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Interstitial atoms and vacancies play an important role in the
theory of sohds and of radiation damage. It is difficult to separate
and measure unambiguously these lattice disturbances in metals.
It is suggested that measurements of changes in elastic constants
may be appropriate in such investigations.

An approximate theoretical treatment is given of the change in
elastic constants of simple metals caused by the presence of a
given small fraction of interstitial atoms and vacancies. The
elastic coefficients are calculated from atomic interaction po-
tentials (a simple exponential function for copper and a Morse
function for sodium) with relaxation effects taken into account.
The presence of a small fraction of interstitials and vacancies

results in large increases in the elastic coefficients of copper.
Lattice vacancies alone were found to decrease the elastic coeffi-

cients, the change being essentially a bulk effect. Consequently,
increases in the elastic moduli measure primarily the fraction of
interstitial atoms. In sodium, large relaxation occurs around an
interstitial and this atomic readjustment reduces the effect of the
interstitial to the magnitude of a bulk effect.

It is concluded that the theoretically predicted effects should
be easily observable in copper or similar metals, provided thermal
annealing is prevented. Changes in elastic constants, therefore,
may serve as a useful tool for distinguishing between interstitial
atoms and lattice vacancies.

I. INTRODUCTION

ADIATION damage may be described briefly as
the result of atomic displacements caused by the

passage of neutrons or fast charged particles through
the material. .' Many physical properties are drastically
changed by the radiation. Our understanding of these
eGects is still rather rudimentary for two reasons: first,
it is by no means clear just what sort of disturbances
are left behind in the lattice and, second, the theories
which relate atomic displacements to physical properties
are themselves poorly developed.

For the purposes of the present study, radiation
damage is pictured as the result of the presence of
interstitial atoms and vacancies which have been pro-
duced by the high energy incident particles. On an
atomic scale this must be the primary result of knocking
the atoms about within the lattice. If the lattice
disturbances cluster, however, either during irradiation
or subsequently (by annealing, for example), it may be
more pro&table to think of radiation damage as akin to
cold work or thermal spikes. It is quite likely that
differences between radiation damage and cold work in
metals, which have been observed experimentally, "are
the result of the presence of interstitials. Such high
energies are required for the formation of interstitials
in such a substance as copper' that their production
thermally or even by cold work is most unlikely. They
are easily produced, however, by direct knock-ons.

It is clear that it is important to Gnd out whether

*This paper is based on studies conducted under contract with
the AEC.

t Now at Brookhaven National Laboratory, Upton, Long
Island, New York.' For recent declassi6ed articles on radiation damage in solids
see F. Seitz, Disc. Faraday Soc. No. 5, 271 (1949); J. C. Slater,
J. Appl. Phys. 22, 237 (1951).

~ Martin, Austerman, Eggleston, McGee, and Tarpinian, Phys.
Rev. 81, 664 (1951).

'Eggleston, Bowen, and Kropschot, paper given at Chicago
meeting of AIP, October 24, 1951.' H. B.Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).
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interstitials exist, In fact, in a close-packed crystalline
lattice. The most convenient and best understood'
physical properties, such as electrical and thermal
conductivity of metals, are not well suited to such an
investigation since both interstitials and vacancies are
scattering centers. It would be very difficult to separate
and measure unambiguously the two types of distur-
bances.

A simple physical argument indicates that elastic
constants may be quite sensitive to the presence of
interstitial atoms. In general, a bulk property is not
expected to be changed appreciably by the displacement
of a relatively small percentage of atoms. In close
packed metallic substances, however, the elastic con-
stants are determined primarily by the repulsive inter-
actions of the closed ion shells. This potential is of an
exponential nature and varies extremely rapidly with
interatomic distance. As the interaction distance is
shortened, for example by creating an interstitial, the
energy of the system increases sharply on the repulsive
side of the potential curve. The creation of vacancies
by removal of atoms results essentially in the destruc-
tion of some normal interactions. Thus, one expects
the inhuence of the interstitials to outweigh heavily
the effect of the vacancies.

