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which C;=0 as would be required. In this connection,
it is interesting to observe that the "ferromagnetic
case" can be included in the assumptions of Eqs. (8)
by letting 3f2 0.——Then both (5) and (11) lead to the
same frequency Zo+Zg, if one first assumes a sphere

in (5), and 'then neglects demagnetizing effects as was
done in (11).

I wish to thank Dr. J. S. Smart for several interesting
discussions on the magnetic properties of the ferrites,
and Dr. L R. Maxwell for his continued interest.
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The effects on the hyper6ne structure of the mixing of higher configurations with the ground con6guration
(4s) 4P of gallium is studied. It is found that the only configuration which need be considered is the 4s4p5s.
A Hartree wave function for the excited 5s-state of gallium is calculated, and the extent of the mixing of
this excited con6guration with the ground configuratiog is determined-. The coupling constants for magnetic
and electric quadrupole hyperfine structure are computed with the use of the wave function for the ground
state of gallium including the excited configuration. The determination of quadrupole moments from
atomic hyperfine structure measurements is discussed and various methods of making this calculation
compared. Beside the determination of the quadrupole moments of gallium, the quadrupole moments of
aluminum, indium, and chlorine are estimated.

I. INTRODUCTION

'HE splitting of the 6ne structure levels of an
atom due to the hyperfine interactions can be

written (in units of sec ') as'

(Z) uC

&h)

(3/4)C(C+ 1)—I(I+ 1)J(1+1)
b , (1)2'(2I—1)(2J'—1)

where

C=F(F+1)—I(I+ 1)—J(J+1).

~ Supported by the ONR and the Research Laboratory in
Electronics.

f Part of a thesis submitted in partial ful6llment of the require-
ments for the Ph.D. degree at the Massachusetts Institute of
Technology.

f Present address: Brookhaven National Laboratory, Upton,¹wYork.
'H. Kopfermann, Xernmamente (Akademische Verlagsgesell-

schaft M.B.H. , Leipzig, 1940), Chapter I.

Here J is the total electronic angular momentum, I is
the nuclear spin, and Ii is the total angular momentum
of the nucleus and the electrons. The R"st term in Eq.
(1) arises from the interaction of the magnetic dipole
moment of the nucleus and the magnetic field at the
nucleus because of the surrounding electrons. The
second term arises from the interaction of the electric
field at the nucleus, due to the electrons, and the
electric quadrupole moment of the nucleus. The quan-
tities a and b are two coupling constants which measure
the strength of the interaction between the nucleus and

the atomic electrons. They are given by'

o= —( /II)(Z' &'.)A.

Here p. is the magnetic moment of the nucleus, and II;,
is the s component of the magnetic Geld at the nucleus
caused by the ith electron. The summation extends
over all the atomic electrons. Q is the quadrupole
moment of the nucleus and 8;, p;, and r; are the spherical
coordinates of the ith electron. The average values
which appear in these formulas are to be taken for the
electrons in the state mJ= J. If we assume that our
electronic wave function arises from a single configura-
tion, and that this configuration contains one electron
.outside of closed shells, we find that'

o= (u~o/I)l:2L(I+ 1)P(I+1)j(1/~)A ~ (4)

where p, =eh/4smc. Here I. is the orbital angular
momentum of the electron outside the closed shells and
the average value is taken, with respect to this electron's
wave function. 5' is a small relativistic correction ( 1)
given by Casimir. ' The constant b is given. by'

fi =e'Q(2L/2L+3)(1/ra)A„st,

if we assume that the wave function is separable into a
product of a radial and an angular part. 8, is another
small relativistic correction given by Casimir. I'or the
atoms with one p-electron outside of closed shells, we

H. B. G. Casimir, On the Interaction bet2oeen Atomic Nuclei
and EIectroni (Teylers Tweede Genootschap, Haarlem, j.936).
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6nd, on the basis of Eqs. (4) and (5), (setting J=as)
tha, t the quadrupole moment can be expressed in terms
of the experimentally measured value of the. ratio of u
to b.

