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Forward Scattering of Light by a Coulomb Field
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The complex scattering amplitude for the scattering of light by a Coulomb field (Delbruck scattering)
in the forward direction is calculated exactly by two methods. First, the Feynman method is used and
necessitates very tedious and complicated calculations. Then, the method of analytical continuation is
applied to the pair production cross section and yields the same result much more easily. An exact analytical
expression is obtained for the dispersive and absorptive parts of the amplitude. The result is plotted as a
function of energy. The low energy limit agrees with previous calculations for this limit by Kemmer and
Ludwig.

INTRODUCTION

~~NE of the most interesting predictions made by
quantum electrodynamics is the scattering of

light by light. ' This effect is in contradiction to the
classical Maxwell equations which, because of their
linearity, cannot account for it. Weisskopf' has shown
that a nonlinear correction to the Maxwell equations
will do justice to the phenomenon.

Experimental verification of this effect proved impos-
sible because of its extremely small size in a crossed
beam experiment. Considerably more fruitful is the idea
of observing this process in 'a modified form in which
light is scattered by a static electromagnetic field. The
strong Coulomb fields of heavy nuclei seem by far the
best targets. The occurrence of the scattering of light

by a Coulomb field was first suggested by Delbriick, '
and the eR'ect is often referred to as Delbriick scattering.
But until recently the effect remained of academic
value only.

A few years ago renewed interest in the problem came
from the new formulations of quantum electrodynamics.

*Now at Palmer Physical Laboratory, Princeton University,
Princeton, New Jersey.

t'Now at Sloane Physics Laboratory, Yale University, New
Haven, Connecticut.

'O. Halpern, Phys. Rev. 44, 855 (1933); H. Euler and B.
Kockel, Naturwiss. 23, 246 (1935);H. Euler, Ann. Phys. 26, 398
(1936); R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950)
and 83, 776 (1951).' V. Weisskopf, Kgl. Danske Videnskab. Selskab Mat. -fys.
Medd. XIV, No. 6 (1936).' M. Delbruck, Z. Physik 84, 144 (1933),

The only two observable processes involving closed
electron loops in the Feynman diagrams are the
polarization of the vacuum and the scattering of light
by light. The former was verified experimentally beyond
any doubt by the well-known Lamb-Retherford experi-
ment on the level shift of the hydrogen atom and is of
second order.

The Delbruck effect can be regarded as a photon
self-energy effect in a Coulomb field. A method based
on this view point could actually be used to calculate
the process. But there seem to be no essential advan-
tages in the method.

Very recent experiments by Wilson4 in this laboratory
seem to confirm the existence of the Delbruck eGect.
However, more complete calculations will be necessary
for a quantitative analysis of these observations.

The foregoing remarks and the recent great improve-
ments in calculating technique may justify the following

very long and tedious calculations. Earlier investiga-
tions by Achieser and Pomerantschuk' and by Kemmer
and Ludwig' yielded results which will be confirmed and
augmented in this work and in a paper by Bethe and
Rohrlich7 immediately following this paper.

Finally, the present work shows and confirms a suc-
cessful application of the extremely elegant method of

4 R. R. Wilson, private communication.' A. Achieser and I, Pomerantschuk, Physik. Z. Sowjetunion 11,
478 (1937).

6 N. Kemmer, Helv. Phys. Acta 10, 112 (1937); N. Kemmer
and G. Ludwig, Helv. Phys. Acta 10, 182 (1937).' H. A. Bethe and F. Rohrlich, Phys. Rev. 86, 10 (1951).
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FIG. i. Feynman diagrams for Delbruck scattering.

analytic continuation which was first suggested in a
paper by Jost, Luttinger, and Slotnick, ' on the basis
of unpublished work by %heeler and Toll.

Before turning to the actual calculations we note
first that Delbruck scattering to first order in the
external field vanishes identically because of Furry's
theorem. e In carrying the calculation to second order
in the Coulomb field, one finds soon that the manifold

integrals involved cannot be expressed in terms of
known functions and that a numerical solution is in

general extremely impracticable. Valid approximations
for intermediate angles also seem extremely obscure. Ke
decided, therefore, to restrict ourselves first to forward
scattering. This will enable us to carry out the calcula-
tion exactly and to express the final result in closed
form. Also, we will be able to use the method of analytic

continuation. Finally, we expect to provide a basis for
calculations at other angles.

