THE

PHYSICAL REVIEW

eAd journal of experimental and theoretical physics established by E. L. Nichols in 1893

Seconp Series, Vor. 86, No. 3

Monte Carlo Study of Shower Production

RosEerT R. WiLson
Cornell University, Ithaca, New York

(Received December 26, 1951)

Electron- and photon-initiated showers in lead have been calculated in a simple Monte Carlo manner for
energies from 20 to 500 Mev. The results, exhibited in a series of transition curves, show considerable dif-
ferences from the results of conventional cascade theory in that the number of electrons at the maximum
are fewer and the shower is more penetrating.

The effects of multiple Coulomb scattering of the electrons have been included and depend markedly on
the measurement considered. Thus, ionization currents are only slightly changed (the transition curves are
foreshortened by about one-half radiation length) while the number of electrons counted behind lead plates
in a cloud chamber can be reduced by as much as 50 percent by effects of multiple scattering. This result is
nearly independent of the incident energy.

The final curves obtained are compared with the ionization measurement of Blocker, Kenney, and
Panofsky and the cloud-chamber measurements of A. M. Shapiro. The agreement is satisfactory.

A simple quasi-analytic cascade theory is developed in which known low energy solutions are used to
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obtain successively higher energy solutions.

I. INTRODUCTION

HE cascade theory of shower production in light
elements such as air has been worked out rather
completely for very high energy initiating electrons or
photons.! For energies of less than one Bev in lead,
however, the cascade theory cannot be expected to
apply very accurately: ionization losses are important,
the cross sections for radiation and pair production
change rapidly with energy, and not many generations
occur. None of the calculations include effects of mul-
tiple scattering except for lateral spreading. The shower
problem is inherently a stochastic one and lends itself
naturally to a straightforward treatment by the Monte
Carlo method. The calculations described here are all
for lead and were done in two steps: first neglecting
multiple scattering so that the results could be com-
pared to conventional theory, and then including
multiple scattering for the final results.

1H. J. Bhabha and W. Heitler, Proc. Roy. Soc. (London) 159,
432 (1937); J. F. Carlson and J. R. Oppenheimer, Phys. Rev. 51,
220 (1937); B. Rossi and K. Greisen, Revs. Modern Phys. 13, 24
(1941); H. S. Snyder, Phys. Rev. 76, 1563 (1949) ; L. B. Bernstein,
Phys. Rev. 80, 995 (1950).

II. THE MONTE CARLO MACHINE

The procedure used was a simple graphical and
mechanical one. The distance into the lead was broken
into intervals of one-fifth of a radiation length (about one
mm). The electrons or photons were followed through
successive intervals and their fate in passing through a
given interval was decided by spinning a wheel of
chance; the fate being read from one of a family of
curves drawn on a cylinder, the unwrapped surface of
which is shown in Fig. 1. The energy ordinate is parallel
to the axis of the cylinder. For electrons, curves were
drawn in such a way that the ratio of the distance
between two adjacent curves to the peripheral distance
of the cylinder was equal to the probability of radiation
of a quantum, the energy of which was marked on each
curve. For photons, dotted lines were drawn in a similar
way to give the probability of electron pair production,
the energies of the resulting electrons being read from
the curves. Compton scattering was also included as is
indicated. Accurate values of the probabilities, deter-
mined by the calculations of Bethe and Heitler® ad-

2 H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) 146, 84
(1934).
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Fic. 1. The unwrapped surface of the cylinder of the wheel
of chance.

justed to fit experiments,® were used in determining
the curves.

A word about the wheel of chance: The cylinder, 4 in.
outside diameter by 12 in. long, is driven by a high
speed motor geared down by a ratio of about 20 to 1.
The motor armature is heavier than the cylinder and
determines where the cylinder stops. The motor was
observed to stop at random and, in so far as the cylinder
is concerned, its randomness is multiplied by the gear
ratio. It appeared adequate for the operator simply to
turn the motor on and then, after many revolutions of
the cylinder, turn it off. As an improvement a simple
switch was constructed which the operator turned on
but which a Geiger counter, activated by cosmic-ray
particles, turned off after a few seconds. It was also
possible to set the position of the cylinder using a
graduated dial and a table of random numbers. This
was, of course, the most satisfactory procedure for
obtaining true randomness but the operators found it
considerably more tedious than using the motor. Many
obvious tests of randomness have been made which
indicate that the machine is more than adequately
random for the accuracy aimed at in this treatment.