Q=(8/3)(f'/a)(~~s/~1)(~/@) (6)

These equations also predict that

The use of Eq. (6) to determine the quadrupole moment
tas 6rst suggested by Davis, Feld, Zabel, and Zacharias, s

who also noticed that for aluminum, gallium, and
indium the ratio in Eq. (7) differed considerably from
the value predicted. This leads one to suspect that the
assumptions underlying the use of Eq. (6) to determine
the quadrupole moments of substances may be in error.
The aspect which we shall investigate is the assumption
that the ground. -state wave function of these atoms can
be taken as though it arises from a single con6guration.
In parti. cular, we shall consider the eQ'ect of con6gura-
tion interactions on the ground states of gallium.
Iermi and Segre4 6rst carried out a calculation of
con6guration interaction for thallium, which shows
similar anomalies.

II. CALCULATION OF THE MIXING
OF CONFIGURATIONS

The mixing of configurations is caused by the electro-
static interactions between electrons. The Hamiltonian
for the electrons in an atom, neglecting magnetic
interactions, is given by

con6guration, we are also limited to those which are
strongly coupled to the nucleus and which are energeti-
cally close to the (4$)'4p configuration. The 4$4p5$
con6guration has all the desired properties. It can
produce relatively great hyper6ne structure splittings
since it contains two s electrons outside of closed sheBs
which need no longer, because of the exclusion principle,
have paired spins. The only other nearby con6guration
which has the desired properties is the 4$4p4d configura-
tion, We shall not include it in our calculations since it
does not interact as strongly with the (4$)'4p configura-
tion~ and also because it is further removed in energy
from the (4$)'4p con6guration than is the 4$4p5$ con-
6guration. The 4$4p5$ con6guration can give rise to
two difFerent 'P-states, depending on how the spins of
the 4$4p and 5$ electrons are combined 'to give a
system of angular momentum 8=-,'. Let us denote
these two statesby+'(sP$) and 0'(sPg). The (4$)'4P 'P
state we shall denote by @'('Pq). Our ground-state
wave function must be written, if con6guration inter-
action is included, as

4'('P g) = ne%s('P$)+ eg%'(sP g)+ns+s(sP$) (9)

The a's are calculated by minimizing the expectation
value of the Hamiltonian LEq. (8)j subject to the
cons tl aint

&e+~l+~s'=1.

Details of this calculation, along with the specific
forms of the wave functions %"('P$) for J'= s, —,

' in
terms of one electron wave functions, are contained. in

Appendix I. There we find that

(8) 0.0=0.995; aj——0.0307; ay= —O.i02

where rg represents the distance between two electrons'

and Z is the atomic number of the atom. The units in

the equation are a,tomic units. ' There exist matrix
elements of this Hamiltonian between dHkrent con-
6gurations. The choice of gallium for a calculation of
con6guration interaction was governed hy the existence
of numerical wave functions for the ground con6gura-
tion of this atom6 and of accurate hyper6ne structure
measurements in both the 'Py and. the metastable 'Py
states. Matrix elements of the Hamiltonian LEq. (8)j
vanish if the states arising from the two con6gurations
difFer in either multiplicity, total orbital angular mo-

mentum (I.), total angular momentum (J), or parity.
Since the ground. state of gallium is a 2P-state, we need

only consider 'P-states arising from excited con6gura-
tions as being mixed with the ground con6guration.
(The ground con6guration of gallium is (1$)'(2$)'(2p)'-
(5$)s(3P)'(Sd)"(4$)'4P.) In our choice of an excited

' Davis, Feld, Zabel, and Zacharias, Phys. Rev. 76, 1076 (1949).
K. Fermi and K. Segrh, Rendiconti del/a R. Academia d'ItaHa

4, 18 (1933-XI);K. Fermi and E. Segrh, Z. Physik 82, 729 (1933).
~ D. R. Hartree, Reports on Progress in Physics Il, 113 (1946-

1947). The unit of energy is Rbc. R is the Rydberg.
6 Hartree, Hartree, and Manning, Phys. Rev. 59, 299 (1941).

for both J=~ and J=-', .