In the following we shall first give the Feynman
method (method A). This is a very straightforward
calculation, but extremely complicated and tedious in
its actual performance. It seems to us that a brief
sketch of this method and the essential technical points
used should be sufhcient. The analytic continuation
method (method B) is given in much greater detail,
since it is not so well known and is very much simpler
than the other method. In 8 we assume the total pair
production cross section as known and use a well-known
theorem of optics to write down directly the absorptive
(imaginary) part of the Delbruck scattering amplitude
in the forward direction, The analyticity of the scatter-
ing matrix is then used to find the dispersive (real) part
of this amplitude.

The final section contains a discussion of the results'
and a comparison with earlier work.

Method A

The three diferent Feynman diagrams to be con-
sidered are shown in Fig. 1. The crosses stand for the
action of the static potential

U(r) =Ze/r= (Ze/2n') e'~'d q/q

In the usual notation" the first diagram yields the
following integral in a well-known manner,

t' Tr[y„(ip m)y4(i—p iqi rN—)y„(i—p iq, i—f m—)y4—(ip+if m)]d—4p
A4'(q, )A4'(q2) ~

(p'+ r~i') [(p—qi) '+m'][(p —qi —k') '+m'][(p+ A)'+m']
(2)

where p and v are the directions of polarization of
the incoming and outgoing waves, k=(k, i&a) and
fr'=( —k, —iso) are the corresponding wave number
four-vectors, and qi ——(qi, 0) and q2 ——(q2, 0) are the
momentum transfers of the two actions of the potential.
A4(q) =iU(q) is the Fourier transform of the Coulomb
potential, Eq. (1). The expression (2) must still be
integrated over q~ and q~, but reduces to the threefold

integral over q& only because of momentum conserva-

tion. The result is—apart from constants —the required

scattering amplitude which depends on the polariza-

tions, the energy
~
k~ =

~

k'~ =re and the scattering angle
8=cos '(k k'/aP).

It will be convenient to use natural units (it = e=m = 1)
and the following variables:

2Q=q —ai, Q=(Q, o)

2P=k' —k, I'= (P, 0)

2K= k'+k, X= (K, iver),

8 Jost, Luttinger, and Slotnick, Phys. Rev. 80, 189 (1950).
9 See F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).

which satisfy

K P=O, K'+P'=aP.

If we now restrict ourselves to forward scattering, we
have P=0, K= k= k'. The scattering of an unpolarized
beam is, in this case, equal to the scattering of a linearly
polarized beam in the plane perpendicular to its polar-
ization. No change of the direction of polarization can
occur for forward scattering. Therefore, the traces can
be easily carried out.

The method of integration over P is well known" and
need not be given here. It introduces the auxiliary vari-
ables x, y, s. There result three kinds of terms which
will be called 3f~&", M~&", and Mq&". %ith the proper

'0 Most of the results obtained in this paper were reported at
the Washington meeting of the American Physical Society; see
Phys. Rev. 83, 218 (1951). Unfortunately, the numerical values
quoted there for aq are in error. The corrected values are shown in
Table I of the present paper.

"x=(x1, x2, x3, x4) = (r, x4) = (x, y, s, it}; p =zy„P„;
d4x= dxdydsdt; c= 1.