III. CALCULATIONS NEGLECTING MULTIPLE
SCATTERING

Figure 2 exhibits a typical photon shower calculation
for an initiating photon of 100 Mev. The energy of the
electrons or photons of the cascade is plotted as ordinate,
and distance into the Pb is the abscissa, each division
corresponding to one interval (0.2 radiation length).
The horizontal dotted lines are photons; the black

8 DeWire, Beach, and Ashkind, Phys. Rev. 83, 505 (1951);

J. L. Lawson, Phys. Rev. 75, 433 (1949); R. L. Walker, Phys. Rev.
76, 1440 (1949).
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sloping lines are electrons. The procedure of calculation
is to follow the initial photon through successive inter-
vals, spinning the cylinder at each interval until the
stationary index falls between the dotted curves 4 and
B, at the energy of the photon. The nearest curve to the
index at that point indicates the energy of one of the
electrons formed in pair production. The energy of the
other electron is obtained by subtraction from the
initial photon energy since energy is conserved. A
further subtraction of one Mev for the rest mass of the
electrons was made. The photon track disappears and
one of the pair electrons is now followed. At each inter-
val, the wheel is spun and the energy radiated by the
electron is indicated on the black radiation curve nearest
the index line at the electron energy. The newly created
photon energy is plotted on the graph at that point.
The energy of the radiating electron has now been
reduced by the emitted photon energy plus a constant
ionization loss of 1.5 Mev per interval. In this way the
electron is followed until it has lost all its energy and
so stops. The operator then goes back and follows the
other electron and photons in turn until the whole
shower is dead. The graph is thus a record of the history
of that particular shower. The procedure is then suc-
cessively repeated, until the statistics are adequate.
Variations in form and complexity of each shower from
that shown in Fig. 2 are indeed striking.

In practice photons are indicated but are not followed
once their energy falls below 10 Mev because their
mean free path by them is too long. The mean free
path is nearly constant between 10 Mev and 1 Mev, and
there is little difficulty in calculating the propagation
of such radiation. The number of electrons #; at a
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Fi6. 2. A typical shower resulting from a 100-Mev photon, The
dotted lines indicate photon paths and the solid lines indicate
electron paths, the ordinate in each case giving the energy. The
open circles are photons that were not followed. Distance in the
Pb is measured in radiation lengths.
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distance ¢ due to this radiation is given by
t
mi)= [ Co@/g¥omat, ()
0

where w(i)dl’ is the average energy per shower starting
as gamma-rays below 10 Mev in the interval d¢’ at ¢.
It is obtained from the shower charts by adding up the
energy of all the indicated photons of energy less than
10 Mev which occur in intervals of distance that were
chosen to be one radiation length and then dividing by
the number of charts to get the average. The assumption
is made that this energy propagates in the forward direc-
tion as e~¢~*)om where ¢, is the average cross section
" per radiation length of the photon radiation below 10
Mev and above 1 Mev. The value of 0.24 was chosen
for ¢, in lead. In obtaining (1), the assumption is also
made that after the energy is absorbed the resulting
electrons give up all of their energy into ionization in a
region small compared to the mean free path of the
radiation. The track length contributed in that region
by these electrons is w(f’)/B, where B is the ionization
per radiation length or the critical energy; 8 is assumed
to be 7.5 Mev for lead.

