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Small Angle Scattering of Light by a Coulomb Field
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The angular distribution for small angles and the total cross section for Delbruck scattering (the elastic
scattering of y-rays by the Coulomb Geld of heavy nuclei) are calculated approximately. The method is a
combination of an impact parameter and an analytic continuation method. It is valid for energies kco large
compared to the electron rest energy mc'. Curves are given for the shapes of the dispersive and absorptive
parts of the differential cross section, valid for angles of order mc'jhco or less.

I. METHOD OF IMPACT PARAMETERS

'HE preceding paper' dealt with the forward scat-
tering of light by the Coulomb Geld of heavy

nuclei. Unfortunately, these results do not permit direct
experimental verihcation. Exact calculations at other
angles meet with considerable diKculty. However, re-
cent preliminary experiments' seem to indicate that
data for the scattering of high energy p-rays into small
angles can be obtained.

It is the purpose of this paper to calculate the shape
and magnitude of the diBerential cross section for small
angles in an approximation valid for high energies. Since
at these energies nearly all of the incident wave is
scattered into very small angles, this calculation will

also give us an estimate of the total cross section.
Achieser and Pomerantschuk pursued the same aim in
a very complicated calculation. ' Their results will be
compared with ours in the last section of this paper.

We start our discussion from the well-known scat-
tering formula of quantum mechanics which we apply
to high energy p-rays. The scattered amplitude in
direction 8 is

f(8) = ', zX P~—(2-Lj1)(cze"" 1)P~(c—os8), (1)

where t is the wavelength of the p-ray divided by 2m. , 8&

is the phase shift for angular momentum I, and c~ is the
absolute value of the amplitude of the outgoing radial
wave l. If only scattering could occur, c~ would be equal
to unity and (1) would reduce to the ordinary Rayleigh
formula. Since the p-rays can also be absorbed, forming
electron pairs, c~ is less than 1, in fact,

gives the probability of absorption for p-rays of angular
momentum L. If we succeed in calculating f(8) from (1),
its absolute square will give the di6'erential cross section
for potential scattering of p-rays.

We shall first use the fact that the absorption proba-
bilities y~ and the phase shifts b~ are small, of order e'/kc

* Now at Palmer Physical Laboratory, Princeton University,
Princeton, New Jersey.' F. Rohrlich and R. Gluckstern, Phys. Rev. 86, i (1952).' R. R. Wilson, private communication.' A. Achieser and I. Pomerantschuk, Physik. Z. Sowjetunion II,
478 (t937).
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or less Lsee Eq. (18),below(. Then we may write

z(c—(e'"' 1)—n(=+zp),

(xl 25l)

p& ——1—c(=-',y(.

(3a)

(3b)

Next we note that an extremely large number of
terms L contribute to the sum in (1), the number being
of the order of o/t where a is the radius of the atom.
(For 100-Mev y-rays, this is about '10,000 terms. )
Therefore the sum in (1) may be replaced by an integral
over the impact parameter,

and the spherical harmonics may be replaced by their
asymptotic expression for large l and small 0,

where
Pi(8) =Jp(L8) = Jp(bs),

s= 8/X= k8 (Sa)

is the momentum change of the V-ray, k=1/X is the
wave number. Then the scattered amplitude will depend
on the frequency cv and on s, and we may write

f(8) =a,(s, zp)+zap(s, pp),

az(s, &o) =k bdbn(b, zp) Jp(bs),
'

(6)

(La)

az(s, pp) =k I bdbP(b, ar)Jp(bs), (ib)

where the quantities n and P are given in Eqs. (3a, b)
and are now regarded as functions of the impact
parameter b (and cp).

The quantity y(b, &v) =2P(b, &u) is the probability of
pair production by a wave packet of p-rays of frequency
co, traversing an atom at a distance b from the nucleus.
This is a well-dined physical quantity which can in
principle be obtained from the theory of pair production,
We shall show in Sec. III how this may be done, while in
Sec. II we shall give a simple approximation for y. In
any case, the total cross section for pair production may
be written

p (pa&) =2~)t bdby(b, (o),
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so that y is related to the partial pair cross section for
impact parameter b.