~ See R. P. Feynman, Phys. Rev. 76, 769 (1949). In order to
assure gauge invariance, regulators can be used. The condition
Zc;=0 is sufBcient in this case.
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ar((o, 0) = t (Mr&'&+Mr&'&+Mr&4&)dag/Q4 (4)

constants, the contribution of the first diagram to the
forward scattering amplitude (in units of (nZ)'ro) is

Variable Region of integration

1 s V

)t' d. t'
dy)t' d,

0 0 0

(7a)

p1 ~s ~y
Mr&'& = )I dx)' dy) dsPr~oi br2

0 0 0

Mz( ) —— dh dy da'z( ) bz,
f
0 0 0

(5)

1 1—v

(7b)

1 1 I

J
I (1—v)f v=v w=v$ ~ v(1 —v)dv t df' t dg

(7c)

~ ()— dz, d'~
~ de () lnb

pl p1
v=v g=$—l'

~i v(1 —v)dv I dv
0

br = 1+2K Q(s+y(y —x—s))+Q'y(1 —y). (6)

Pz('), Pz(", and Pz(') are essentially the traces which

multiply the 0th, 2nd, and 4th power of p in the ex-

pression (2). They are linear combinations of ~', Q',
K Q (e Q)' Q' (K Q)' ~'Q' ~'(K Q) Q'(K Q)
and aP(e. Q)', the coefficients are polynomials of up to
fourth order in x, y, and s. e is a unit vector in the direc-
tion of polarization.

This whole procedure has to be repeated for the
diagrams II and III of Fig. 1, The results are com-

pletely analogous to (4), (5), and (6).
The integrals in (5) deserve special attention. As was

pointed out by several authors, '" the method of
integration over p actually implies that the singularities
on the real po axis, i.e., po=+(p'+m')& are moved

slightly into the upper (or lower) half-planes. In other
words, the path of integration around the singularities
has to be properly taken into account. It contributes a
purely imaginary term to be added to the principle

part of the integral. 6 we restrict the integration first
to the principle parts, the result will be the diffractive
or real part, a1, of the scattering amplitude. The ab-
sorptive or imaginary part, a2, is found best by as-
suming the electron mass to have a small negative
imaginary part. The integrals in (4) are now well

defined, since the expression (5) for br should be aug-
mented by a term —i~, where e is eventually taken in

the limit zero.
From here on the calculation is quite straightforward,

but extremely complex and tedious, even though the
specialization to 8=0 simplifies the task considerably.

The integration over the three auxiliary variables

x, y, and s can be reduced to a double integral by a
judicious change of variables, having bz, bzz, and bzzz

independent of one of the three new variables, and
maintaining a simple region of integration. For example
the sequence of variable changes required for bz is

(g1 pe (1
+Jl v(1 —v)dvJI dg) dt (7.1)

0 —1

At this stage we have

b=r1+ (v1
—v)LQ' —2K Qilj. (Sa)

In the second term of the last step, (7d), let g—+—q and

Q~—Q simultaneously, leaving br unchanged and the
region of integration becomes

p1 (1 ( (1—y pi
v(1—v)dv

~
dv~ dt + ~~ dt ~. (9a)

0 ~0 &~0

If we finally let

Y=i—q, F2=1—l3, (7e)

we obtain

br = 1+v(1—v)(Q' —2K Q+2K QY), (Sb)

with the region of integration

pl p1 ( pY ~Y
v(1 —v)dv I dY~ df', + I df, l. (9b)

"0 0 E 0 JD )

The regions of integration for the two terms are now

the same, but the integrand in the second term of
Eq. (9b) must include the changes Q~—Q, g—+—g, and

1
—+1—

1 before combination with the integrand in the
first term.

Similar changes bring the integrals in II and III into
the same form, " allowing complete combination of all

integrand polynomials. In all cases the l integration is
trivial, and the required integrals reduce to the following

"Note that the integrals for diagrams II and III of Fig. 1
differ only in the sign of Q, since each integral is equal to its
Hermitian adjoints.
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general forms

pl pl
de I'"dY lnbI m= 1, 2

o ~o

1 1

e dv I'dI' b m=i 234

n=1 (10a)

m=1, 2, 3

which is most easily performed by differentiating with
respect to a.