III. EFFECT ON THE HYPERFINE
COUPLING CONSTANTS

The efFect that this mixture of con6gurations ha, s on
the magnetic hyper6ne coupling constant, e, is now

sought. The coupling constants for the states J= ~ and
J=-,' will be given by

a)= —(p/IJ)
' C*(sP), mg=g)

Xpj PjNC( P$y fSJ' 's)k$' lE/3$

(12)

a)= —(p/IJ) C*(sP), sag=as)

gQ; H;,C (sP), sly= $)d~g ~ drsg.

These integrals ca,n be reduced to a sum of integrals

over one electron coordinates by use of the explicit

7 The oG-diagonal terms for the matrix of the interaction of
this configuration vrith the ground configuration are about 1/20
of the similar terms for the 4s4pss configuration. This result was
obtained by using Slater's analytic @rave functions D, C. Slater,
Phys. Rev. N, 5'/ (1930)g.
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Nucleus Z

APV 13
Ga69 31
Ga»
ln115 49
gn113

10.0
27.4
27.4
45.1
45.1

0.156
0.232
0.146
1.17
1.15

0.153
0.178
0.112
0.759
0.746

0.155
0.186
0.118
0.834
0.820

0.189
0.119

a The shielding correction (see reference IS, Table II) would increase the
values of the quadrupole moments by a factor of 1.f05 for Al, 1.032 for In,
and i.046 for Ga.

If we use the explicit forms of the angular parts of
our one-electron wave functions as given in Condon
and shortley, "we can evaluate the integrals (12) using
the s wave function (15) and the form of the magnetic
fieM at the nucleus given in Kqs. (13) and (14). We find

e;= —(2~~o/31) (ao'C —(8/5) &(1/~&j

+ 'L-(8/5) ~(1/+&j
+ai'C —(16~/9) fe'(0)+ ~'(0) I

—(32l15»(1/~&j
+2aiaoC(1/3)'(8~/3)fe'(0) —~'(0)Ij

+2aiapC(1/6) &(16Ã/3) s(0)0 (0)j)
o)= —(2~~o/1)(ao'C —(8/3) &(1/~&j

(16)

+ 'C-(8/3) ~(1/~&3
+- C(16-/27) f "(0)+"(0)I-(8/3) ~«/nj
+2aiaoC —(I/3)'(8~/9) f e'(0) —~'(0) Ij

+2aiapC —(1/6)&(16or/9)s(0) p(0)j).
' K. Fermi, Z. Physik 60, 320 {1930).' L. I. Schi6, Quaetens Mechanics {McGraw-Hill Book Com-

pany, Inc. , ¹mYork, 1949}.
'0 C. G, Darwin, Proc. Roy. Soc. {London) 118, 654 {1928)."E.U. Condon and G. H. Shortley, Theory of Atomic Spectra

{Cainbridge University Press, London, 1935}.

forms of 4"('Eg) in Appendix I. For the integrals of
single electron wave functions with /= 1, we shall use
as the operator for the magnetic Geld at the nucleus
due to a single electron'

H'= —(2~o/r") f &'—s'+C3(s' r')/&"jr*) (13)
For the expectation values involving s electrons, use of
this operator wou1d not yield finite results. Instead we
shalt. use the relativistic expression for the magnetic
6eld at the nucleus'

II,=e(eXr;)/r;o. (14)

Here 0. , e„,and n, are the well-known matrices appear-
ing in, the Dirac equation. ' For a four™component wave
function, we shall use the approximation of a Dirac
wave function by a Schrodinger wave function for a
central Geld given by Darwin. ' "

( ph ) 8
Pp, (Dirac)= I I

cose—Pp, ,
&4~me) ar

t' pl'p ) 8
~(sintt)e'& —|/i4, , imp, p . (15)

E4orme) 8&

This expression will replace Pp, a.
TABLE I. Quadrupole moments of Al, Ga, and In {all quadrupole

moments in units of 10~4 cm~}.'