It is customary to present shower calculations in the
form of curves giving the average number of electrons
as a function of distance into the lead. This is done in
Tig. 3 for incident photons. The number of electrons #,
which is the ordinate, is the sum of 7y, the electrons as ¢
due to low energy photons, and 71, the electrons at ¢ due

8
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Fic. 3. Photon initiated shower curves in lead without con-
sideration of multiple scattering. The solid curves give the Monte
Carlo results and the dashed curve is calculated by conventional
cascade theory. The energy in Mev is indicated on the curves.
Depth units"are in radiation units.
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Fic. 4. Fluctuations in the number of electrons seen at a given
distance. The circles are given by the Monte Carlo method and
the curve is a Poisson distribution for the average number indi-
cated. Only electrons resulting from photons above 10 Mev are
shown here.

to photons of energy greater than 10 Mev. The number
ny is obtained directly from the shower charts by adding
up all the electrons seen at a given distance and then
dividing by the number of charts used. In general one
or two hundred shower histories were made for each
curve; thus the statistical accuracy of each point is
roughly 10 percent. Actually the curves have been
normalized by a few percent as follows: the initial slope
of the curves for gamma-rays must be equal to 26,40,
where the cross sections are for pair production and
Compton scattering, respectively; the curves must all
finally fall off as ¢~*»¢, and the integral, Ji*@ndt, must
be equal to the initial energy. The purpose of the Monte
Carlo method is thus to determine the shape of the
curves in the intermediate region.

The labor becomes excessive for initial energies above
300 Mev, and for these energies the photons and elec-
trons were followed down to 50 Mev where solutions
already obtained by the Monte Carlo method were fed
in numerically. For purposes of comparison, the results
of the theory as given in Rossi and Greisen! including
ionization loss are shown as a dotted curve for 100-Mev
initiating photons.* There is no agreement in shape or
absolute values for reasons already given in the
introduction. The comparison is equally poor with the
numerical calculations of Arley.® ;

In Fig. 4 are plotted distributions of the empirical
expectancy of observing various numbers of electrons
at given depths in the lead (electrons below 10 Mev are

47 am indebted to Dr. L. Brown for calculating this curve and
the one shown in Fig. 10. !

§ Niels Arley, On the Theory of Stochastic Processes and their
Application to the Theory of Cosmic Radiation (G. E. C. Gad,
Copenhagen, 1943).
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Fic. 5. Transition curves that would obtain in ionization meas-
urements with incident photons whose energy in Mev is marked
on each curve. Multiple scattering effects are included. The
quantity ¢ is defined in the text and would be proportional to the
current measured in a thin ionization chamber. Beyond the
oblique dashed line the curves are exponentials decaying with an
absorption coefficient of 0.24. Depth units are in radiation lengths.

neglected here). Poisson distributions adjusted to the
mean numbers are also drawn. It is seen that the em-
pirical points have quite different values from those
predicted by the Poisson distribution. The differences
are largely inherent in the mechanism of pair production
and in the fairly long range of electrons. Thus, if one
member of a pair of electrons is observed, it is likely
that the other electron will also be observed. Single
electrons are infrequently seen by themselves and
double electrons occur nearly twice as frequently as
predicted by the Poisson curve. It is interesting that the
expectancy of zero electrons agrees with the Poisson
prediction well within the statistical accuracy.

For the experimentalist a sheaf of the history graphs
is about as good a representation as any. He can leaf
through the set and get a feeling for the fluctuations
that are likely to occur. For a given set of experimental
conditions, such as an arrangement that measures the
ionization between the second and fourth radiation
lengths, the graphs can be consulted directly to get an
approximate answer. If one attempts a calculation, a
cursory examination of the graphs gives valuable clues
as to what is significant and as to what can be neg-
lected.

ROBERT R. WILSON

IV. CALCULATIONS INCLUDING MULTIPLE
SCATTERING

In principle one could include multiple scattering at
the same time that the shower is being calculated by
spinning an auxiliary wheel to find the multiple scat-
tering angle of an electron as it passed through each
interval of length. This would be far too laborious.
Instead the effects of multiple scattering on the range
of individual electrons has been worked out theoreti-
cally in a separate paper,® in which the results were
checked with the Monte Carlo method. A two-group
theory was assumed, in which the electron paths were
considered as straight until the energy had been de-

~ graded to a critical value E, after which the motion was

considered to be completely random. It was found that
the random energy E, was nearly independent of the
initial energy of the electron and is given in Mev by the
approximate formula’

E,~20/8%. (2)

Once the electron reaches this energy further displace-
ment is negligible because the residual range is spent
in a tight random motion. This means that one of the
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Fi1G. 6. Same as Fig. 5 but for incident electrons.