The main purpose of this paper is to describe some
theoretical calculations that have been carried out in
an attempt to arrive at a quantitative estimate of the
e6ect of radiation on the elastic coefficients of simple
metals. In addition to yielding information concerning
interstitials and vacancies, the elastic properties them-
selves are of interest as influenced by lattice distur-
bances. It is well known''' that many mechanical
properties of materials are appreciably changed by
irradiation. Mechanical properties, however, are not
understood well enough, except in the range of perfect
elasticity, to permit a theoretical study of radiation
e6'ects. The elastic constants of metals, however, are

~ T. H. Blewitt and R. R. Coltman, Phys. Rev. S2, 769 (1951).
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suKclently well understood theoretically to Inake it
proitable to carry out some calculations concerning
the e6ect of radiation on elastic properties.

II. THE PHYSICAL MODEL

As stated above, changes in physical properties
caused by irradiation are pictured as the result of
random displacement of atoms. A perfect lattice is
assumed in which radiation creates lattice vacancies
and interstitial atoms. These disturbances will be pre-
served in their metastable positions provided the speci-
men is kept at a suKciently low temperature to prevent
annealing. The number of interstitials and vacancies
will be assumed to be small enough so that interaction
between the distrubances may be neglected, The prob-
lem is then to calculate the elastic coeKcients of a
crystal lattice containing a given small fraction of
interstitials and vacancies.

Trvo characteristic systems will be investigated. One
is the close-packed face-centered cubic lattice in which

primarily the closed-shell repulsive interactions deter-
mine the elastic constants. This description is suitable
for the noble metals and the calculations will be carried.
out for copper. It will be assumed that the interstitial
lodges in the geometrically favorable position, namely,
in the body-centered position of the face centered unit
cube. The second system is that typihed by the alkali
metals, namely the body-centered cubic. The calcula-
tions mill be carried out for sodium. In this system
both attractive and. repulsive interactions must be taken .

into account. Again, it will be assumed that the inter-
stitial lodges at the geometricaHy favorable position,
namely, in the center of the face of the body-centered.
unit cube. The calculations will be carried out for the
undistorted lattice 6rst. Relaxation around. the lattice
disturbances is calculated and discussed in Sec. VI.

The elastic coefficients of a homogeneous material are
calculable if the atomic interactions are known as a
function of the distance of separation of the atoms. A
radiation damaged material is, however, locally inhomo-

geneous. It is very dBBcult to take proper account of
this inhomogeneity. In the present approxima, tioo. ,
therefore, the real material was replaced by an approxi-
mately equivalent homogeneous material in which the
interactions ascribable to the lattice disturbances are
smeared over the whole crystal. Thus, the geometry of
the original lattice is retained but the potential energy
of the system is modified according to the number of
contacts formed and broken by the creation of inter-
stitials and vacancies.

It is evident that quite drastic approximations have
been made in order to carry out the calculations with a
reasonable amount of labor. It will be seen from later
sections that the results are quite clear-cut and the
present approximation is considered adequate in indi-

cating the direction and the order of magnitude of the
changes in elastic coeQicients to be expected from
"frozen in" radiation damage.

III. MATHEMATICAL FORMALISM

The elastic coeflicients of a crystal are given by the
second derivatives of the elastic potential energy per
unit volume with respect to the strains. Fuchs discusses
the derivation of these equations and further details
may be found in unclassified reports by the writer. ~

Only the 6nal working equations will be given here. It
has been found that summation over nearest neighbors
is: sufhcient for the face-centered cubic lattice, while

nearest and next nearest neighbors must be taken into
account in the body-centered cubic system. e 7

The final working equations are:
Face centered. cubic, nearest neighbors,

2 =r s(d'U/dr~)~, +7r, (dU/dr)r,

28= r,'(d'U/dr'). ,+3r,(d U/dr) r,

E=2C/Q, = (24/9V2r, )(d'U/dr'). „
where Qa ——volume per atom= 8'/4, and r,=interatomic
distance = 8/VZ