In these equations, s(0) represents the value of the 4s
wave function at r=0 and 4r(0) represents the value of
the Ss wave function at r=o. Ke have also that

(1/"&=
f'

C~.:()/"jd'

%e notice that terms in addition to that appearing in
Eq (4). have appeared in the coupling constant arising
from the unpaired. spins in the excited con6guration.

The quadrupole coupling constant mill be given by

b= —e'Q, ' CP('EI, my=so)P;C(3 cos8;—1)/r, oj

XI ('I'I, m y= oo)do 1 ~-dr pi. (17)

Performing the indicated integrations, we find that

b =e'Q(2/5)(1/r')(ap'+ai'+ ao') 6t. (18)

This yields, by use of the normalization condition
CEq. (10)j, that

fi =e'Q(2/5) (R(1/r').

This is exactly the same form which the coupling
constant would have if the conhguration interaction
were neglected (ai=ao ——0; ap 1). T——he excited con-
6guration divers from the ground conGguration only in
that one of the 4s electrons is excited to a Ss state. The
s electrons, because of their spherical symmetry, do not
contribute to the quadrupole interaction energy. In
this way we can understand this result.

~' ~UADRUI OLS MOMENT OF GALLIUM

In order to determine the quadrupole moment of
gallium from the measured value of b, we need the
value of (1/r'&. We shall determine the value of this
quantity from the measured value of d;~ by estimating
s(0) and e (0). We can estimate these quantities by two
means. They are given directly from the Hartree 4s
and Ss functions for gallium. This gives the values
$(0)=2.708o~ cm~ aild 0'(0) =0.9568p~ cm~. Go ls tile
Bohr radius. Ke can also determine these quantities
from the formula of Fermi and Segre4

Z de* j.
Ca..o(o)7=

aooor n*' dn 1—P'Z'

Here P is the fine structure constant and n* is defined
by the equation

E„=—(E/n*') cm ',

where E„ is the term energy of the electron under
consideration, and E is the Rydberg. Using the Hartree
energies for E„and the estimate of dn*/dn given by
Kopfermann, ' we find that E(0)=2.82ap I cm I and
0'(0) = 1.07gp I cm~. Thcsc values al'c ill good agl'ce-
ment with those obtained from the Hartree functions.



If we insert the Hartree values along with the values
of no, ni, and am that we have determined into Eq. (16),
we obtain

u) ———(2@no/I}[—0.280ug-' —2.67 %)(1/r'}j
ut= —(2ppo/3I)50 83&uo '—1.615){1/ri}j.

(2o)

%e notice the eGect of the configuration interaction is
smaller in the J= ~ state. This is a reQection of the fact
that in the J=~ state the probability of finding an s
electron with spin "up" is more nearly equal to the
probability of 6nding it with spin "down" than it was
in the J=-,' state. The smaller correction resulting from
conhguration interaction in this state provides the
reason for calculating {1/r'} from the I=) rather than
the J= ~3 state. For gallium, we have the values" '4

Ga69 ~

Method HI: The theoretical formula for the 6ne struc-
ture splitting 8 will bc unaGected by this type of con-
6guration interaction. The reason for this is that s elec-
trons do not contribute to the fine structure separations.
Exciting an s electron by raising it to an s state with
principal quantum number increased by one will, there-
fore, not change, the formula for this splitting. Calcu-
lation of the fine structure coupling constant for our
many con6guration wave function bears out this result.
Ke have that

b=(3&, /s)&(1/r)(d V/dr)}X. (23)

V is the potential in which the electron outside of the
spherically symmetric shells moves, and

F00

((1/r) (dV/dr)) = P„„'(r)(1/r) (d Vj/dr)dr

Ga":

u~= 1338.78 Mc/sec, ut =190.790 Mc/sec,

p=2.001 (in nuclear magnetons), I=f,
b =62.518 Mc/sec.

u~= 1'R1.05 Mc/sec, u~= 242.424 Mc/sec,

p=2.543 nm, I=-'„b=39.398 Me/sec.

for elements with one p electron outside of closed shells.
3.' is a small ielativistic correction given by Casimir. 2

%e can de6ne a quantity Z, by the relation

((1/r) (d V/dr}}=Z,(1/t }

TABLE II. Quadrupole moments of the chlorine isotopes. '

Using these values in Eq. (20) for the J=2i state we

find that (1/r')=3. 46uo ' cm ' for Ga. Substituting
this value into the formula for the coupling constant
for the J=s state in (20), we find ut=201 Mc/sec.
Neglecting the conlgur ation interaction, we had
u~/ut=5. 41. Including the configuration interaction,
we find ui/ut ——6.67, while the experimental value of
this ratio is 7.02.

