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On theoretical grounds it is expected that the decay time of imprisoned resonance radiation in the vapor
of a single even isotope of mercury should be some six times larger than that observed with the natural
samples of mixed isotopic constitution. To investigate this effect experimentally, decay measurements were
carried out with samples of Hg!%8 (3 percent Hg!®® and 0.1 percent Hg2%). For vapor densities N=/10%/cc, the
predicted effect was verified. For N>10%/cc, the observed decay time drops below that predicted theo-
retically for pure Hg!%s. This secondary effect is here attributed to the transfer of excitation from Hg!%® to
Hg'*® and Hg?" by collisions of the second kind. Comparison of experimental data with an appropriately
generalized theory permits estimation of the cross section for such collisions. The value so obtained is 10713
cm?, some twenty times the gas-kinetic cross section, and in order-of-magnitude agreement with theoretical

expectations.

CCORDING to theory,! the persistence of im-

prisoned resonance radiation in gases is strongly
dependent upon the line shape of the radiation. In
particular, it is found that a correct description of the
phenomenon necessitates taking into account the hyper-
fine structure of the resonance line.? For example, the
persistence time of the 2537A line of Hg, which in
naturally occurring samples consists of five hyperfine
components, is theoretically some six times smaller than
that associated with a pure even isotope, which does not
possess hyperfine structure. Measurements carried out
with samples of Hg!"® (3 percent contamination of
Hg'*® 0.1 percent of Hg?®) not only confirm this
marked difference, but also exhibit in a striking manner
additional effects arising from small admixtures of
isotopic impurities.

The measurements of the persistence time 7' of
imprisoned radiation, as a function of vapor density N,
were carried out in a manner previously described.? A
special procedure* was required for the preparation of
resonance tubes of Hg'%® from two 2-milligram samples,
kindly supplied to us by Dr. Meggers of the National
Bureau of Standards. The experimental points are
shown in Figs. 1(I) and 1(II) (black circles). By way of
comparison, the corresponding data for natural mer-
cury, presented in reference 3, are reproduced in both
Figs. (black squares).

The dashed curves labeled “natural mercury,” also
reproduced from reference 3, represent upper and lower
limits of the theoretical prediction for that case. The
curves coincide in the region of Doppler broadening
(N <10%/cc); in this region T is given analytically by
the expression®?

T'=$koR( loghoR) 7,

L T. Holstein, Phys. Rev. 72, 1212 (1947).

2 Reference 1, Sec. 5.

3 Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).
Footnote 7 of this reference contains the theoretical expression
for T given in Eqgs. (1) and (2) of the present paper. For the deriva-
tion of the result see T. Holstein, Phys. Rev. 83, 1159 (1951).

L 4+ To be reported by D. Alpert and C. G. Matland in Rev. Sci.
nstr.

8 T. Holstein, Phys. Rev. 83, 1159 (1951).
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where 7, the lifetime of the isolated atom, is 1.08 X107
sec, R is the radius of the resonance tube, and %, is the
absorption coefficient at the center of the Doppler-
broadened line. %, is given by the formula

ko=2.19X10"12 NV /6% co, (2

where 0 is the absolute temperature. Equation (2) re-
sults from the assumption that the five hyperfine com-
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F1c. 1. Experimental and theoretical results on the imprison-
ment of resonance radiation in natural Hg, mono-isotopic Hg!%,
and in a mixture of Hg!?® (96.9 percent), Hg!® (3 percent), and
Hg?20 (0.1 percent). In the latter case the theoretical curves depend
on the transfer coefficients, 44,1 and Ass,1. Figure 1(I) is for the
case Ags,1=A2p1; Fig. 1(II) for the case Az k=342 1.
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F16. 2. Absorption spectrum of experimental Hg samples. On
the scale of the figure the contribution of the Hg?® line is too small
to be shown. In the case of Hg!®® there are two hyperfine com-
ponents, (a) and (b), corresponding to two excited states of total
angular momentum % and £, respectively.

ponents of the line are all of equal intensity; the more
exact treatment,? which takes account of the actual
intensity ratios of the different components, yields
substantially the same result for 7" as (1) and (2).

The broken curve labeled ‘“‘single isotope’ is also
given by an expression of the form of (1), in which,
however, ko has to be multiplied by a factor of five, i.e.,

Fo=10.95X 10~ /6%, 2"

The factor of five arises from the coalescence of the
hyperfine components into the single line characteristic
of Hg'®8, It is immediately evident that for N <10%/cc
the curve is in agreement with experiment. It will now
be shown that the deviations for N>10"%/cc can be
explained in terms of nonradiative transfer of excita-
tion between atoms of Hg!'®® and the other isotopic
constituents.