There is no such simple physical meaning for the
phase shift b, and hence for 0.(b, ip). However, we shall
obtain 0. by the principle of analytic continuation which

was already used successfully in the preceding paper. In
fact, we shall assume that n(b, &o)+iP(b, pp) for fixed b,
is an analytic function of co. Then, .from the theory of
analytic continuation,

pp t
"p(b, (u')da&'

a(b, a))=—P '

oo M GJ Gl

(9)

In this way, we have expressed the amplitude of the

potential (Delbriick) scattering of y-rays, f(0), in terms

of the probability (partial cross section) for pair pro

4 It is necessary for this argument to use the impact parameter b,
not the angular momentum l. It would be impossible to construct a
physical region of the atom (dispersive ring) which would corre-
spond to the same l for all X.

where P denotes the principal part.
Physically, our assumption means that we regard a

part of the atom, viz. , the cylindrical ring between b and

b+db, by itself as a dispersive medium for p-rays. Rays
of any frequency may be absorbed or scattered by this
ring, and its refractive index may be obtained from the
absorption coefFicient by the usual formula of dispersion
theory which is identical with (9). That it is possible to
consider this ring independently of the rest of the atom
depends on the possibility of constructing wave packets
of y-rays which only hit the ring but not (appreciably)
the rest of the atom. For the validity of (9) it is neces-

sary that such wave packets can be constructed for all
frequencies ~' for which, the absorption probability
2P(b, ~') is appreciable. Here the particular properties
of the pair production cross section are very helpful:
o.„;,(co) and hence y(b ~p) for all b are zero for pp&2mc'

and still small for frequencies slightly greater than 2m''.
Hence our wave packets need to be constructed only for
wavelengths small compared to the Compton wave-

length. But it is well known that wave packets can be
constructed which dehne the position to about one
wavelength. Therefore, if we permit the width of the
ring db to be a Compton wavelength or larger, the wave

packets can be constructed for all relevant values of co'.

But the pair production arises equally from all impact
parameters b between the Compton wavelength and the
atomic radius, and therefore a definition of the impact
parameter to a Compton wavelength is sufFicient. 4

In order to use the formula (9), we must decide how P
behaves for negative frequencies. But it was shown in
the preceding paper that ap(s=O, pp) is an odd function
of ip. Since k= ip/c, it then follows from (7b) that P(b, ~p)

is an even function of co. This gives

1 1
n(b, ~)=-P p(b, ~')(, +, ( (10)

~J p (ip pp cv +6)) 6)

(12)

where pp(q) is constant between

and

Here

g~j~ 1/a or 1/kb (whichever is larger)

(max= 1/bp

bp
——k/mc

(13)

(13a)

is the Compton wavelength and a is the radius of the
Fermi atom. For q&q; and q&q, p falls oG fairly
rapidly.

The momentum given to the nucleus is approximately
related to the impact parameter by g= 1/b. Thus we find
approximately

p
&/dmin

0„;,=A db/b, (14)

where A is a constant. In the case of no screening, the
upper limit in (14) is kbpP and

p„„,=A lnkbp=A ln(he/mcP). (15)

Comparison with the known pair cross section' shows
that

A = (28/9) P where g =Z'rpP/137 (15a)

is Heitler's cross-section unit. On the other hand, 0~„,
may be written in terms of P, using (2) and (3):

pp. ..(ip)=2pr I bdb2P(b, ip).

Comparison with (14) gives in the case of no screening

p=A/4mb'= C/b' if . b—p&b&b, =kbp',

P=O if b) kbp' (k(a/mc')bp——(17)

In the case of screening, kbo' is replaced by u, the atomic
radius. For b&bp, (14) would give P=O but it is more
accurate to take

P = C/bo'

~ H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 524 (1934).
'See W. Heitler, Quantum Theory of Radiation (Oxford Uni-

versity Press, London, 1945}.Note that the additive constants are
here included in the logarithm.

duction as a function of frequency and impact parame-
ter. The differential cross section for Delbruck scattering
is of course

do;,.tt/dn=
i f(8) i'= a,'((a, s)+a/((o, s). (11)

II. CALCULATION USING A SIMPLE ASSUMPTION

We must now determine the absorption probability
y(b, ~p). It was shown by Bethe' that the total pair
production cross section can be written as an integral
over the momentum transfer to the nucleus g, namely,
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The coefBcient

C=A/4x=(7/9x) j. (17b)

13=C/b' if pi& pp„„„(b)

P=O if pi& pram' (b),
(19)

Thus the maximum pair production probability, for
b&bp, is

y=2P=(14/9pr)(Z'rp'/137bp')=(14/9pr)(Z'/137') (18)

which is 1/600 for uranium. This justifies our assump-
tion in Eq. (2) that y is small.