Body-centered cubic,

Nearest neighbors

16 I'dU)

3 I dr).,
16 (d Uq 8 (d'U )

I +-'I
9 ( dr), 9 (dr'3,

4 t'dU~ 8 ~d'Uq
+ I I +~'I, I

VS (dr )2.,)vS' 3 (dr') s.,~
4 (dU)

+—r,
I

VS 4 dr ) s.,gR

2C v3)dUq 2 1 (d'U~ 3 1 )dUq 2 1 (d'Up
I+——I; I+-—,I I +——

I —,I

Q, r2 I dr) ~, % r, t dr') r, 2' & dr)sr/~ v3' r, ( dr') sr, y&

where Qo ——volume. per atom= P/2, r,= interatomic

distance=&8/2, U(r) =potential energy per atom,
A=(cu —c,2)QO, 28=c44QO, 2C=E=-', (cn+2cg2)QO, c,g

6 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 I',1935); A153,
622 (1936).

=elastic coeKcients in dynes/cm', and E=bulk

modulus.

' G. J. Dienes, North American Aviation Report No. SR-80

(1951);North American Aviation Report No. SR-125 (1951).



230 G.. J. 0 IENES

TABLE I. The elastic coefficients of Cu calculated by Eq, (3),
in dynes cm~ (low temperature). Do =2.8X 10 ' erg /atom,
re=2 55X10 cm, and p=0 200X10 cm.

V may be used, given by

P D L1 e
—a(t —re) j2 (4)

Cll C12

C44

Calculated

5.1 X10"
8.6 X10"
1,33X10»

Experimental'

5.1 X10"
8.2 X10"
1.39X10"

a Data from references 6 and 10.

IV. THE ELASTIC COEFFICIENTS OF
COPPER AND SODIUM

Fuchs' has made a careful quantum-mechanical study
of the cohesive forces and elastic coefficients in copper
and the alkali metals. He has applied and extended the
earlier work of Signer and Seitz' and Seitz' on the
cohesive forces in sodium and lithium. Two of his
conclusions, important for the purpose of the present
paper, may be stated as follows: 1. In copper the
elastic coefficients are primarily determined by the
closed shell repulsive interactions. This, apparently,
holds even for the compressibility although one may
expect purely volume forces to be of importance. 2.
In the alkali metals both attractive and repulsive
energies must be taken into account.

In neither case did Fuchs arrive at a simple function
for U which could be conveniently used in the present
calculations. Huntington and Seitz,"in their theoretical
study of self-diA'usion in copper, point out that a simple
exponential f'unction of the Born and Mayer type can
be used satisfactorily to represent the repulsive inter-
actions. This result, combined with the results of
Fuchs' study, suggests that the elastic constants of
copper may be adequg, tely described by assuming U to
be given, as a function of distance, r, by the relation

(3)

where Do and p are adjustable constants. A single
exponential function is an adequate approximation in
this case because the second derivative of the attractive
part of the potential energy is small compared to that
of the repulsive part and can, therefore, be neglected.

This same approximation cannot be used for the
alkali metals. To carry out the proposed calculation,
it is important to find some simple function for U which
can be used for calculating the elastic coeKcients of
alkali metals. Slater suggests" that a Morse function is
a rather good approximation for the interatomic po-
tential in metals. More recently Pauling" found that a
Morse potential function can be used to calculate the
compressibility of metals as a function of pressure.
Consequently, it was thought that for sodium a function

' E. P. signer and F. Seitz, Phys. Rev. 43, 804 (1933); 46,
509 (1934).' F. Seitz, Phys. Rev. 47, 400 (1935).

'o H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942)."J.C. Slater, Introductiorl, to Chemica/ Physics (McGraw-Hill
Book Company, Inc. , New York, 1939), pp. 450-456."L.Pauling, Science 111' 461 (1950).