6 R. R. Wilson, Phys. Rev. 84, 100 (1951).

7The formula appears different than in reference 6 because
different units are used. More exact values are given by Eq. (14)
of the same paper.
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F1G. 7. The number of electrons that would be counted in the
core of a shower and with paths in the direction of the shower is
plotted against #, in radiation lengths, for incident photons. The
energy is marked on the curves in Mev.

effects of multiple scattering is to shorten the paths of
all electrons in a shower by an amount 7, the range of
an electron with energy E,. This range was shown® to
be given in radiation lengths by

r/In2=In(1+E,/B In2), @3)

where 3 is the critical energy in the same units as E,.

In presenting the effects of multiple scattering on
curves such as those in Fig. 3 showing # against ¢, it is
necessary to delineate the problem a little more closely
in terms of measurement. One might try to measure
such a curve with a thin ionization chamber inserted
in the material, or the experimenter might endeavor to
count the number of electrons at a given depth using a
Geiger counter, or using a cloud chamber in which many
plates were inserted. Quite different results would be
obtained in lead in each case.

In the case of an ionization measurement, electrons
moving with random motion contribute considerably
to the ionization, especially those electrons moving
nearly parallel to the plane of the chamber. Let us call
the measured quantity 7, defined as the ionization
charge collected per incident electron or photon divided
by the charge that would be collected were one straight
electron path to cross the chamber normally. Thus if
multiple scattering were negligible, ¢ would equal n. As
an approximation, we obtain curves of 7 as a function
of ¢ from the curves of Fig. 3 by simply shortening all
the abscissas of the curves by an amount 7 to correspond
to the decrease in electron range. Clearly this procedure
breaks down for small values of #, in which case the
abscissas are shortened by an amount,

At=r(1—c). 4
This expression was chosen arbitrarily. It expresses the

fact that most of the electrons in a shower have their
energy near the critical energy and hence have a range

265

of roughly one radiation length. In a more accurate
theory it would be necessary to make a better deter-
mination of At. The fore-shortened curve should now be
renormalized because the integral f3*8d: must still be
equal to the initial energy—this renormalization takes
care of the oblique electron traversals of the ion
chamber. Curves of 7 as a function of ¢ for various ener-
gies of initiating electrons and photons are shown in
Figs. 5 and 6.

Now for the second case in which the electrons are
counted, let us discuss the example of the cloud
chamber: the case of the Geiger counter will follow
from this discussion. There are two possibilities in
counting electrons in the cloud chamber: all the elec-
trons appearing in the chamber between two plates
can be counted, #.; or just those electron tracks in the
core and with a forward direction, say within 30°, can
be counted, 7,:. In the latter case the shower is just
cut off at the energy E,, for nearly all electrons below
this energy will be either off the shower axis or if on
the axis will be oriented in the wrong direction. This is
a good procedure in counting because it discriminates
against background electrons produced throughout the
chamber. Curves of #,, against distance obtained by
cutting showers off at E, (8 Mev for lead) are shown
in Figs. 7 and 8.

Finally we treat the case where all electron paths
between successive plates are counted. Now we must
add to 7, just calculated for straight paths, the elec-
trons which are moving randomly. This can be done
most-easily by taking the difference An between ¢ given
in Figs. 5 or 6 and n, given in Figs. 7 or 8. The dif-
ference is the track length due to randomly moving
electrons. Only the component of track length along
the initial direction of the electron or photon is of
interest now, and this is cosf times the track length,
where 6 is the direction of the electron with respect to
the initial direction. The average of cosf over a hemi-
sphere is 1, hence we add one-half Az to #,; to obtain

Fi1c. 8. Same as Fig, 7 but for incident electrons.
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F16. 9. The effects of multiple scattering on the transition curve
of a 300-Mev incident photon. The ordinate plotted corresponds
to the quantity labeled on the curve and these quantities are
defined in the text for various conditions of measurement . . . the
dashed curve is the result of conventional theory. (See reference 4.)

our result #,. Curves are not given for this quantity
because it can be so easily obtained from the curves of
1 and 7.