The absorption spectrum of our samples is illustrated
in Fig. 2. The maxima of the absorption lines are, in
this case of Doppler broadening, proportional to the
“line intensities,” i.e., to the areas under the curves.
Each line intensity, in turn, is proportional to the
product of (a) the concentration. of the absorbing iso-
tope, and (b) the ratio of the statistical weights of
excited and ground states of the line in question. The
separations of the hyperfine components are large
enough so that the absorption bands? of the different
lines do not overlap; hence, radiative transfer of excita-
tion between different isotopes or between different
hyperfine states of the same isotope can be ignored.
Then, at sufficiently low vapor densities, where non-
radiative transfer is also absent, each line decays inde-
pendently with its own characteristic persistence time.
We may thus expect a very rapid decay?® of the radiation
from Hg'* and Hg?, followed by a relatively long
persistence of the Hg!®® line. This is actually what is
observed by visual examination of the oscillographic
traces of light intensity vs time; the time constants given

8 For these lines, the values of %o to be inserted in (1) are smaller
than (2’) by factors of 50 to 1000.
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in Figs. 1(T) and 1(II) are taken from the terminal por-
tion of these traces and hence represent the longest time
constant, which is associated with Hg!®.

As the vapor density is increased, it becomes neces-
sary to take into account collisions involving nonradia-
tive transfer of excitation between the different hyper-
fine states. These collisions have essentially the effect
of transferring excitation from the slowly decaying
Hg!%® line to the much more rapidly decaying lines of
Hg!%® and Hg?®, with the result that the over-all decay
rate is speeded up.

A quantitative description of the phenomenon is
afforded by the following set of equations for the time
variation of the densities #; of the different excited
states:

dni/dt=—n1/T1—m[ Ay 2.No+ A1, 2sNo+ A1, 3NV5]

[ 1204 20, 1120 A 95, 1+ 73435,1 N1, (4a)
dnge/ b= —n20/ Toa— 120 A 20, N1+ 1141, 2.V 5, (4b)
o/ dt=—1n2v/ Tos—nopA2s, 1N 1+n141 25N, (4c)
dns/dt=—mn3/Ts—n3As 1N1+n1dy3Ns. (4d)

In these equations the subscripts 1, 2, 3 refer to
isotopes Hg'%8, Hg!%, and Hg?®; in the case of Hg!®® the
additional subscripts @ and b are used to specify the two
excited states of angular momentum % and 3, respec-
tively. Terms of the form —#,/T; describe the radiative
decay of the ith excited state,” with time constants T
characteristic of the isolated lines. Terms of the type
n:A; jN; represent the transfer of excitation from the
ith to the jth excited state; each “transfer coefficient”
A; ; is the gas-kinetic average of the cross section Q; ;
for the process multiplied by the relative velocity of the
colliding atoms.

Equations (4) are actually a simplified version of the
more exact formulation which is given in the appendix
of this paper. The simplification is twofold. Firstly,
the radiative decay is not a straightforward emission
process, as implied by the terms —n,/T, but actually
involves transport of radiation between different parts
of the enclosure. Secondly, all excitation transfers
among the isotopic impurities have been ignored; the
collision terms in Eqs. (4) represent transfers either to
or from Hg!%, The applicability of these simplifications
to our problem is also discussed in the appendix.

Before solving Eqs. (4) we take advantage of the
principle of detailed balancing to establish relationships
between the different A, ;. We consider the situation in
which the enclosure is surrounded by perfectly reflect-
ing walls. In this case both d#n/d¢ and n;/T; are zero in

7 The subscripts ¢ and j are here used primarily to enumerate
the excited states, i.e., they take on the values 1, 2a, 2b, and 3. In
the case of the isotopic densities N; of normal atoms, however,
the distinction between the notations 2¢ and 2b is meaningless;
in this case, then, ¢ and j assume the values 1, 2, and 3, which
enumerate the isotopes.
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Egs. (4) and one obtains from (4b), (4c), (4d)

ﬂza/n1= (NQ/Nl) (A 1, 2a/A 2a, l),
#nap/m1= (N3/N1) (41, 26/ Asp,1), ®)
1’L3/’VL1= (Ns/Nl(Al, 3/A3, l)-

On the other hand, we have from general statistical
considerations a kind of local thermodynamic equi-
librium involving the ratios of the densities of the
different excited states such that

nl/Nl‘_— Cwle—el/ko’

an/N2= Cwae—ezb/fw,

M2q/ N o= Cwage—2/%0
n3/N3= C71)36—53/k8.

Here ¢; is the energy of the ith excited state and w; its
statistical weight relative to the ground state of the
isotope involved. In the case at hand w1 =w3=3, wsa=1,
and wsp=2. Finally, C is a constant which, in the ab-
sence of complete thermodynamic equilibrium, is not
determined.