For a given b we may consider P as a function of pi a,nd
obtain for bp&b&c:

small we can expand in a power series and And

dg x' x4 x'

J
—Jp(u) = const —lnx+ ———+ — . (21a)I 28 25. 33

The constant occurring here is found by considering the
case of very small x,

dl—Jp(u)

2p/ p dQ
dQ —cos(u cos$)

u

where

Further,

pp; (b) =ck„„„(b); k,„;„(b)= b/bp'.

for b&a, any ~

(19a)

(19b)

3/2

= (2/pr) I dP Ci(x cosP)
0

vr/2

= —(2/m. )~t d@ ln(yx cosg) = In(2/yx). (22)
0

P=C/bp' for b&bp, &u&c/bp (19c)

C op+co;„(b)
a(b, (o) = ln

xb' I~—~-;.(b) I

(20)

Equation (19) may now be used to obtain n by the
analytic continuation formula (10); this gives

The constant is therefore ln(2/y) =0.116 and we have
the result

2 x' x4

ap(s, co)=Cki ln——lnx+p+ ——
16 28 ~ 3

x'

C k+b/bp'
ln

xbP [k—b/bpPi

n=0 for b& a,

for bp & b &a, (20a)

+ —
i
=CkFp(x). —(23)

211.33 )
We now turn to the evaluation of ai(s, pp). Using (20)

and inserting pi, ;„from (19) we get

and b is to be replaced by b, in (20) for b&bp
We can now insert a and tl into (7) to calculate the

amplitudes for a given scattering angle. Putting b/bp i-—
and sbp x, we find fro——m (7b) and (19)

I 00

ap(s, (g) = Ck t tdt Jp(xt)+ t (dt/t) Jp(xt) . (21)
0 i

The upper limit of the integral has been put equal to ~,
whereas the correct limit would be, according to (17),

t~,„=kbp (no screening),

tmax a/bp (screening).

This would make a diGerence only for very small
x(&1/t, ) and thus for very small scattering angles:

8= 1/(kbp)' (no screening),

8= 1/ka (screening).

However, the correct t,. would have to be used to
obtain the scattering in the forward direction for com-
parison with the preceding paper.

The first integral is Ji(x)/x, whereas the second
integral cannot be written in closed form. Since x is

kbp+tCk
ai(s, cv) =—

ii tdtJp(xt) ln
Ikb, tl—

p" dt kb,+t
+ i J,(xt)ln-

(kb —tI-
(24)

00

ai(s co) = (C/prbp) (2/x) t Jp(u)du

+2J" Jp(u) du(uPx —'—x-')
0

C (2 4 x2
= -i —-+ +"

mbp(x 3 3 5 245 7

—= (C/b p)F, (x) (25).
The total cross section is

o.= 2m.
i ai(8)+iap(8) i

' sin8d8=—o i+ o p. (26)
0

For ken))mc2 the logarithm can be approximated by
2t/kbp and
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From the preceding results we find with

x= kbp8 = (h4p/mc2) 8,

p i——22r(C/bp) 2(mc2/hpp) 'J" F '(x)xdx,
p

p 2
——22r(C/bp) 'Jt F2'(X)XdX.

p

(27)

used, and we shall show how the scattered amplitudes
a2(s, 4p) could, at least in principle, be calculated
exactly.

For this purpose, we construct a p-ray wave packet
traversing the atom at a distance b from the nucleus by
setting

p= (22r) 'v
&J exp[i(kp+u) r)22(u)dugu„, (31)

xdxS, (xt)S,(xt') = t-'b(t' —t).

This yields

1 00

J~F 'xdx= t tdt+ t dt/t2=1.2 J
(28)

In the case of 0~, an approximate evaluation is ele-

mentary, vis. ,

I F22XdX= (2/2r) 2 t XdX/X2= 42r ' in(1/Xi), (28a)

Obviously, 0.2 is by far larger than rj, The integral
occuring in a 2 can be evaluated, using the definition (21)
and the orthogonality relation of the Bessel functions

where p may for instance be chosen as

42= ex—p( iu—b) y(u) = 422r ' exp[—iu b —-' 2'42ujp. (32)

The wave vector kp is fixed, the added wave vector u is
assumed perpendicular to kp which is taken in the
s-direction. Evaluation of (31) gives

p= (2rv)-&n ' exp[ikp r —(p —b)'/2n'j (33)

where p is the component of r in the xy-plane. Thus f is
indeed confined to impact parameters near b, within an
accuracy n. Further, the magnitude of the wave vector
kp+ u is essentially the same as that of kp provided 42 is
not too small; e.g. , the choice c4=bp will make kp+u
diGer from kp only by an amount of relative order
(mc2/h4p)'.