In general one will count those electrons having an
angle with respect to the initial direction less than say
6:. In that case a fraction {(cos#)n= (1—cos?)/4 of An
should be added to 7. One must not forget the crude-
ness of this approximation.

Comparisons between the four above quantities #,
i, e, and n, for 300-Mev initiating -electrons and
photons are given in Fig. 9. The effects of multiple
scattering were also calculated at 300 Mev by Mrs.
Elizabeth Baranger® by inserting the multiple scattering
in detail into the Monte Carlo calculations and her work
will be published separately. Her results are statistically
indistinguishable from those obtained by the simplified
treatment given here.

V. EXTENSION OF CALCULATIONS TO OTHER
MATERIALS

The above calculations apply to lead. For neighboring
elements the results will be similar but .the ordinates
of the curves must be multiplied by the ratio of critical
energy of the new substance to that of lead. For light
elements conventional theory should apply for incident
particles of high energy: at low energy or for elements
of intermediate Z, the method of Bernstein! or the
simple theory outlined in the appendix should be used.

8 E. Baranger, Master’s thesis, Cornell University (1951).

ROBERT R. WILSON

Multiple scattering effects become relatively smaller
atlow Z for two reasons: (¢) The cascade tends to cut off
at an energy # which varies roughly as 1/Z, and () E,,
the energy below which random motion sets in, varies
as 1/8 and hence as Z}. Thus the relative number of
electrons in a shower with energy below E, decreases
rapidly with Z. .

Conventional theory can be easily corrected, if curves
of £ vs ¢ are desired, by simply fore-shortening values of ?
by the amount given by Egs. (2) and (3), as was done
in this paper for the Monte Carlo results in lead,"
together with a renormalization of the curve. To obtain
curves of n,; and #. vs ¢, we must find the total track
length below E,. The computations of Richards and
Nordheim?® show that the integral track length for low
energy electrons is nearly independent of Z. Their
results can be expressed, at low energy and very roughly
(about 10 percent), by the empirical formula

F(E)=W(1—e*"1)/8, ®)

where F(E) is the integral track length of electrons #p.
to energy E and W is theinitial particle energy. Hence
we compute 7, by subtracting F(E,) from 7 as obtained
above: #, is obtained by subtracting F(E,)/2. This
procedure cannot be expected to work near the be-
ginning of the shower when the calculations of track
length do not apply. On the other hand it may be fairly
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F1c. 10. A comparison of theory and experiment. The circles
are the measurements in lead of ionization resulting from incident
330-Mev bremsstrahlung radiation. The solid curve which fits the
points is the Monte Carlo theory and the dashed ‘curve is the
result of conventional shower theory (see reference 4). The areas
of the curves are all adjusted to the same value.

9 J. Richards and L. Nordheim, Phys. Rev. 74, 1106 (1948).
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reliable near the -shower maximum. Incidently, this
calculation shows that the effects of multiple scattering
are essentially independent of initial energy.

VI. COMPARISON WITH EXPERIMENT

Jonization curves have been measured for lead by
Blocker et al.'® for incident bremsstrahlung from 330-
Mev electrons. Assuming the photon spectrum given
by theory,? Monte Carlo values taken from Fig. 5 were
added numerically to give the theoretical ionization
curves of Fig. 10. The experimental points are also
shown and the excellent agreement must be considered
as partly fortuitous. The curve marked #., is that given
by conventional theory.*

Shapiro™* has used a cloud.chamber in which were
placed a number of lead plates. With 200-Mev electrons
incident, obtained from the Cornell synchrotron, he
counted the number of electron paths in the core of the
shower between the plates. His average numbers as
well as the fluctuations from the averages are in very
good agreement with the Monte Carlo results. An ex-
tensive comparison will be published by Shapiro.

