p, '

is obtained by taking p/A=0. This appears sensible

since, for A) p, , the contribution that the integrand
makes to U(x) for p, q(p is small. A convenient choice
for g then is g'(p)=e &'"' (with A' A). After the
introduction of the coordinates p= p cos26 a,nd

q= p sin'8 (4.15) may be evaluated in a straightforward
computation with the result

16m f 3 A'x 1
U(x) = A'~ —arc tanA'x-

M~ 2 1+(A'x)' (A'x)~

1
(4.16)

(A 'x[1+(A 'x)'])'

The substitution of this expression into J(r) yields for
the central-force term a strong short-range repulsion

and attraction at larger distances. The tensor-force
term, on the other hand, has always the same sign for
all r values and it vanishes at r =0. Some characteristics
of a charge-independent, "hard-core" type'~ of theory

' R. Jastrow, Phys. Rev. 81, 165 (1951).

are therefore found in a weak coupling approximation
of pseudoscalar p,-pair theory, especially the possibility
of explaining nuclear saturation in terms of a. short-

range repulsion. It is easily checked that, for larger r
values (r p '), J(r) exhibits qualitatively the same

spin dependence as the pseudoscalar Yukawa theory.
Therefore, as far as the weak coupling approximation

goes, the spin and charge dependence of the forces

agree, at least qua1itatively, with the deuteron data,
as, e.g. , with the sign of the electric quadrupole moment.

The range of the forces, for A& p, is, of course, given

by A ', and so for r&p ' the potential is already

negligibly small. For (16m')(gn') 2f A'M '~1, J(r)
has roughly the right order of magnitude. It is, however,

doubtful and hard to ascertain whether a perturbation
treatment is legitimate for such f values.

Since for intermediate coupling strengths no compu-

tational method is known, the best one can do is to
resort to a plain interpolation between the two extreme

cases. Within this broad. margin, and as far as our

results go, there appears to be no serious discrepancy

with experience.
In conclusion, I would like to express my gratitude to

Professor G. Wentzel, who suggested this problem and

gave me invaluable guidance and encouragement during

the course of this work.