From the experimental value of b and the value of
(1/r'} that we have determined, we calculate the

quadrupole moments of gallium to be"

Q(Ga") =0.190X10 '4 cin'

Q(Gai') =0.120X10 "cm'.

Ke have four possible ways that we can use to
estimate the quadrupole moments of nuclei in other
elements with an electronic structure similar to that of
gallium. .

Method I:From the measured value of b/ut

Q= {8/3)(b/ut)(pro/e'I)(S)/6t). (21)

Method II:From the measured value of b/u~

Q= (40/3)(bju~)(~~o/~I)(5:)/) (22)

~ N. A. Renzetti, Phys. Rev. 57, 75$ (1940)."G. E. Seeker and P. Kusch, Phys. Rev. 73, 584 (1948).
'4 J. E. Mack, Revs. Modern Phys. 22, 64 (1950).
'SValues of the quadrupole moments in this article do not

include shielding corrections of the type considered by R. Stern-
heimer, Phys. Rev, 84, 244 (1951);80, 102 (1950).This correction,
on the basis of Sternheimer's Thomas-Fermi calculation, increases
the values of the quadrupole moments of gallium by a factor 1.046.

Nucleus 8
CPS 17
CP' 17

13.7
13.7

—0.0789—0.0621
—0.0778—0.0S12

—0.0782—0.0616

a The values of the coupling constants used in this calculation were
obtained from a private communication from V. Jaccarino and J. G. King
and also from V. Jaccarino and J. G. King, Phys. Rev. 83, 471 (1951).

b The shielding correction (see reference 15, Table III) would increase
the values of the quadrupole moments of Cl by a factor of 1.079.

Z; can be determined from the formula of Casimir'

b/R= (dn~ jdn) $Z 2/n~'I. (I.+1)]P', E„=—n* '. (25)

Here E is expressed in Rydbergs and the 6ne structure
splitting in cm '. From the term values of the con-

figurations (4s)'np {n=4 5 6 ) values of n* and
dn*/dn are estimated. From the measured value of b for

each of these terms a value of Z; is calculated by use

of Eq. (25). To determine the quadrupole moment, we

use the formula

Q= (bled)(~o'/") (15/2)(3/@)Z'

The values of Z; for the higher values of e are used in.

this formula, since the uncertainties in the values of
dn*/dn disappear because this ratio approaches unity

as e increases. This method was applied by Renzetti"
to gallium.

Method IV: This method is the method carried out

for gallium in this paper and involves the calculation

of the mixing of con6gurations.
Table I contains the values of the quadrupole mo-

ments of elements in the same column of the periodic

table as gallium along with the values of Z; determined

by the use of Eqs. (25).
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If we assume that these elements undergo the same

type of conhguration interaction as ga11ium, we can
expect that method I will yield a value too large
whereas method II will yield a value too small. This
we can see by noticing that the sign of the correction
terms in Eq. (31) is different from the 7=2 state than
it is for the J=-,' state.

In Table II are given the quadrupole moments of
the chlorine isotopes. Chlorine has one electron missing
from a closed P shell, so that all of the methods except
method III are applicable except for those changes of
sign arising from the fact that we are considering a
missing p electron. ' Method III is not applicable since
there is nothing in chlorine similar to the series (4s)'Np.
Instead of method III, we used a method III'. In this
method, we determined the value of Z; for chlorine by
interpolation between the values we obtained for
aluminum, gallium, and indium.