The use of the Morse potential function for describing
the elastic coef6cients of the alkali metals is discussed
in detail in an unclassified report by the writer:" It is
suKcient to state here that Eq. (3) has been found
satisfactory for copper and Eq. (4) for sodium. The
constants of Eqs. (3) and (4) have been calculated and
the calculated elastic coefficients were found to be in

good agreement with experimental values. The pertinent
data are collected in Tables I and II. For sodium'4 it
was necessary to sum over both nearest and next
nearest neighbors.

It is concluded from these results that the elastic
coefficients are quite well described by the atomic
interaction potentials represented by Eqs. (3) and (4)
for copper and sodium, respectively. It should be
emphasized that, in both cases, only two adjustable
constants (Do and p, and Do and a, respectively) are
employed to fit three elastic constants. The equilibrium
interatomic distance r, is considered to be known and
fixed.

TABLE II. The elastic coefficients of Na calculated by Eq. (4),
in dynes cm (room temperature). ' Do ——5.19X10 " erg/atom,
r,=3.68X10 s cm, and u=1.06X108 cm.

Calculated Experimentalb

Cll C12

C44

1.159X 10'o
4.26 X10"
4.15 X10"

1.159X 10'
426 X101o
4.20 X10"

a The elastic coe%cients of Na at low temperature (see reference 14)
(80 K) can also be satisfactorily fitted using DO=6.84&(10 14, rs=3.68
)&10 8, and a =1.087 &(108.

b Data from R. F. S. Hearmon, Revs. Modern Phys. 18, 409 (1946).

'3 G. J. Dienes, North American Aviation Report No. SR-125
(1951).' S. L. Quimby and S. Siegel, Phys, Rev. 54, 293 (1938).

V. INTERSTITIALS AND VACANCIES IN
COPPER AND SODIUM

Sufficient background information is now at hand to
carry out the theoretical estimate proposed in Sec. II.
The calculations for copper will be described Qrst since
this metal represents the simpler case.

Let the fraction of interstitials produced by radiation
be denoted by x. In the absence of any annealing the
fraction of vacancies left behind is also x. In creating a
vacancy 12 normal contacts are broken. Formation of
an interstitial in the body-center position of the face-
centered copper lattice requires j.4 new contacts, 6 of
them (v2/2)r away and 8 of them (v3v2/2)r away.
Following the physical discussion of Sec. II, the total
repulsive potential energy per atom may then be
written,

U = (1—x)Do exp( —r/p)+ x(6/12) Do expl —(~2/2) r/p j
+g(8/12)D~ exp[ —(%342/2)r/p]. (5)
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If one neglects lattice relaxation and volume efIIects,

the elastic coefficients of the damaged crystal are
calculable from Eqs. (5) and (1) with all the derivatives
evaluated at r, . Physically this means that the change
in repulsive energy has been spread out over the whole

crystal and, in eRect, the damaged lattice has been
replaced by an equivalent homogeneous face-centered
cubic lattice for which the repulsive interactions are
given by Eq. (5) in place of Eq. (3).

In addition to the assumptions and approximations
discussed so far, a further assumption is implicit in
these calculations. Equation (5) assumes that the
repulsive potential energy function, Eq. (3), 6tted to
the perfect lattice, remains valid over the considerably
shorter interaction distances used in Eq. (5). Prom

present knowledge of interaction forces it is impossible

to estimate the degree of approximation involved.
The calculations indicated above have been carried

out. The changes in the elastic coefficients are evidently

proportional to x (fraction of interstitials or vacancies).
It is of interest to give the results for two concentra-

tions, x=0.01 (1 percent) and x=0.05 (5 percent),
covering the range of concentration expected in irradi-

ated materials. For consistency, the comparison is made

relative to the calculated elastic constants of Table I.
The results are summarized in Table III. In addition

to the changes in the three fundamental elastic coeffi-

cients the corresponding values for the two Voung's

moduli are also given. Young's moduli, corresponding

to tile slieal' moduh c44 and 2(cll —c22), ale defined by

El 9Ec44/ (c44+——3E)
E2 ——9E -', (cll—cl2)/[-';(cii —c12)+3Ã].