Generally, y is assumed normalized,

where xi is the smallest value of x for which (21) is valid,
vis. , xi=bp/u for complete screening and xi=1/kbp
without screening. Therefore we get, using (17b),

4r2 = 22rC /b = (98/812r) (P /bp )
(29a)=0 385(otZ)4.rp2,

p =32r 2(mc2/hcp)2o2 ln(h4p/mc2)
without screening, (29b)

= 32r '(mc /h4p)2p 2 ln(a/bp) complete screening. (29c)

The numerical factor in (29a) should not be taken too
seriously because the integral in (28) depends ap-
preciably on the region t &1 for which our theory is only
approximate. Likewise, in (29b, c) an unknown constant
should be added to the logarithms.

Within the range of validity of these formulas, i.e., for
ke))mc', the total cross section is almost entirely the
result of the "absorptive" part of the scattering
amplitude a2. The ratio of the potential scattering to the
pair production cross section is, from (15) and (17b):

742(Zn)2 012 n4( Z)422
(30)

Iogop„, 2bp' log 18m log

where log is the logarithm in the pair production cross
section, Eq. (15).

IIL THEORY OF THE IMPACT PARAMETER METHOD

We shall now give a more accurate mathematical
theory of the impact parameter method which we have

~ p(u)
~

dugu„= "~y(u) ~'dugu„=1, (34)

so that f is normalized to one particle incident per unit
time. If then the pair production probability is calcu-
lated per unit time, as usual, this will give directly the
probability p(b, pp) used in Sec. I.

Consider now the matrix element for the production
of a pair of electrons of momenta p+, p such that

F++8 =kp.

Let us denote this matrix element by

M(k, p+, p , t4, (r+, 0 ).

(35)

(36)

P

dugu„q (u)M(kp+u, p+, p, t4, o~, a ). (37)

To get the total pair production probability 2P for the
wave packet (31),

~
X

~

' must be summed over 4r+ and o,
averaged over p, and integrated over the directions of
p+ and p and finally over the magnitude of one of them.
This defines the P(b, &p) used in Sec. I in terms of
mathematical operations which can all be carried out.

It is a function of the quantum h, and its polarization p, ,
of the spins of the two electrons cr+, 0 and, of course, of
their momenta. Then the matrix element for producing
the same electrons by the wave packet (31) is

X=(2x)-&
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To get any further, let us introduce the vectors

lo= P++ P-—~o
and

(38)

w= (p+- p-). (38a)

where J denotes the component in the plane perpen-
dicular to kp. It is easily seen that also qp is nearly in
this plane. ' Then, if the magnitude of p+ Land hence
also p from (35)7 is given, qo and w determine the
vectors p+ and p . The matrix element in (37) may then
be written

All reference to the auxiliary variable I has now been
eliminated from the matrix elements M. The integral
over u is elementary but can be further simpliled by
assuming that n in (32) is very small. This means very
sharp definition of the p-ray beam in space, and is
indeed a necessary assumption if the erst line of Eq. (41)
is to hold exactly . if e were larger, the various wave
packets (31) for different b would not be suKciently
orthogonal. Assuming n small, we can put x(u —s)
= x(u) and the u-integral reduces to the normalization
integral (34). Thus we get the final result

XJt dogdowM(g ——,
' s, w, spin)

M(qo —u, w, spins), (39)

and w is independent of u. It is worth noting that the ao(s) = (k/4m') dE~ g,oi5

actual differential cross section and matrix element
depend most strongly on ( Io—u) and less on w.