Comparing Egs. (5) and (6) and noting that, in the
case at hand, |e;—e;|~10~* ev<<kf, we obtain

Al,2a=%A2a, 1, A1,2b=%A26, 1, Al,3=A3,l- (7)

The solution of Egs. (4) is achieved by the standard
technique of substituting »n;=c,e~*7, where the ¢; and
T are constants to be determined. Elimination of the ¢;
then yields an algebraic equation of the fourth degree
in T. The roots, T, of this equation characterize the
“decay modes” of the #; in the sense that each #;, in
general, can be written as a superposition of exponential
decay terms e~*/T2, As pointed out in the text preceding
Egs. (4), the experimental observations refer to the
terminal portion of the decay curve, for which the
largest T, is alone significant. For the case at hand,
where Ny, N3&KNy, the largest T (which we henceforth
denote simply as T), may be approximated sufficiently
accurately by the expression®

()

1 B 1i 1(No/Ny) 2(No/Ny)
T Ti Tot1/(AdsgiND) Tort1/(Ass Vo)
(N+/ N
____.__)___ (8)
Ts+ 1/(A 3, 1N1)

For low vapor densities such that T5,&K1/ (424, 1V1),
T26<K1/ (A2, 1N 1), and T5K1/(A431N 1), (8) reduces to a
relation which with the use of (7) can be written as

1/T=1/T1+ (A1 20+ A1, 28) Not+ A1, 3N €

In this case the isotopic impurities act essentially as
quenching agents; whatever excitation is transferred to

8 A simple way of deriving (8) is to assume that T>> T4, Tsp, T.
One may then take the left-hand sides of (4b), (4c), and (4d) equal
to zero, thereby obtaining the appendix Egs. (15A) for the ratios
ni#1/n1. Inserting the latter into (4a) and employing (7), we
immediately arrive at (8). The assumption that 72> 7', can then
easily be justified e posteriori for the case of N;1/N:<K1 by in-
spection of (8"), which provides a lower limit for 7.
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them is for the most part radiated from the enclosure
and hence constitutes a net loss.
At the other extreme of high densities such that

Toe>1/(A26,1V1), To>1/(A261N1),
and T3>1/(A451N1), we obtain
11 /N AN/ No/Ns
~— } f .
T T, T2 T T

)

In this limit the predominance of the collision terms in
Egs. (4) gives rise to a thermodynamic equilibrium of
the same type as described by (5) or (6). The right-hand
side of (8") may then be regarded as a weighted average
of the decay rates, 1/T;, of the different excited states,
each weighting factor being equal to the equilibrium
fraction of excited atoms occupying the state in
question.?

The first numerical calculations of 7', based on (8)
were carried out under the assumption that the 0.1
percent Hg?% impurity could be neglected. Results were
obtained for various values of Asp 1 and for different
ratios? of Asq1 to Assp,1; unity and §; they are repre-
sented by the light-dashed curves of Figs. 1(I) and 1(II),
respectively. The behavior of these curves in the limits
of high and low vapor density, in accordance with the
remarks of the preceding paragraphs, is to be noted.

More recent computations have taken into account
two refinements. Firstly, it was found that the presence
of Hg?®, even in the small concentration of 0.1 percent,
could not be ignored at densities (of the main isotope)
~10%/cc. A second complication which manifests itself
at high densities is the incipient effect of pressure
broadening. Relegating the detailed calculation of this
effect to the appendix (Sec. 4), we here write down the
result. Namely, one adds to (8) the term

A,=1.01X10"1 /(8 logkoR)* sec'. (9)

The results obtained by the inclusion of these refine-
ments are shown in Figs. 1(I) and 1(II) as solid curves
for the cases of Ag4,1/425,1=1 and %, respectively. The
computations were performed only for vapor densities
less than 10'3/cc; it was found by sample calculations
that, for N;>10'/cc, the complicating effects of the
overlap of the different hyperfine components rapidly
become important. The limited results presented here,
nevertheless, provide at least a qualitative understand-
ing of the high density deviation of the experimental
points from the simple theory as represented by the
light-dashed curves.