The data in Table III indicate that large changes in

the elastic moduli of copper are to be expected as a
result of the creation of interstitials and vacancies. The

higher elastic coefficients are entirely due to the

presence of interstitials. Vacancies alone decrease the
elastic coefficients. The eRect of vacancies is easily

calculable using the first term of Eq. (5) for U. Per-

forming such a calculation it was found that 1 percent
vacancies decrease the elastic coefficients very closely

by 1 percent indicating that this change is primarily a
bulk eRect. These general results are physicaHy to be

expected as long as it is reasonable to derive the elastic

properties from the closed sheH interaction. If it is

valid to consider irradiation to result in interstitials

and vacancies then radiation damage is expected to
increase the elastic coefficients in a metal such as copper
and the increase in the elastic coefficients is primarily

a measure of the number of interstitial atoms.
The calculations for sodium, a body-centered cubic

lattice, are carried out in an analogous manner with the

modification that a Morse potential is to be used for U

[Eq. (4)], and both nearest and next nearest neighbors

are to be counted in calculating the elastic coe%cients

from U as shown by Eq. (2). In creating a vacancy 14

normal contacts ar'e broken. Formation of an inter-

TARSI,E III. EGect of interstitials and vacancies on the elastic
coefficients of copper (in dynes cm~).

cI~-cI2(unirrad. )
cI~—c12(irrad. }
6(Cl 1 C12)
a(Cl1 C12)/(Cll Cl2)

x =0.00

5.1 X10"
x =0.01

53 X10»
0.2 X10»
39%

6.1 X10»
1.0 X10»

19.6%

c44(unlrl ad.)
c44(Irrad. )
Ac44
~c44/c44

E(unirrad. )
Z(ir«d. )
h,E
aE/E
E1(unirrad. )
EI(irrad. )
AEI
b,EI/EI

8.6 X10»

2.125X 10»

9.4 X10" 12.6 X10»
X10" 4.0 X10"

9.3% 46.5%

1.45 x1o» 1.93 x10»
0.12 X 10» 0.6 X10»
9.0% 45.0%

2.32 X10» S.11 X10»
O.195X1O» 0.985X10»
9.2%%uc 46.3%%uc

E2(unlrrad. )
E2(irrad. )
AE2
C4E2/E2

1.41/X 10»
0.062X 10»
4.56%

1.655X10»
O.~ X10»

22.1%

VI. RELAXATION EFFECTS

Relaxation of the atoms around the lattice distur-

bances has so far not been taken into account. These

atomic readjustments can be of considerable impor-

stitial in the face-centered position of the body-centered
sodium lattice requires the formation of 2 new contacts

(1/v3)r away and 4 new contacts (K2/v3)r away.
Analogous to Eq. (5), therefore, the total potential

energy per atom may be written

U= (1—x)Dc(1—exp[—a(r —r.)])2
+x(2/14) Dll(1 —exp[—a(rj&3—r,)])2

+x(4/14)Do{1—exp[ —a(2r/V3' —r.)]}'. (&)

The elastic coeNcients are then calculated directly
from Eq. (2) using the expression for U given above.