,'dL, t-' (1——o)dv

da Jo 1+ao(1—v)

-(4+a)i+ga-
—in (12)

ga(a+4)& (4+a)&—ga

(10b)
1 ~1

dg Y dI 51 fS f. 2) 3) 4) 5) 6 R 1) 2) 3
~o ~o

(10c)

with br given by Eq. (Sb). The P integration is straight-
forward, though complicated, and leads to algebraic
forms in ~ as well as a logarithmic term. The algebraic
terms can once again be integrated without difhculty,
and in most cases the logarithmic term ca@ be integrated
by parts. The one integral which is not straightforward
1s

p' dv—in[i+ an(1 —
w) ]

ko P

At this point the quantity (e Q)' is averaged over
polarizations giving

((e Q)')A„——$Q' sin'Hlca=$(Q'+(K Q)'/&u').

The result of the F and v integrations can be written as

a (a)I 0)= [Lgfg(a,c)+Lifo(b,c)+T.fo(a,c)

+Tof4(b~c)+fo(a~c)]doQ/Q' (14)

where L, is given by Eq. (13),

(4+a)& (4+a)&+pa
T,= -- ln

Qa (4+a)&—ga
a= b+c= Q'

b=Q' —2K Q,

c=2K Q,

(16a)

(16b)

(16c)

and the f; are algebraic functions of a, b, c (separable
into simple polynomials and quotients, i.e., 1/c, a'/c',
b'/c4, 1/c(a+4), etc.).

The doQ integration reduces to the double integralfQ'dQfd(Q. K/QE) because of the azimuthal sym-
metry of zero angle scattering. Q K/QE is the cosine
of the angle of Q referred to the polar direction K.
The terms in (14) separate readily into some terms
expressed as functions of a and c, and others expressed
as functions of b and c. If the integrand is expressed in
terms of a and c the region of integration is

Very fortunately, the factor 1/[a(a+4)]*' is the
derivative of the logarithmic term so that we have

dg p 2' +0

f Ic)
0 4~ -ocu~II

(17)

([4+a]"+v'ai '
L.= ln(

([4+a]l—ga )
(13) whereas if the integrand is in terms of b and c the region

may be obtained by substituting a= b+c in (17):

The constant in the integrations over a is evaluated in
the limit a=0 and vanishes.

t.
"da I'"~

t
"dc

Jo 4~ ~ —o&yIIe J—III 4M Jg'II4(o'

dc f'

J 4M J I)4 'I

2~~+2~(~2+b)&

~) —Id& 4' J2(gI —2(g(~I+$2)~

dc. (ig)

The required integrations are therefore

dcf~(a~c)

F10. 2. Region for the c-c-integration.

+—3
4ao2

32
44'~

C

da (ocllvs

+J
— T

J dcfo(ayc)
2

O 4COa 2ra~g

goo da p2(al+6

+ —
J dcfo(a~c), (19)

o 4~a -o(uv o
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r" zdz r
'"' '"' dc

0 2io ~ 2' n—2(os (&+s ai )
r" zdz r'"'+'"' dc

Tz'—co -f4(s' —u&', c), (20)
0 2io nu' —2&os &+s2

where s'=aP+b Si.nce we have arranged to do inte-
grations over u and b (or s) last in (19) and (20), re-
spectively, the c-integration (over simple but lengthy
algebraic forms) offers no problem.

However, we have created a new problem for our-
selves by the separation of (14) into (19) and (20) for
integration purposes. Although (14) in its entirety is
convergent (and integrable) throughout the range of
integration, neither (19) nor (20) is convergent. Poles
have been introduced at

d L./ ", )"d T./ ", (21)

and of other less complicated forms which can be readily
evaluated. The two forms in (21) may be evaluated for
I/1 (m=1 does not occur) by integration by parts.

After the c-integration in (20), it becomes convenient
to cxpl'css thc 6nal lntcglatlon once again ln terms of b,
and many of the resulting forms are the same as in (21).
Kith the aid of several contour integratio~s in the
upper (or lower) half b plane the forms may all be
expressed in terms of the following four functions:

a=O and ~, b=O and ~, and c=O.

They have been brought in by the separation and
appear in the f's as well as in the result of the c inte-
gration. Wc have used a consistent pair of cutoffs, 5 and
8 as shown in Figs. 2 and 3, to make (19)and (20) finite.
The integrations in each case are carried out over the
shaded region only, each integration having to be
broken up into several "pieces." Of course, after the
evaluation of (19) and (20) in the limit 8-+0, 8—&~,
the cut-OG dependent terms must aud do vanish.