The pair production probability for our wave packet
is now

2P=(2n)-2 tdE+ Q.„.

d2ud2uid2wdog p(u) p+(ui)

XM(qo —u, w, spin)M*(go —u', w, spin), (40)

where d'u denotes integration over dl, dl „. Equation
(40) could be evaluated, but it is easier to go directly to
the scattered amplitude given in (7b), which becomes

u2(s) = (2~)-'k "d'b exp(ib s)p(b)

k(2%) J~dE+ +8 i~ J~d bd ud u d wd Qo

Xexp(ib s) o (u) o *(u')

XM( lo —u, w, sPin)M*(qo —u', w, sPin). (41)

Remembering now (32), the factors containing b can be
integrated:

dok expt. ib (a+u' —u. )7= (2m)28(a+u' —u). (42)

The integration over u' can then be carried out. At the
same time, we introduce

XM*(g+-2's, w, spin), (45)

which is entirely independent of the original wave
packet assumption. For s=0 we get simply

a2(0) = (k/4or) o,.;„

d'g IM(q, u', spin) I
'-qdq/q' (46a)

as it should be according to (12)~ Then we can integrate
(45) over all variables except q and obtain approxi-
mately

p gmaz d~g
ao(s) =Bk

I a—2sl I ol+2sl

gdgd@=ak, (47)J L(qo+-,'so)' —q2$2 cosoy7&

which was already used in the preceding paper.
Equation (45) could again be evaluated exactly, and

u, (s) could then be obtained by analytic continuation.
We shall here be content with the following rough
calculation. The, matrix element M(qi, w, spin) is, for
any important m and spin, found to be about inversely
proportional to q~ provided q; (q~ &q „as delned in
(13), and decreases more rapidly (as qi ') for q&q, „
= 1/bo. Indeed, if this is assumed, the contribution to
the pair cross section from a given q turns out to be
proportional to

then we have
6= Qo

—
2 (u+ u ) '

uo(s) = (k/4n) dE+ g„;

XJt doudowdoqX(u)x(u- s)

(43)
where B is a constant and k the wave number. Now if
q'; «s«q, , the integral over p gives a result of order
1/s2 for q(s, and of order 1/q' for q&s. Hence

p' qdq t'~o' qdq 1
ao(s) k + =k In—+-,', (48)

p s ~g g Bps

in agreement with Eq. (23). This justifies the assump-
XM('6 2s& ws sPin)M (9+2 s) wt sPin) (44) tions made in the simple theory of Sec. II.
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IV. DISCUSSION OF THE RESULTS

The angular distribution of the dispersive and ab-
sorptive amplitude is given by Fr(x) and Fs(x) of Eqs.
(25) and (23), respectively. The shape of the differential
cross section is plotted in Fig. 1 as a function of
x= sb p (kps——/mc') 8.

For very small angles, 8(X/b, „=(mcs/hu)bp/bma~
with b „given by (17), these functions do not give the
correct angular distribution, since large impact parame-
ters were incorrectly treated by extending the integral
in (21) to infinity. This could easily be remedied if
desired, and even screening could be included. In the
limit of zero momentum transfer x=0, and if t,„=kbo

is inserted as the upper limit in (21), the results of the
preceding paper' are approximately recovered.

At large angles, 8»mc'/ku&, Eqs. (25) and (23) will

not be accurate because then the main contribution
comes from small impact parameters bubo and Eq.
(17a) is not a good approximation. For the "absorptive"
part as(s), the method of Sec. III would still give correct
results as long as 0 is small compared with one radian.
However, for the dispersive part this will not work be-
cause for the small b which are now important, the pair
production starts at low energy and thus at wavelengths
X comparable to b; therefore the uncertainty principle
will prevent definition of the impact parameter for
frequencies ~' which contribute materially to the
analytic-continuation integral (10), and ar cannot be
reliably calculated. On the other hand, this does not
make much difference for the scattering because u~ is

very small compared to a~ which is calculable.
The differential cross section is determined essentially

by Iiss in Fig. 1, because it was shown in (29), (25) that
the dispersive part F& is relatively unimportant. As is
seen from Fig. 1., F2' increases substantially with de-

creasing x, namely by about a factor 20 between x=1
and x=0.1; according to Eq. (23), Fss is proportional to
(logi/x)'. This increase is in contrast to the angular
distribution of the pair electrons produced by the p-ray
which is essentially constant for x(1, i.e., for angles less
than mc'/h&p.