The calculations indicated above have been carried

out. The changes in the elastic coefficients are propor-

tional to x and the results are again given for two

concentrations (x=0.01 and x=0.05). For consistency,

the comparison is made relative to the calculated

elastic coeKcients of Table II. The results are summar-

ized in Table IV.
As Table IV shows, the predicted eGects for sodium,

calculated on the basis of a Morse function interaction,

and in the absence of relaxation, are of the same order

of magnitude as for copper calculated from the repulsive

interactions. The eRect of vacancies alone has also been

determined in sodium. As in the case of copper, vacan-

cies alone decrease the elastic coefficients and the change

is again essentially a bulk eRect, i.e., 1 percent vacancies

decrease the elastic coeScients very closely by
percent. Thus, for sodium also, the increase in the

elastic coeKcients is primarily a measure of the number

of interstitial atoms.
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cl2(unirrad. )
cll —cl2(irrad. )
A/C11 C12]
+l cll c12j/(cll cl2)

c44(unirrad. )
c44(irrad. )
b,c44
Dc44/c44

E(unirrad. )I(lrrad. )
DIC
SIC/E

x =0.00

1.159X10"

426 Xioo

4.$5 X10M

x =0.01

1.218X 10'o
0.059X 10'o
5.1%

4.3& X10'o
011 X10'o
2.6%

4.42 X10'o
0.27 X10'o
6.5%

x =0.05

1.454X iolo
0 295 X 10'o

25.5%

4.81 X10'o
O.SS X10«
3.O

S.S X1O'o
1.35 Xiolo

32.S

El(unirrad. )
El(irrad. )
azl
DEl/El

958 X1.(Po

9.87 Xio" 11.17 Xio"
029 Xio" 159 Xio'O
3 0%

TAsLz IV. Effect of interstitials and vacancies on the elastic
coefFicients of sodium (in dynes cm~).

moving atom, that is, uniform distortion is assumed.
This calculation is analogous to the one given by
Dienes" for alkali halide crystals.

In Fig. 1 part of the next cell in one direction is
illustrated in order to show which atoms are assumed

to remain at their lattice sites. The interstitial itself
has fourteen neighbors which become displaced —six in

the face-centered positions and eight at the corners of
the cube. All atoms further away than these fourteen
are assumed to suffer no displacement (Fig. I). Each
of these moving neighbors has twelve contacts which
are changed by relaxation and must be evaluated. Of
these twelve those which are not nearest neighbors of
the interstitial are stationary. However, the nearest
neighbors of the moving atom which are also nearest

e4
5.6 XIO

E2(unirrad. )
E2(irrad. )
aE2
aE2/E2

321 Xio'o
3.35 X10"
0.14 X10'o
4.4%

4.01 X 10"
0 8 X10'

24.9%
5'2

tance, particularly in the alkali metals. " The atoms
around an interstitial will certainly move outwards to
accommodate the interstitial atom. Similarly, the atoms
around a vacancy tend to move toward the empty
lattice site. If these atomic motions are relatively large,
the increase in the elastic constants calculated in the
previous section may be a serious overestimate.

The outward motion of the atoms around an inter-
stitial in copper is illustrated in' Pig. 1. The repulsive
interactions of the interstitial with its nearest neighbors
push the atoms outward while the neighbors of the
moving atom tend to restore it to its normal lattice
position. Balance between these two forces will lead to
an equilibrium displacement. The calculation is best
carried out by finding the minimum in the potential
energy of the whole system as a function of displace-
ment, hr. The displacement hr is taken to be the same
percentage of the atom to interstitial distance for each

~ NEAREST NEIGHBORS OF DtSTURBED CELL
%MICH ARE TAKEN TO SE STATIONARY

INTER
AT

/
/

1
/

I
, /

FIG. i. Relaxation of atoms around an interstitial in copper.

'5 H. R. Paneth, Phys. Rev. 80, 708 (1950).

54

~)~

g 4.e

la
O

4.6
IV
lala
hl

4.0
0 6 8

PERCENT CHANGE. IN INfERATONIIC D)STANCE

Pre. 2. Determination of equilibrium relaxation around an
interstitial in copper.

neighbors of the interstitial have been displaced and
their interactions were counted from the displaced
position. These are the interactions which one must not
count twice in the summation.