After the c-integration in {19)has been performed,
there remain the integrations over u of the form

Fxo. 3. Region for the I5
—c-integration.

The result of the combination of all terms gives for the
real part of the matrix element.

ui(a), 0)= (p/x) (2Ci(p) —Di(p))
+ (1/27 op) ((109+64p') Ei{p)

—(67+6p')(1—p')Fi(p) j—p'/9 —9/4, (23)

where p=2/a, and u(a, 0)=u, (a, 0)+iu, (a, 0).
The imaginary part of the matrix element arises from

the b-integration alone and only from the I.~ and T~
terms. These two functions defined in (13) and (15) are
real for b& —4 and complex for b& —4. Since the
b-integration goes from —co' to +~, there will be no
imaginary contribution for u ~&2, but there will be one
for co&2, the contribution coming directly from the
range —co'~& b~& —4. The complete expressions for L,
and T, are

rl
I,= 2 lim ln(1 is+us(1 s))ds/s—

= (2 sinh —'-',gu)' (u&0)

= —(2 sin-'-', g—u)' (—4 & u &0)

= (2cosh —'-',g—u)' —s' —4sicosh —'gQ —u (u &~
—4)

I
cosh-' —dh,

px

rl
(22a) T.=2 lim

~

ds ln(1 —ate+us(1 —s))
e~oa) 0

p'" cosh '(1/px)
Di(p)=Re ' dx,

"o (1—x')&

pi/y (1 pnx2) ~g

Ei(p)=Re ~I

~ I
d

i 1-* )

(22b)

(22d)

=2(1+4/u)'* sinh —'-,'Qu (u)~0)

=2(—1—4/u): sin '-'Q —u (—4&u&0)

= (1+4/u)'*(2 cosh ' 'g u i—s)-(u—&——4).

(25)

To obtain the imaginary part we start with the b-in-
tegration in Eq. {18)between the limits —id' and —4.
There are, therefore, no cut-O6' considerations to com-
plicate the algebra. The integrations otherwise proceed
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as before and the result is

as(co, 0) =0 (co&&2)
= (p/sr) [2Cs(p) —Ds(p) $—(1/27srp)

X [(109+64p')a(P) —(67+6P')(1—P')F (P)3,
(co&2) (26)

around the point x, and to close in a large half-circle R
over the upper half-plane of the complex variable
f =f+ist We thus find

,

'
(&) &,

,

(f)
w(x) = P i +-',w(x)+ ' dl, (29)

2srs " tt $—x 2srs "tt
where

p~f" cosh ~x

Cs(p)= '

x

1
cosh-' —dx,

Px

t't" cosh '(1/px)
D.(P)=„' dx~

(x'—1)b

t
ito

t 1—psxsp b

Ex'—1)

(27b)

"(t)dk
st(g) =—P (30a)

where in the last integral x has been neglected. We

(27a) further assume that w(f)/f 'is regular at l =0, so that

t
w(f) t' w(t)

We separate w($) into its real and imaginary part and
find from Eq. (29) and the last equation in the limit

(27c)

p I/y dx
Fs(P) = „i' (27d)

L(*'—1)(1—P'x')3'

Comparison of Eqs. (23) and (26) shows that the
real and imaginary parts are identical in form except
for the last two terms of a~, which are missing in a2.
Similarly, the functions C~ and C~, etc., are closely
related.

For actual calculations the functions C and D can
easily be expanded in power series, whereas the func-
tions E~, E2, and Ii~, Ii2, can be expressed in terms of
the complete elliptic integrals of the first and second
kind, F(x) and E(x). We have

—x t
" tt($)d$

s(P) = P
~ - &(&-*)

(30b)

The complex scattering amplitude tt(~, 0)= ai(co, 0)
+ias(co, 0) satisfies the assumptions@ made about w($)
when $ is identified with the energy co.