VI. CONCLUSION

In gallium, we have seen that the only type of
configuration interaction that we must consider is the
type in which one of the 4s electrons is excited to a Ss
state. This type of mixing has a large effect on the
theoretical value of the magnetic hyperfine coupling
constant. In the J=-,' state of the atom, it decreases
the value of the coupling constant below the value
computed without the inclusion of the interaction. In
the J=~ state, it increases the value of the coupling
constant. The inclusion of this type of mixing of
configurations does not change the form of either the
fine structure or electric quadrupole coupling constants.
This mixing of states is able to explain in a quantitative
manner the deviation of the measured value of a»/a»
from the theoretical value calculated without the
mixing.

We can also draw the conclusion that the hope that
(1/r') will cancel from the ratio of either a» to b or a»
to b is not realized. The quadrupole moments calculated
on the basis of this assumption will be in error. If u;
is used, a value of the quadrupole moment too large
will be obtained. If a., is used a value will be obtained
which is too small. Since the correction is smaller in
the 2 state the value of Q obtained by method II will

be more reliable.
Calculation of (1/r') from the magnetic hyperfine

structure with the inclusion of configuration interaction
affords the most reliable method of evaluating this
quantity and from it the quadrupole moment of the
nucleus. We have also seen that, in the case of gallium,
the calculation of (1/r') from the observed doublet
separation, through the use of Z;, affords a method
which gives a result in good agreement with the value
obtained using the configuration interaction.

Since we might expect that the type of configuration
interaction will be the same for all elements in the same
column of the periodic table, some of the conclusions
we have derived for gallium can be applied. to. these

elements. The effect of the configuration interaction is
greater the higher the nuclear charge. This we judge
from the increase of the deviation of a»/a» from the
value predicted by Eq. (7). We conclude that, in the
absence of a quantitative ca1culation of the mixing of
the configurations for these elements, the most reliable
method of calculating Q is method III involving the
fine structure splitting. In every case for which this
calculation was carried out, the value of the quadrupole
moment obtained was between the values obtained by
methods I and II. This, coupled with the agreement
between the value of the quadrupole moment of gallium

by method III and the more exact method invo1.ving
configuration interaction, seems to indicate that is
method is fairly reliable.

The author wishes to express his gratitude to Pro-
fessor B. T. Feld, who suggested this problem and
offered much helpful advice during its study. He also
wishes to thank Mrs. Neria Ryder for performing
many of the numerical computations.

APPENDS L

By compounding the spins and the orbital angular
momenta of the individual electrons, we find that

+'('P», mJ = —,')
=(»t '(1) (1)»» *'(2)P(2)»»' '(3) (3))(co«}

0'('P», ra~=-', )
= ((6)»L»!4'(1)P(1)!!'5.'(2) n(2)»t 4n'(3) n(3)

+»»4 '(1)n(1)A '(2)P(2)»i4n'(3)n(3)
—(32)»»t 4,'(1)n(1)f4, '(2) n(2)»t 4~'(3)P(3) ) (COre}

e2(u" ~,=-')
= ((2)»I:4'4 (1)P(1)»»'4'(2) n(2) 4'4n'(3) n(3)

—
»t 4, '(1)n(1)P4, '(2)P(2)$4„'(3)n(3)j}(core}

+'('P;, rr4r = -')

= ((3)»44.'(1)n(1)44*'(2)P(2)»»'4u'(3) n(3)
—(-', )»f4.'(1)n(1)P4, '(2)P(2)f4„'(3)P(3)) (COre)

+'(2P», mr ———,') (26)

= (—3A '(1)P(1)A'(2)P(2) An'(3) n(3)
+ 3L»t 4.'(1)P(1)»t 4.'(2) n(2)»» 4p'(3) P(3)
+»»4. '(1)n(1)»t 5.'(2)P(2)»I 4p'(3)P(3)j
+8(2)'t:44.'(1)P(1)A.'(2)n(2) Au'(3)n(3)
+»t4. '(1)n(1)»t 4'(2)P(2)»t4. '(3)n(3)j
—

3 (2)»»»4. '(1)n(1)»t 4.'(2)n(2) f4 (3)P(3)) (COre)

0'('I'» rr4z=')-
= ((6)»B4.'(1)P(1)A.'(2)n(2) 44m'(3) n(3)

.
—k.'(1) (1)»».'(2)P(2)»t"(3) (3)j
—(l)'L4 .'(1)P(1)A. '(2) (2)»» .'(3)P(3)
—i/4, '(1)n(1)»»4, '(2)P(2) P4„'(3)P(3)}(core}.