There is an experimental check on the variation of
multiple scattering effects with Z. Blocker ef al.1° meas-
ured the ionization current essentially at shower maxi-
mum with and without material behind the ion chamber.
The difference is presumably due to multiple scattering
effects. The increase in ionization resulting from back
scatter was 0.41 of the total ionization in lead, 0.20 in
copper, 0.09 in aluminum, and 0.04 in carbon. Our
theory requires the backscattering to be proportional
to the number of electrons below E,. Using values of E,
given by Eq. (2) and the corresponding integral track
lengths for lead and air given by Richards and Nord-
heim,? and assuming that half the source of randomly
moving electrons is removed upon taking away the
material behind the chamber, we calculate 0.38 for the
backscattering in lead and 0.03 for carbon. Using Eq.
(3) to interpolate track length for Cu and Al we get
0.20 and 0.07 for the backscattering respectively,
instead of 0.20 and 0.08 as measured. The effects of
reflections will tend to destroy this rather fortuitous
agreement.

It is a pleasure to acknowledge the cooperation of
Miss Leonilda Altman and Miss Ruth Seiwatz who did
all of the tedious running of the machine and who car-
ried out miscellaneous numerical calculations. Without
their help the work would not have been done. I.am
also indebted to Mrs. Elizabeth Baranger for her work
at 300 Mev on the inclusion of effects of multiple
scattering.

APPENDIX. A SIMPLE SHOWER THEORY

The Monte Carlo method as used here has suggested
the following simple analytic method of computing
cascade phenomena. It is presented because it can be

10 Blocker, Kenney, and Panofsky, Phys. Rev. 79, 419 (1950).
11 A, M. Shapiro, Phys. Rev. 82, 307 (1951).

267

useful in extending the present results to higher energy.
It is applicable to all substances, retains the use of
actual cross sections for photon absorption, and should
give considerably more accurate results than does the
Monte Carlo method.

The theory will be described first for incident photons
and then extended later on to incident electrons. The
central idea is to feed in known low energy shower
curves and to get out high energy curves, which can
be used in turn to get ever higher enérgy curves. Basic
for the calculation is the theory of the propagation of
individual electrons, and this has been developed sepa-
rately in reference 6. There it was shown that the
average range R of an electron of energy Fj is, in shower
units,?

R=In(Es+1), ©)
and that the mean square straggling of the range is
y=(1—R/Ey)*R. M

It was also shown that the average range of the elec-
trons of a pair produced by a photon of energy W is

R=(1—1/W) m(W+1)—1, 8

and that the spacia)] distribution of a pair of electrons
produced at ¢=0, i.e., the number of electrons reaching
a distance ¢ or more, is given approximately by

n=2 exp(—t/Ry). 9)

A two-group theory is used for the shower calcula-
tion, in which the first group of electrons will be the pair
made directly on the initial absorption of the incident
gamma-ray. The second group will then correspond to
all of the electrons resulting from the photons radiated
by the initial pair electrons. We will call the electron
groups primary and secondary, respectively.

The primary electron distribution #:(f) can be ob-
tained readily from (9), i.e.,

t
n1(t) =20 f eo%¢— (D) gy
0

(10)
=20(¢"Rr—e)/(0—1/Ra),

where o is the absorption cross section of the initial
photon.

The secondary electrons will be calculated by first
obtaining the average spectrum and source strength of
the secondary photons, i.e., those emitted by the pri-
mary pair electrons. These photons will be of much

12 Shower units of length and energy are used in this appendix
as in reference 6. Shower lengths are radiation lengths times In2,
and energies are here measured in units equal to In2 times the
critical energy, i.e., E=Exev/B In2.