In Fig. 1, we have also plotted for comparison the
diffraction scattering from a black sphere. The radius of
this sphere was arbitrarily chosen as 7bo because the
part of the atom responsible for pair production and
potential scattering extends from bo to the atomic
radius, and 7bo may be a reasonable average. The black-

sphere scattering is then (Jt(7x)/7x)', the coefficient 40

in the 6gure was also chosen arbitrarily. It is seen from

Fig. 1 that F2' agrees with the black-sphere curve

reasonably well in the mean, but that F2' is higher both
at very small and at large x. This is understandable

because the scattering is really not from a black sphere

of dehnite radius but from a "gray" sphere with opacity
varying with radius; at small x, the outer parts of the
atom become effective and increase the scattering be-

cause of the large radii involved; at large x, where a

l0~

- '~~O("7

FR{x)

Q
0 0.5'

x (ue/m
LO

Fxo. i. Shape factor V(x) of the angular distribution. The
subscripts 1 and 2 refer to the dispersive and absorptive parts,
respectively. For comparison the diffraction from a black sphere of
radius 7bp is plotted on arbitrary scale; it is 40$Jq(7x)/7'.

sphere of radius 7bo would give very little scattering
because of interference, the particularly black region
near bo still gives appreciable scattering.

The dispersive scattering F&' falls off still more rapidly
with increasing 8 than Ii2. This is because, for any
impact parameter b, the dispersive amplitude u~ is
largely determined by the ratio &p; (b)/pp where tp &„(b)
is the fr'equency at which p-rays passing at impact
parameter b begin to produce pairs appreciably. The
larger this ratio tp; (b)/&p (as long as it is less than
unity), the greater will be the dispersive effect; since
tp; (b) is proportional to b according to Eq. (19a), the
larger b give a greater dispersive effect as can be seen
from (20); but the larger b will contribute to the
scattering only at the smallest angles.

The energy dependence of the scattered amplitudes
at a given 6nite s is

ar(s) const, us(s) tp if kcp»&mes, (49)

whereas at zero momentum transfer the preceding
paper' gives the result

a,(0)~tp, tss(0)~tp 1ntp. (50)

This is without screening; with screening this will be
replaced by

ur(0)~rpp, as(0)~rp lntpp, (51)

where ~p ——tp; (u) )see Eq. (19a)$, with a the atomic
radius. The energy dependence of (51) is the same as
that of (49), but that of (50) is not. This is because in



H. A. BETHE AN D F. ROH RLI CH

the absence of screening, the step increase of a~, a2 with
decreasing x will continue down to xy=bp/b, (cu), see
Eq. (17), and will then fiatten out; this, in combination
with the angular dependence just discussed, will give the
energy dependence (50).

Achieser and Pomerantschuk, ' in a rather compli-
cated paper, calculated only the dispersive part of the
cross section. In the high energy limit, they hnd an
angular dependence 1/tt' in agreement with our result
FP 1/x'. Also the total dispersive cross section ob-
tained by them,

&r~ P(nZ——)4(mc'/hen)'rp' ln(hco/mc') (52)

with P an unknown numerical factor, agrees with our
result for this quantity, (29b).

The absolute value of the total cross section is given
by (29a) which gives about 6 millibarns for uranium.
According to (30), its ratio to the pair production cross
section is about 1/8000. This factor is made up of a
factor n, a factor (nZ)', a small numerical factor of
about xp, and 1/log. Except for energies above about 10"
ev, the total cross section for potential scattering is
much less than that for Compton scattering.

This is different for the differential cross section, be-
cause of the large forward maximum. According to (23),

(17b), the differential cross section per unit solid angle is

o (8)= (7/9pr)'(Zu)4rp'(hs)/ mc')'Fp'(x) (53)

which, for uranium, is

o (e)= 1.0(ha&/ mc')'F pp(x) millibarns/steradian.

For 300 Mev and x=0.1, corresponding to 8=0.01', this
gives 3000 barns per steradian. For the Compton effect,
the differential cross section is Zro' in the forward
direction, independent of energy; this is 7 barns/
steradian for uranium. Rayleigh scattering is Z'ro' in the
exact forward direction, and much less for x=0.1 which
represents a large angle for Rayleigh scattering. There-
fore scattering of y-rays at such high energies and small
angles represents mainly potential scattering.

For the experimental observation, the main require-
ments are excellent collimation and elimination of all
electrons from pair production and of the secondary
p-rays emitted by these electrons. The latter can best be
done by using the different angular distribution. Un-
fortunately, since the scattering is mainly absorptive, its
observation at high energy would not reveal anything
about vacuum polarization, but would merely test the
theory of the spatial distribution of pair production
inside the atorri.