A well-known theorem of optics" relates the total
absorption cross section o, b( )coand the forward scat-
tering amplitude u(co, 0)

o.be(co) =4srX Imct(co, 0) = 2srpu, (co, 0). (31)

The absorption process that corresponds to the elastic
scattering of light by a Coulomb field is pair production.
The total pair production cross section is well known.
We will use the analytical form obtained by Jost,
Luttinger, and Slotnick. "

In our notation we therefore find without calculation

Ei(p) =E(p) (P &1),
=PE(1/P)+(1/P P)F(1/P) —(P& 1)

Fi(P) =F(P) (P & 1),
= (1/P)F(1/P) (P& 1),

&s(P) =F[(1—P')'j —~[(1—P')'j (P& 1)

Fs(P)=F[(1—P')'j (P& 1).

The power series expansions break down near
where one has to proceed numerically. In particul
finds

Ci(1)= 1.62876,

Di(1)= 1.83193.
0'ebs(CO )dCO

ai(co, 0)= (co'/4sr')P, i

co'(co' —co)
(33a)Di(1) is twice Catalan's constant. '4

Method B
Consider Cauchy's theorem for an analytic function

Clebe(CO )dCO

=(I'/2~')P ~~

CO 6)
(33b)

1 w(t') df'

w(s) =
2srs t s— ~ (P )dP'

~p
~2 J p2 P~2

(33c)

Let z be on the real axis, z=x, and assume that zo

is regular in the upper half-plane. We can choose the
path of integration to follow the real axis from —R to
+R with a small half-circle in the positive direction

"See E. Jahnke and F. Enide, Tables of Functions lDover
Publications, Inc., New York, 1943), p. 80.

'~ See also the remarks at the end of this paper.
'6 Recently, a very general proof was given by M. Lax, Phys.

Rev. 78, 306 (1950). Further references may be found in this
paper."See reference 8. Two mis rints in their paper should be noted:
in Eq. (56) the sign of 82m~ 3 and in Eq. (57) the sign of 2F1(n)
are wrong.

tts(co, 0)=0 (co & 2)
= (P/sr) [2Cs(P) —Ds(P)]

P=1 + (1/27psr) [—(109+64p') E((1—p') ')
ar one +(42+12SP'+6P')F(f1 —P')') (~~&2) (32)

Making use of the fact that o,b, (co) is an even function
of co we find from Eq. (30a)

(28b)
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Although the functions C2, D2, E, and F are quite
complicated, the integration indicated in Eq. (33c) can
be carried out without serious difficulties and the result
can be found in terms of a closed expression.

In the remainder of this section we will brieRy
indicate how this integration can be carried out.

The integral containing the function Co(p) is

~' p'Co(p)dp
P

J po p&o

The first term gives —n'/4 as before; the second term is

p'dp' t' cosh '(1/y)

~J p2 pI2 Q . (y2 p~2)$

1
I

& p'dp'
=P l cosh-&—dy

"o (p' —p")(y' —p")'

sp t' 1 dy=—Re ~~ cosh '-
y (p' —y')'

t'( p q I'ii cosh 'x
=P

/

—1+ fdp'
po —p'oi

1
cosh ' dx

p'x

ps t'~& dx 1=—Re ~~
— cosh '—dx.

2 ~o (1—x')& px

q'dy 1 I ( p'
=P ' —cosh '— ~'

i

—1+ icosh '—dp'
p' —p"i p'

The result for the term in D2 is therefore

t
i p'~Do(p')dp'

= ——+-' pD (p) (36)

dp'
p'P i —cosh '-

i cosh '—
"o y y"o p' p" —p'

p t' 1 r" p+p'
dy cosh —' —

~ ln
2J,

dp'

p r'dy 1 . y—cosh —&- Re sjn —~-

p

Here, we made use of the equality"

where we used y=p'x and interchanged the order of
the integration. An elementary integration yields for
the first term —or'/4. The second term becomes by
partial integration

where Di(p) is identical with the function defined in
Eq. (22b).