13 The exponential expression applies for energies of the order
of magnitude of the critical energy. For much higher energies, the
integral Gaussian form (21) should be used, substituting the pair
range, Ry, for R. Actually at such high energies the primary
electrons will be completely masked by the secondaries and the
approximation (9) will introduce little if any error.
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lower energy in'general than the initial photon, and a
shower curve can then be calculated for this spectrum
either by feeding in known shower curves such as the
Monte Carlo results given in this paper or by going
down to such a low energy compared to the critical
energy that the shower curves will be given directly by
(10), ie., at low enough energy that the secondary
group is negligible compared to the primary group.
The spacial distribution, on the average, of the source
strength of the secondary photons must also be com-
puted, and then the distribution of secondary electrons
will be obtained numerically through the knowledge
of how such photons propagate, namely, by knowing
the averaged secondary photon shower curve.

Now for the actual calculation of the secondary
electrons: it is assumed that an electron in going d!
emits a spectrum of photons given by

w(k)dkdi=dkdi/k. (11)

which is cut off at k= E,. We wish to find the average
spectrum of photons from an electron of energy E,
going a distance corresponding to its average range.
The integral number of photons of energy k emitted by
an electron will be obtained by integrating over that
part of the range where the energy of the electron is
* greater than %. Assuming that the energy of the electron
is related to the residual range as given by (6), then the
interval of integration must be from zero to R—1;, where
tr=1In(k+1) corresponds to the residual range of an
electron of energy % and in this range no photons of
energy k can be emitted. Accordingly, the average dis-
tribution of photons from an electron will be given by

w'(k)dk= (dk/k) m[(E+-1)/(+1)].  (12)

We notice that this distribution cuts out the high
energy photons. In fact a fair approximation is to
assume a dk/k distribution which cuts off at k= Ey—R,
the cutoff being chosen here to give the correct amount
of total energy radiated compared to ionization loss
which is, of course, just R in these units. This may be
more accurate than using (12), for it automatically
takes into account the effects of large fluctuations—an
important consideration in the derivation of (6).

The spectrum of photons (12) must now be averaged
over the energies of the pair electrons. Assuming that
the energy of the pair is split between electron and
positron such that it is equally probable for the electron
to receive any fraction of the photon energy W between
0 and 1, then the average photon spectrum from the
pair is

() k= f (2dk/k) W[ (E-1)/ (k+ 1) JdE/ W
k

=2(dk/EW){(W+1) In[(W+1)/(k+1)]

—W-k}. 13)

ROBERT R. WILSON

Here the photons are degraded even farther in com-
parison to the initial photon energy W, and again we
can approximate (but less accurately) with a simple
2dk/k spectrum with cutoff at k=W —2R,.

To calculate #(f), the distribution of electrons due to
secondary photons, we must now know the distribution
in space of the sources of secondary photons represented
by (13). The total energy radiated in photons from an
electron as it goes dt is given by

—dE/dt=E,

and solving (6) for the average energy of an electron
E as a function of the residual range r gives E=¢"—1;
hence

—dE/di=¢r—1. (14)

An electron which starts at =0 will have a photon
source Sy which is proportional to —dE/dt and which
varies as the energy of the electron varies. It will be
given by

S1(f) =eB—t—1. (15)

Assume now that the members of the initial pair of
electrons both have just the average pair range given
by (8). Then the source distribution from the pair
produced by the initial photon will be given by
t
(eR,r—-—H-t'_. l)e—a't’dt”
t—Ry

Sz(t) =20

where the lower limit is zero for t<R,. After integra-
tion we get, for { <Ry,

So() =20 (e~ Br—ot— gBr—t) /(1—6)—2(e—'—1) (16)
and for t>R,,
Ss(t) =20 (e Br—ot— ¢~ (—ERx)0) /(1 —¢)

—2(ert—e k), (17)

At this point we must calculate #’(¢), the shower
curve due to a unit source at (=0 for the spectrum of
photons given by (13) or by the approximate 2d%/%
spectrum with cutoff at 2=W—2R,. Then, knowing
the distribution of the sources as given above, we get
at once the secondary electron distribution #,(f) by
numerical integration, namely,

- f Salt) -n'(t— )it (18)
0

The normalization of #,(f) can be checked by noticing
that all the energy in the shower must be given up to
ionization energy; thus

f 11:1dt’= ZR,,
0

14 The In2 term does not appear because of the effects of fluctua-
tions, see reference 6.

(19)
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and hence

©

f nadt=W—2R,. (20)
0

The sum of #; and #, gives the resulting shower curve,
and then one proceeds to progressively higher energies
by feeding this solution back into the method.

