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polar coordinates) are given in all three cases by an equation of
the form

&(nA/ro) Jn{glro) Jn(garo) =n2Jn(X&ro) Jn'{Xlro)—~iJ (Xmro) J.'(Xiro), (&)
where in case (1)
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Equation (1) gives the p's for both TE limit and Tjtd' limit
modes. For small Ho, these p's are easily found by expansion. It
turns out that the deviations d,p~n;m from the p„of the TE„
waves due to a small magnetic field Hp Lor to a small magnetiza-
tion in case (1)j are proportional to Hp. The corresponding
rotation

i
AP„ /e i can, therefore, be specified by a new Verdet's

constant. In case (1)

R~;s,(n™i= 2ÃpR„/L(e P—e') l~pj, (2)

and ln cases (2) and (3)

R~;p, t" & = 2!ipRp/L(e '—e') !~p], (3)

w'here )!~ is the guide wavelength of the TE„mode at zero Hp,
Xo the wavelength in the in6nite medium, and u„n, is the mth zero
of J„'{x).

Formulas (2) and (3) show that the guide causes dispersion in R
additional to that of R~. They have meaning only in the loss free-
case. When there is loss, the Apanm have opposite imaginary
parts leading to progressive conversion from linear to circular
polarization {accompanied by rotation). Equations {2) and {3)
obviously fail very near resonances. The full equation (1) has then
to be solved. Formula (3) also fails near cutoG (Xg= ~). These,
and other matters are to be discussed in a later paper. The authors
are indebted to Dr. C. L. Hogan and Dr. A. D. Perry of these
Laboratories for discussion of their work on ferrites, and for
acquainting the authors with their theoretical work on trans-
verse Ho.
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'HIS problem was recently considered by Parzen' who con-
cluded that quantum corrections to the classical results of

Schwinger' and Schiff3 should be appreciable at an electron energy
of 200 m@2 in a field of 104 gauss. The form of his correction is such
that for this magnetic Geld the energy loss per turn by radiation
would only increase as E& with. increasing energy, instead of
increasing as E4/R, thus removing the stringent radiation limita-

tion on synchrotron design.
An examination of Parzen's calculation reveals an invalid ap-

proximation. 4 More significantly, the assertion that on 1=0 to
l=0 transitions are appreciable can be shown to be incorrect by

directly summing the series i Eq. (36)j.This yields

~/2) th
S(eVi eo) = S(e'0i eo)

Il

in which the important values of (a'/2) are of order unity. This
result may be veri6ed more easily by use of the energy eigen-
functions in Cartesian coordinates, by the use of which the sum-
mation over / is implicitly performed.

If one now examines the formula for the power radiated in the
orbital plane and makes use of these results, the exponential
correction factor in Eqs. (26) cancels out and the classical result
is obtained as sketched in the following:

S(e'0 ieo) = (e'!/e!)&( n—s/2) "ts exp( —'/2)L "(as/2) (2a)

g)Xf2
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Combining Eq. (2b) with the relations

Jg(0.(2t) &) = (1+v/e) "~2 2 (, ,Jy+ (a(2N)&), (3)

where t=e+r, one obtains
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The major contribution to this integral comes in the region

i
r i ((2e)& Also, .rp(2e)&= XP in the orbital plane. In the summa-

tion, only about n-terms contribute so that the relevant values of
m are of order n=Xp/(2e)&«X. For these rN, Jy+ (hp) =Jg(hp)
for 1—p2«1, so that (4) becomes

( ) X( P) p( / ) L" (p/2 ) /(2 )qd
(2mN)&

=exp( —n&/4) J~(Xp).

The power radiated in the orbital plane is proportional to the sum

Z is( fi +l, o)+s( 'fi —1 o)i*

which may now be evaluated using Eq. (1) to give i 2S&'(liP)P,
the classical result.

It is a pleasure to acknowledge helpful discussions with Pro-
fessor E. M. McMillan, who brought this matter to our attention.
Ne also wish to thank Professor L. I. Schi6 for sending us his
wave packet arguments~ which con6rms Schwinger's criterion for
validity of the classical approximation.
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N a recent paper of Parzen, ' the radiation of electrons in uni-
- ~ form circular motion was calculated by means of the exact
wave functions in a homogeneous magnetic 6eld.

The result would seem to indicate a total radiation loss con-

siderably smaller than to be expected on classical theory. ~ 3

This is very surprising since the main loss is due to the soft
quanta, i.e., emissions which cause a relatively small change of
the enormous quantum numbers involved in an orbit of macro-

scopic size at these energies. By the correspondence principle it is
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then hard to understand how the classically computed intensity
could be much OG.

Let us therefore inspect the classical and quantum-mechanical
results: On classical theory the energy radiated per unit solid
angle and second, with wave number vector h, is

C co 2~1~
P,y= —— dtLpgXlr] exp{tt kct —lt R(t)]}

0

u'k2
(cot20~ Jpp(Ep sinO~)+ pJ~"(Np sinO~) ) (1)2'

where P=velocity/c, cp=mechanical frequency, and N=ck/ca
This is then to be compared with the quantum-mechanical

expectation value for the number of photons of frequency ck
emitted per second, multiplied by their energy, Ack. But that is
just the quantity obtained in the 6rst approximation of the con-
ventional perturbation theory, ek. ,

P, =hpk(2w/h)Z PCpz'esp(Ep) (2)

where Xylol' is the matrix element of single photon emission. To
get the total intensity the sum Inust be taken, not only over the
polarizations of the quantum, but also over all the final electron
states of the same energy.