The integration of the terms of Eq. (33c) which
involve complex elliptic integrals of the first and second
kind may be done as follows:"

1

" FL(1-p')~7dp

dx t' dp

~ o (1—xo)& J o (1—xo+Poxo)k

Ck
tan 'x= —, (37)

~o x(1—x')& 4

1+Gx dx
Re I ln =m Re sin 'u.

1—ax x(1—x')&

Combining these results we find

1 p'dx 1

(34) J p FL(1—p ) 7dp=—

1 ( tan-'xq
X tanh 'x+—

]
1—

xE x i
&' p"c (p')dp'

P I

= -'(m'/4 —or'/8) = m'/16 (38)———+ ', ~pc, (p),
4

(35)
po p&2

=—'R.
l

2p "o (1—x')& (1—(1—p')x')&
t' p"Do(p')dp'

J po p~o
1+p '(1—(1—p')*')'

Xln
1—p '(1—(1—p')x')&

p' ) p'I" cosh '(1/p'x)

Jo 0 p' —p") J, (x'—1)&
1$ s=—ReF~ pi sin —'—~=—F,(p). (39)

2p & pi 2p

0

I

' FL(1—p")'7
dp'

where Ci(P) is identical with 'the function defined in "o P' —P"
(22a) as it resulted in method A.

The term in Do(p) of Eq. (33c) is treated similarly:

"D. Bierens de Haan, Nouvelles Tables d'Iekegrales Defr, nies
(Stechert, ¹wYork, 1939), Table 122 (2). 'f' See reference 18, .Table 122, (10).
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Pro. 4. Delbruck scattering amplitude for forward scattering in
units of (aZ)'ro as a function of energy.

20 See reference 18, Table 122 (15).

The last integration can again be found in Sierens de
Ha an."

In a similar way one finds

1

E[(1 P'—)'jdP= 'lg&
0

I' E[(1—P")'j
dp&

J, p2 p2

x'Ck t' dp'

(1—x') I 0 (1—x'+ p"x') I

~l 1 x2+P2x2 ~1 Qx
+ I dx Pi'

(1 x2)I J (p2 p&2) (1 g2+ p&2g2)I

)1—x2+pnxnq I
= —-+—Re chi

2 2p

1+p-'(1 —x'+p'x') I
)&ln

1—p-'(1 —x'+ p'x')I

%e can use the identity

l'1 —r'x'p I 1+g(1—r'x')'
Re

"» & 1—x' & 1—q(1 —r'x')I

7P f dx
=—Re—

i "«' (1-i'x')I[1-(1-")I'h'3I

and find with y= 1/x

1r &' dh ( p—+-Re
"o h' &[(1—x')(P' —h')3I

(1 t" 1
=—+-Rei—

2 2 (2 „2

Energy (Mev)
4

0.411
1.33
2.62

17.6
200

C1(ci&I, 0)

0.0205
0.241
0.912

11.87
150

0
0.0058
0.265

14.5
395

do(co, 0)/dQ for Pb

0.00428 mb/sterad
0.591 mb/sterad
9.18 mb/sterad
3.57 b/sterad
1.82 kb/sterad

and (32), can be written with the aid of our intermediate
results [Eqs. (35) to (41)j, in terms of Ci, Di, Ei, and
Ii i, as defined by (22). The final resul. t is identical with
the result in Eq. (23) of method A. It is easily seen
that Eqs. (26) and (32) are also identical.

DISCUSSION OF RESULTS

The dispersive and absorptive parts of the forward
scattering amplitude are plotted versus energy in Fig. 4.
Up to about 10 Mev the dispersive part dominates,
whereas for higher energies the absorptive part is the
larger of the two and dominates by orders of magnitude
for very high energies. The divergence of the scattering
amplitudes for very high energies is not- surprising; the
vacuum is an infinite source of pairs, and their pro-
duction is limited only by the available energy. Com-
pared with known phenomena involving an index of
refraction, the vacuum has its "resonance" at m= oo,
such that there is no change of sign of the refractive
index, and ui is positive throughout.

The differential Delbruck scattering cross section per
unit solid angle, do(au, 0)/dQ for 8=0 is

d&r(m& 0)/dQ= iui(~f. 0)+iai(s)& 0) i2(nZ)4ro' (42)

"See reference 18, Table 12 (9).