As an example of the procedure consider an atom
normally in the face-centered position. After displace-
ment the following interactions have changed and have
been taken into account: (a) Interaction with inter-
stitial. (b) Interaction with four nearest neighbors of
the displaced face-centered atom which themselves
have not moved (solid circles in Fig. I). (c) Interaction
with eight nearest neighbors of the displaced face-
centered atom which themselves have been displaced.
Similarly, for a corner atom the interactions are: (d)
Interaction with interstitial. (e) Interaction with nine

' G. J. Dienes, J. Chem. Phys. 16, 620 (1948).
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nearest neighbors of the displaced corner atom which
themselves have not moved. (f) Interaction with three
nearest neighbors of the displaced corner atom which
themselves have been displaced.

The summation required for evaluating the energy of
the system evidently contains a large number of terms
and is best accomplished by a point-by-point calculation
for various values of Ar. The results are shown in
Fig. 2 where the energy of the system, in units of
E/2DO is plotted against the percentage change in
interatomic distance, r. The minimum occurs at an
outward equilibrium displacement of 9 percent.

Analogous calculations have been performed for
relaxation inward around a vacant lattice site. The
results are shown in Fig. 3 where the minimum is shown

li554 X IQ

I,548

I.542

"'lm

I.556

I

0

I, 550

I.524

I.SI8
0 I 2 5

PERCENT CHANGE IN INTERATQNIIC DISTANCE

FIG. 3. Determination of equilibrium relaxation around a
vacancy in copper.

to occur at an inward equilibrium displacement of 2
percent.

The equilibrium displacements having been deter-
mined, the total repulsive energy per atom, U, Eq. (5),
can now be corrected for relaxation by taking into
account all the altered interactions. Since the relaxation
around a vacancy is small and the inhuence of the
vacancies upon the elastic constants is also small, the
relaxation corrections were applied only to the atoms
surrounding the interstitial. From this point on the
calculation is identical to that given in the previous
section. The results show that the relaxation eGects in

copper decrease the inQuence of the interstitials, i.e.,
the increase in moduli resulting from the interstitials is
not as large in the presence as in the absence of relaxa-
tion. The changes are, however, not large enough to
modify any of the conclusions given in Sec. V, that is,

TABLE V. Effect of interstitials and vacancies on the elastic
coefGcients of copper (in dynes cm~).

Elastic coeKcient

x =0.02
Without

relaxation

x ~0.01
With

relaxation

~11 ~12

6(CII—C12)
~(~ —~ )/(& —& )
C44

AC44

AC44/C44

E
AE
aE/E

5.1 X10»

8.6 X10»

1.83X10»

5.3 X 1011

Q.2 X1Q»
39%
9.4 X10»
P.8 X1P»
9 3%%uo

45X 1P'
0.12X 10'2
9.0%

.3 X1P»
P2 X1P1

9.2 X10»
0.6 X10»
7.0/o
1.42X10"
0.09X 10'2
6.8%

a x =fraction of interstials =fraction of vacancies.

iMTERSTITIAI.
4TON

1

I
I

I
I

I
(4

I
/

l
I

I
l

FIG. 4. Relaxation of atoms around an interstitial in sodium.

the presence of interstitials in copper leads to a large
increase in the elastic moduli even after relaxation.
The results are summarized in Table V.

Relaxation e6ects in sodium are calculated in an
analogous manner to that given for copper in the
previous section except that the geometry is that of a
body-centered cubic lattice and the interatomic inter-
action function is the Morse function LEq. (4)j. The
outward relaxation around an interstitial is illustrated
in Fig. 4. The most important eGect comes from the
relaxation of the six nearest neighbors of the inter-
stitial. Each of the moving atoms has fourteen contacts
which must be taken into account, care being exercised
in not counting twice the neighbors of the interstitial.