These wave functions must be antisymmetrized and
multiplied by (1/31!)» in order to normalize. In Eq. (26)
n(i) denotes the spin eigenfunction for the ith electron
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and are written in the form

f."'=I:P-()/ ]e(i, ; ~)c' (v) (2g)

0 and C m~ are the usual spherical harmonics "
Z„(22l, r)/r is the potential arising from the nuclear

charge at the origin and the charge distribution de-

scribed by the spherical parts of the wave functions of
all but the electron under consideration. 0" and 42

differ in that in 0' the spins of the 4s and 5s electrons
are combined to form a system with angular momentum

1 which is then combined with the spin of the 4p
electron to form a system of angular momentum ~1. In
4' the spins of the 4s and Ss electrons form a system
of angular momentum 0 which forms, upon combination

with the spin of the 4p electron, a system with angular

momentum ~~.

Ke determine the e's by the condition that

)~ c*(2P1)[H—EjC('P1)drI dr21

dv; =r sin8;d8;dy;dr;

(29)

with the s component of spin +1 and P(i) the spin
eigenfunction with s component of spin —2. Q„I '(i) is
the Hartree wave function of 8;, q;, and r;, with N the
rRdlRl quRntuIQ number l the orbital angular IQOIQCQ-

turn quantum number, and. m~ the 2 component of
orbital angular nlo111elltuII1. By tile sylllbol (core}, we
mean the product of the Hartree wave functions with

spin for all the 'core electrons up through the closed
shelL Q„I '(i) are solutions of the equations

(—V2 —Z, (22l, r)/r) p„"'=—0„$„"' (27)

r

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.05:
0.06
0.07
0.08
0.09
0.10

0.12
0.14
0.16
0.18
0.20
0.22

0.26
0.28
0.30

0.35
0.40
0.45
0.50
0.55
0.60

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

0.000
0.427
0.724
0.914
1.016
1.046
1.017
0.943
0.832

0.537
0.187—0.180—0.535—0.861—1.15

—1.57—1.78—1.81—1.67—1.41—1.07—0.66
' —0.22

0.23
0.67

1.65
2.38
2.82
2.99
2.92
2.67

1.79
0.64—0.58—1.76—2.84
3077—4.54—5.15

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
95

10.0
10.5
11.0
11.5
12.0
12.5
13.0

14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
24.0

—5.90—6.10—5.84
5422—4,34—3.26—2.07—0.81
0.47
1.74
2.98
4.16
5.27

7.67
9.52

10.82
11.62
12.00
12.03
11.80
11.35
10.76
10.07
9.33
8.55
7.78
7.03
6.31
5.63
4.99
4.41

3.40
2.58
1.93
1.43
1.05
0.77
0.56
0.40
0.29
0.14

26.0 0.07
28.0 0.04
30.0 0.02
32.0 0.01
34.0 0.00

~6,=0.201

ThsLz III. The Ss Hartr2ec vrave function for gallium
(not normalized).

should be a minimum subject to the normalization

requirement

&0 +6!I+I22 = 1. (30)

The integrations in Eq. (29) include a summation over

the spin coordinates.
In order to calculate the integrals appearing in (29)

use was made of the Hartree wave functions for gallium.

The Ss radial wave function necessary for the calcula-

tion was calculated numerically by the methods used

by Hartree 0 The potential Z~(ss, r)/r which is neces-

sary for this calculation was taken to be identical with

Z0(4$) r)/f. Tl11s Is R good Rpploxl111R'tlo11 slllce olle

would not expect that exciting a 4s electron to a ss
state would seriously alter the charge distribution of the

remaining 30 electrons. This also has the advantage

that now the 4s and Ss wave functions are orthogonal.