For the case of incident electrons the procedure is
exactly the same, except that the primary distribution
n1(¢) is due to the incident electron itself and, as shown
in reference 6, is given by the integral Gaussian form,

m()=3{1—erfl (+—R)/(2y)1]}, 21

R and y being given by (6) and (7). The photon spec-
trum is given by (12) or by its simple approximation

269

dk/k with cutoff at k= E,—R. The spacial source dis-
tribution is given by (15).

Multiple scattering effects are included in much the
same manner as in the Monte Carlo work. We calculate
the number of electrons below the random energy,
given in shower units of energy, approximately by

E.=(10/8)%, (22)

or more accurately by Eq. (14) of reference 6. (Notice
that B is in Mev in these formulas.) The fraction of the
primary electrons, #;, below E, is just /R for an
incident electron or /R, for an incident photon, where
r=In(E,+1). The fraction of the secondary electrons
1o below E, is just #/R, where R is the pair range given
by (7) averaged over the spectrum (12) or (13).
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The “optical” and “compound” methods for treating nucleon-nucleus encounters are compared on the
basis of a very simple model. It is concluded that the optical procedure is valid for incident energies E>~80
Mev, the compound for E<~30 Mev. The statistical model of the excited nucleus can be applied only
when the excitation energies of individual nucleons may all be considered to be within the lower limit. For
w-mesons incident on nuclei similar considerations show that the optical method must be used under all

circumstances.

1. INTRODUCTION

LASTIC scattering and absorption of nucleons
have been treated by two different methods, which
may be designated as the optical' and compound?
procedures. The present note compares these approaches
and attempts to define their respective regions of
validity, with a view toward determining which ap-
proach is suitable for 7-meson scattering and absorption
by nuclei; it appears that the optical model is preferred
under all circumstances.

In the compound procedure the logarithmic deriva-
tive f at the nuclear surface is represented by a suitable
phenomenological form that reflects the complex situa-
tion inside the compound nucleus; namely,

f=—K, tan{w/D(E— Eo+iT./2)}

where Ko=~10® cm™! is a wave number appropriate to
the interior of the nucleus and corresponds to a po-
tential well about 30 Mev deep. The energy of the
system is E, a resonance energy is Eo, the average
spacing of successive resonance levels is D, and T\ is
the half-width for absorption. This approach yields the
Breit-Wigner form for isolated levels at low energy and
* This work is supported by the research program of the AEC.
1 Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).

2See, for example, Feshbach, Peaslee, and Weisskopf, Phys.
Rev. 71, 145 (1947).

has been extended? to incident nucleon energies as high
as 25 Mev, where the resonances are completely
smeared out.

The optical method has been used for incident
nucleon energies on the order of 90 Mev or more and
consists in integrating the phase difference over all
paths through the nucleus. The wave number external
to the nucleus is %, internally is ¥’ =k k1 +iK/2, where
| ' —k|<k. The beam may be analyzed into partial
waves of angular momentum /, for which the appro-
priate W.K.B. path length extends radially from R to
71, the classical turning point radius. A characteristic
feature of this treatment is the complete neglect of
reflection at the nuclear surface, which implies an
infinitely diffuse boundary.

A superficial difference between the models is the
question of “sharp” vs “diffuse” boundaries: to argue
that it is unimportant, consider the error introduced by
assuming a sharp boundary when a diffuse boundary is
correct. The parameter measuring the sharpness of the
boundary is 1/(kAR), where the uncertainty in nuclear
radius AR happens roughly to equal 1/K, in magnitude.
In the simplest case of no external potential the phase
shift is given by

k cot(kR+8)=k cotK’R+(K'—k) cotK'R, (1)
3 H. Feshbach and V. F. Weisskopf, Phys. Rev. 76. 1550 (1949).