In the notation of Parzen's paper' the matrix element is

m.k
3CJpg'=ea)b alt;y (is+1)&I(n', 3' m+1, t)

+peg+a&I(pt', l ~a —l, l)}

hs=h/mc p=hc/eH,

I(ptV ( Nl) =fN~ t
*exp( pk p s—inO cosq )I tpd pd p,

lf "p(-"/4b')("/»')~(='&
2mb'e t

I t" '(ps/2&P) exp{:t(&—l) v].
N„~ are the wave functions of the electron in the magnetic field,
corresponding to circular orbits of radius E„=(2m+1)&b whose
centers lie on a circle of radius (2l+1)&b. The energy eigenvalucs

E =cLPP+msps+mhcop(2N+l+l)]&

are independent of the quantum number l.
Putting aside for the moment the question-of whether the

narrowest possible location of the orbit center is a proper repre-
sentation of the experimental situation, we shall only consider the
initial state, 1=0, treated by Parzen, although the general case is
also tractable. '

The integral I(pp't'~ rpD) can be evaluated in closed form:

~2 $(n~' —l')
I(rt'l'(ND} = ' t' "

+ipt
~ cxp( —n2/2}I.„p"~'(~2/2),

of =kb sinO= (I—I') (Ace/c) b sinO.

Now we need the products and squares of such integrals summed
over the quantum numbers P of the 6nal state. True enough, the
term P= 0 which was the only one taken into account by Parzen,
is the largest, but the others cannot be neglected:

rtr CO

Z [I(pt'POUND) is=a
P=O 0

~2 $(a~') 2
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Introducing the harmonic number E=n —n' and a mean
velocity P=(rp/c)P(R„+R„i')/25&, it is easy to show' that for
large I, I' and E«n, e' the sum is

X [I~'=Itr(h'P sino)+(cps/2}Pt4 O(a'-'}.

Insertion of such expressions in (2) gives the classical result (1),
with an error which is certainly negligible in the most important
region of angle and frequency. This conclusion can also be shown
to hold for an initial state compounded of various Ps, but the
analysis is then more laborious. 3

%'e would like to thank Professor Dyson for calling our atten-
tion to the importance of this question for synchrotron design.
and also for suggesting the probable cause of the discrepancy be-
tween Parzen's result and the previous ones, which is indeed
ehie6y due to the terms L')0.
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ECENTI.Y Brown and Banks' have determined the re-
slstlvlty of thc sodium tungsten blonzcs (Na %03 xg 1)

as a function of x and of the temperature. They con6rmed the
metallic nature of the conduction proposed earlier on the basis
of resistance-temperature' and magnetic susceptibility" measure-
ments, and ascribed conduction primarily to the free electrons
contributed by Na. However, their results disagree quantitatively
with those to be expected for pure sodium.

It is the purpose of this note to indicate that their results are
not inconsistent with those to be expected for pure Na, distributed
uniformly in a cubic mesh within the %03, under high (positive
or negative) pressure. The same model accounts for the values of
the Hall coefBcient (Huibregtse, Barker, and Danielson2) and of
the magnetic susceptibility (Stubbin and Mellora) obtained for
these bronzes.

It is often noted that many properties of the alkali metals
depend primarily on the atomic volume, and much less on crystal
structure. The recently established continuity of the compressi-
bility of liquid and solid sodium5 is an example of this behavior.
I et us assume that pure Na occupies a fraction ~.of the total
volume of the bronze crystal. The volume available to Na in the
cubic WO3 is roughly the difference between the total volume and
the ionic volume of the constituents. In the perovskite structure
it is very likely that the tungsten completely 6lls the space
between its six surrounding oxygens. Using the linear increase in
lattice dimensions with x6 and an average ionic radius r(O 2)
=1.37A one finds the volume per Na atom v(Na} = 19.6/x+2. 9A',
assuming the ionic volume to be relatively independent of x,
The fraction of the total volume occupied by Na is nearly inde-
pendent of x: 0.=0.36. The value x=0.55 corresponds to the
normal density of metallic Na. If sodium has its normal properties
in the volume it occupies in the lattice, the volume susceptibility
of the bronze for x=0.55 should differ from that for pure Na by a
factor a. Kupka and Sienko4 found the volume susceptibility of
tlM bronze (x=055) to bc 025X10—6 cgs Using x 063y10—6

cgs for pure sodium, the above considerations would lead to a
value g=0.23X10 ' cgs for this bronze.

The resistivity-Ininimum of the bronze for x=0.70 found by
Brown and Banks corresponds to a pressure of 24,000 kg/cm', as-
suming the normal properties of metallic sodium (de/@0= —0.19).
At its minimum the resistivity is 0.57 of its value at x=0.55 (O'C).
Since the pressure value depends on the ionic volume assumed,
only its general magnitude is significant. Bridgman~ has predicted
the resistivity minimum for pure Na at a pressure of 28,000
kg/cm2. He expects the minimum resistivity to be 0.44 of its
normal value. Furthermore, the speci6c temperature coeKcient
of resistivity (f/p)(dp/dt) of pure sodium is independent of
pressure. This is in good agreement with the values of this coe%-
cient as a function of x.s

The measured values of the electrical properties of the sodium
bronzes must now be reinterpreted on the basis that sodium has
its normal properties in the volume it occupies in the lattice,