The total energy vs displacement curve is shown in

Fig. 5. The minimum occurs at an outward equilibrium
displacement of 30 percent. Evidently, relaxation
around an interstitial in the more open body-centered
cubic structure is far greater than in the close-packed

copper lattice. . Physically, this is a reasonable result.
Similar calculations for a vacent lattice site indicated

that the lattice shows no relaxation around a vacancy
within the accuracy of the nearest neighbor approxi-
mation. Since the influence of the vacancies is small to
start with a more detailed calculation was not carried

out.
Evaluation of the elastic constants in the relaxed

lattice gave the results in Table Vl. Comparison with
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4I.O X IO TABLE VI. KGect of interstitials and vacancies on the elastic
coe%cients of sodium (in dynes cm~).

Elastic coeKcient x =0.00a

x =0.01
Without

relaxation

x =0.01
With

relaxation

IO I5 20 2$
S'EIICENT CIIANOE III INTENATONIIC OI$TANCE

II

$0

~ll ~12
6(611—012)
6(C11 Cil2) /(C1 1 612)
&44

AC44/C44
E
d,E
AKjE

1 159X1010 1 218X1010

0.059X10"
5.1

4.26 X10» 4.37 X 1010

0.11 X 1010

26%
4.15 X10" 4.42 X10"

0.2'E X10'0
6.5%

1 166X10»
0 007X1010
0,6%%uo

X 1010

0.03 X10"
0.7%
4.23 X1010
0.08 X10'0
1.9%

I'"xo. 5. Determination of equilibrium relaxation around an
interstitial in sodium.

the unrelaxed lattice shows that atomic readjustments
in the body-centered cubic lattice of sodium reduces the
efkct of the interstitial essentially to a bulk eRect.

VII. SUMMARY

I, An approximate theoretical treatment is given of
the change in elastic constants of simple metals caused
by the presence of a given smaB fraction of interstitial
atoms and vacancies. The elastic constants are calcu-
lated from interatomic potentials employing a simple
exponential function for copper and a Morse function
for sodium. Relaxation e6ects are taken into account.

2. A crystal containing interstitial atoms and vacan-
cies is local inhomogeneous. The major approximation
of the theory is the replacement of the inhomogeneous
lattice by an approximately equivalent homogeneous
material in which the interactions ascribable to the
lattice disturbances are smeared over the whole crystal.
Thus, the geometry of the original lattice is retained in
the present calculations, but the potential energy of the
system is modified according to the number of contacts
formed and broken by the creation of interstitials and
vacancies.

3. The theoretically calculated changes in elastic
coeScients are large in copper even in the presence of
relaxation. In sodium, however, which has the more
open body-centered structure, the relaxation around
the interstitial is quite large. This atomic readjustment
reduces the eRect of the lattice disturbances to the
magnitude of a bulk eRect.

4. The presence of interstitial atoms and vacant
lattice sites in a close-packed cubic crystal, such as
copper, results in an appreciable increase in the elastic

a x =fraction of interstitials =fraction of vacancies.

moduli. Vacancies alone decrease the elastic moduli by
a magnitude corresponding essentially to a bulk eRect.
The increase in elastic coeKcients, therefore, is due
to the presence of interstitial atoms, with the increase
being several orders of magnitude larger than would be
predicted from a simple bulk efkct.

5. The theoreticaBy predicted eRects should be easily
observable experimentaBy provided interstitial atoms
are, in fact, produced by irradiation, or by any other
means, such as perhaps coM work at very low tempera-
tures. To prevent annealing which may occur rapidly
at room temperature the lattice disturbances must be
produced and preserved at low temperatures.

6, The theoretical results strongly suggest. that
changes in elastic constants may serve as a useful and
powerful tool for distinguishing between interstitial.
atoms and vacant lattice sites. Furthermore, since the
mechanical properties of solids are known to be changed
by irradiation, the study of elastic constants as a
function of irradiation is of direct interest in yielding
information about one of the fundamental mechanical
properties.

Pote added ie Proof:—Preliminary experiments by
Bowman and Tarpinian (private communication, Feb-
ruary, 1952) indicate that Young's modulus of copper
increases by as much as 10 percent upon heavy cyclo-
tron irradiation.
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