Table III contains the values of P0,(r) along with the

value of the normalization integral and the energy

val, ue es, .

By varying the n's to minimize (29) we are led to
the set of linear homogeneous equations

(II00 ~)&0+ff01&1+II02&2

ff10&0+ (fIll +)021++12&2

If20&0++21&1+(fI22 +)~2

(31)

l

8@——
,

O'*N'& drI ~ dr21 i',j =0, 1, 2. (32)

In order that these equations have a nontrivial solution,

the determinant of the coeKcients of the O. s must

vanish. If we make the substitution Hop —E=—E',
'and also simplify our matrix elements by use of the

equations that Q„I ' satisfy and the defmition of

Z0(221, r), we find that this d.eterminant can be written as

~P1 &O2

610 611 + ~12
G~o
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TAaLK IV. .Values of Rf(n'l nf'lf' n'l' n l"). In Kqs. (34) the primed summations extend over the
core electrons through the closed d shell. The integrals
in Eqs. (35) are all of the well-known type"

4

4
4

4

4
4

4
5
5
5
5
5
5
5

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1 0
2 0
3 0
5 0
2 1
3
4 1
3 2

0
2 0
3 0
2 1
3 1.

4 1
3 2
1 0
2 0
3 0
2 1
3 1
4 1
3 2

1 0
2 0
3 0
5 0

3 2
1 0
2 0
3 0
2 1
3 1
4 .,1
3 2
1 0
2 0
3 0
2 1
3 1

3 2

4 0
4 0
4 0
4 0

4 1
4 1
4 2
5 0
5 0
5 0
5 1
5 1
5 1
5 2
5 0
5 0
5 0
5
5 1
5 1
5 2

0.00419
0.00645
0.0185
0.00807
0.00800
0.0219
0.126
0.0408
0.00148
0.00227
0.00628
0.00283
0,00753—0.0273
0.0129
0.000524
0.000800
0.00213
0.000997
0.00260
0.0383
0.00422

asnla asnlb mac

(1)0-'4' (2)L1/rl23 l (1)

meed

Xf s«(2) dr ldr 2

= 6(rr44 +rrblb, 224lc+ 224 ")g C'(la, lib' lc 224 )cX
/c=o

c"(lds 224
d lb, 2l24')Rb(rba l' rb', lb rb' c' I" ld). (36)

This result is obtained by expanding 1/rl4 in spherical
harmonics. The t,

.~ are the known result" of integration
over angles and

gb(rba la rbb lb rbc lc rbd ld)

Here the 6's are given by

Gll &4s Pbs 2K4s, 0 ' +Kbs, 0 +3K4s, 0

+.2+sLK n' V, sn' K '4n', &s'n]

G12 G21 (3) 'LK4s, 0
' K4s, 0

G22=04, —02.+2K4 o"'+K4 o'"'—Kb o'"'
n'l', scs' K n'4'sns'],

Glo= Gpl= (6)b&&4,, l

Gop ——G02 ——(2) sL1V4„, i+2+' Ãn'4', ml ],
where

Kn4;n l""'"' p„l*"l(1)$„——.4.*"'(2)L1/r l2]

Xfnl (2)pn. l '(1)drldr2

xnlml=
J $4, *'(1)p &*'"'(2)L1/r»]

XP„'(2)P '"'(1)d

(r(b/r)b+')P:4. (1)P sls(2)P„4 (1)

X&nc«(2)«l«2s (3&)

where r~ is the smaller and r~ the greater of r~ and r~.

Table IV contains a list of the values of those integrals

(34) which were necessary in the calculation. Numerical
integration using Simpson's rule was used to obtain
these values from our numerical wave function.

Solving the determinant for the lowest value of E'
and our set of homogeneous equations for the 0.'s, we

6nd

—E'=0.00894,

0.0=0,995, O.g= 0.0307, 0.2= —0.j.02.

%e can now see that the mixing of the con6gurations
(35) is small and that the energy of the ground state is only

lowered slightly. The n's for the linear combination of
0's for the J=-,' state are exactly the same as those we

have calculated for the J=-,' state.