Py'
xcyi

&L(y'- 1)(PY-1)j'
( py'= ———Re i~ dyi —1 i,
& —L(1—y') (1—PY)3'

since the first integral vanishes. Thus"

I' ~[(1—P")'j
CP'= —[~i(p) -&i(p)j (41)

p' P" — 2P

where Ii~ and Ej are identical with the functions
defined in (22c and d).

It is easily seen that the real part of the forward
scattering amplitude, ui(~, 0) as defined by (33c), (31),

TABLE I. The forward scattering amplitude e(~, 0) =a1(co, 0)
+ia2{co,0) in units of (o.Z}'r0 and the forward differential cross
section in lead for some characteristic energy values.
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since our scattering amplitude is given in units of
(nZ)'ro where ro is the classical electron radius.

In the high energy limit one finds easily

Gy(Ql& 0)= 707/18 (a&))1), (43a)

a2(a&, 0) = (7a&/97r) ln(2a&) (cu))1). (43b)

The latter is obviously in agreement with &o/4m times
the high energy limit of the total pair production cross
section.

Near the pair production threshold, ~=2, the ab-
sorption part is

0.09

Qos

0.07

o.oe
0)

(aZ)2r,
0.05

which vanishes, of course, at the threshoM.
In the low energy limit the Delbruck scattering

amplitude becomes

a(co, 0) = a&(co, 0) = (73/72) (co'/32). (45)

This function is plotted in Fig. 5 together with the
exact expression. The close agreement shows that nearly
up to the pair production cross section Delbruck
scattering is qualitatively almost entirely classical
dipole scattering, the cross section being proportional
to ~4. The classical aspect is seen in the fact that the
amplitude is independent of Planck's constant. Aban-
doning natural units for a moment, we find for the low

energy limit

de (co, 0)/dQ = (73/72)'(1/32)'(bc'/mc')'(nZ)'ro'
= (73/72)'(1/32)'(co/c)'Z'(e'/nsc') ' (45').

The only calculation in the literature on forward
Delbrtick scattering is a low energy limit by Kemmer
and Ludwig. ' Their work corresponds exactly to the
calculations of Euler' on the scattering of light by light.
They assume an arbitrary potential, which must fall
off fast enough, however; therefore, they do not carry
out the Q integration indicated in our Eq. (14). Taking
the limit in this integral we find

a(a), 0)= (11/135)32mco'J'dg

in agreement with Kemmer and Ludwig.
A few characteristic numerical values for forward

scattering are listed in Table I.
Experiments on the elastic scattering of light by

heavy elements necessarily yield cross sections which
are the result of interference of the following three
phenomena: Thomson scattering by the nucleus,
Rayleigh scattering by the electrons (primarily E
electrons, unless the energies are very low), and Del-
briick scattering by the nuclear Coulomb held. All three

0.04

0.03

0.02

0.0 I—

0-
0 0.2 0.4 06
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08
I
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FIG. 5. Low energy limit of the Delbruck scattering amplitude
(dashed line) compared with the exact curve (solid line).

effects are coherent. Since both Rayleigh and Delbriick
scattering have complex scattering amplitudes —the
photoeffect being the absorptive process associated with
Rayleigh scattering —an analysis of these experiments
cannot be made until the differential cross sections
of these processes are known quantitatively.

In conclusion, we draw attention to the very elegant
method of analytic continuation. Its applicability,
however, needs further study. We assumed here that
a(co) fulfills all the conditions imposed on rc(f'). On
the other hand, the validity of the assumption that
m(f)/1 is regular at (=0 is guaranteed by gauge in-
variance for all processes involving real photons.

An application other than the one given here is, for
example, the calculation of the elastic Rayleigh scat-
tering for zero angle from the photoelectric absorption
cross section. Also, convergence arguments may be
used to infer from dispersion integrals like Eq. (33) an
upper limit on the high energy behavior of the absorp-
tion process. Finally, Eq. (30b) can be used to infer
the absorption cross section from the dispersive forward
scattering.