9 From the considerations of Sec. 5 of the appendix, the relative
magnitudes of 44,1 and Ay, 1 are seen to depend upon the energy
differences |eza—e1], and |esp—e1| of the excited levels involved
in the excitation transfer. These are given in Table I of that section
in wave-number units. Since |ea—e1] > |ess— e |, the qualitative
indication, based in Eq. (24A), is that As,1<A42s1. Hence, the
assumption Asq1/42p,1=1 doubtlessly represents an upper limit
for the ratio. The other choice, namely 4, appears to us, on the
basis of Eq. (24A) and Table I, to be a reasonable lower limit.
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Before proceeding further with the comparison of
theory with experiment, we must point out that in the
intermediate region of vapor densities (~5X10%/cc),
for which T9y~1/A2,1V1 and Top~1/A4s,1, the quan-
titative results are subject to some error. Namely, in
this region it turns out that T, and T are not much
greater than the lifetime = of the isolated atom; in
other words, the lines of Hg!® are only moderately
imprisoned. Unfortunately, our imprisonment formulas
of the type of (1) are not quantitatively accurate for
T:=10+. This inaccuracy is carried over, by virtue of
(8), to the final values for T'; some crude estimates indi-
cate that the error thus incurred may be ~20 percent.
With decreasing vapor densities, the errors in the T
increase; however, as shown by (8'), T becomes essen-
tially independent of the T%.

With these considerations in mind, we have not at-
tempted a detailed comparison of experiment with
theory; it is nevertheless apparent that one can make
an order of magnitude estimate for A s, 1 which will give
the best fit with the experimental points. Thus

Aap,1~2X 1079 cm3/sec. 9)

This estimate is not radically affected by different
assumptions as to the ratio A4, 1/A420,1.

Further comparison indicates that of the two choices
for As, 1/A2s,1 analyzed here, namely unity and %, the
latter provides somewhat the better agreement with
experimental facts. However, in view of the above re-
marks on the errors in the quantitative theory, we do
not regard this indication as conclusive.

The order of magnitude of the transfer coefficient, as
given by (9), deserves some comment. If we divide (9)
by the mean relative velocity (~2X10* cm/sec), we
obtain an effective cross section,

QO~10"8 cm?, (10)

which is some 20 to 30 times the gas-kinetic cross section
(depending on the definition of the latter quantity).
Actually, this result is not too surprising; in fact, cross
sections for transfer of excitation can exceed gas-kinetic
cross sections, especially when the energy levels of the
colliding atoms are nearly coincident, as is the case with
different isotopes of the same element.

An upper limit to 45,1 can be estimated by consider-
ing the transfer of excitation between identical atoms.
For this case of exact resonance, the approximate
theory presented in a paper by Furssov and Vlassov!?
may be employed. The calculation which is carried out
in the appendix, Sec. V, yields the result

Asp,1~3.4X107° cm?/sec, (11)

which is in good order-of-magnitude agreement with (9).

There remains the question as to the effect of the
energy-level discrepancy between Hg!'*® and Hg'%. The
estimation of this effect, on the basis of a simplified

10 W, Furssov and A. Vlassov, Physik. Z. Sowjetunion 10, 378
(1936).
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theory of transfer of excitation, is also presented in
Sec. V of the appendix; the conclusion therein reached
is that the level discrepancy is too small to cause any
order-of-magnitude diminution of As 1 from the reso-
nance value given in (11).
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APPENDIX

1. Formulation of the Decay Problem in Terms of
Integro-Differential Equations

In this section, we seek a formulation which takes
into account not only the collision-induced transfer of
excitation in a given volume element (which is pre-
sented explicitly in Egs. (4) of the text) but also the
radiative transport of excitation between different vol-
ume elements of the enclosure. This goal is achieved by
a straightforward generalization of the integro-differ-
ential Eq. (3.4) of reference 1,

ron(r)/dt= —n(r)+ f n( )G, )dr', (1A)

which describes the radiative transport of excitation for
the case of a simple resonance state without hyperfine
structure. In this equation the key quantity determining
the time variation of the density of excited atoms, n(r),
is the kernel, G(t’, r), of the integral term; it is defined
as the probability that a resonance quantum emitted
at t’ is captured in a unit volume element centered at r.

The required generalization to the case of present
interest reads

roni(r)/0t= —ni(r)+ f ni(1)G:(t', r)dr’

+7 2 [Aj Nnj(x)— A ;Nmi(r)],

where the subscripts ¢ and j each take on the values
1, 2a, 2b, and 3. In these equations, the Gi(r’, r) charac-
terize the radiative transport for the different excited
states. The relationship of Egs. (2A) to Egs. (4) of the
text is treated in the following section.

(2A)

II. Variational Treatment of the Basic Integro-
Differential Transport Equations (2A)

For the purposes of the present paper we are inter-
ested in steady-state solutions, #(r, {) =n,(r)e 7, of
(2A). For this case (2A) reduces to

— (1) T=—n;(r)+ f ni(r )G, r)dr’

+1 2[4 Nmj(x)— A, ;Nmi(r)]. (3A)
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Now, by virtue of the text Egs. (7), which are readily
generalized to!!

A j=aiwi, (4A)
where
(SA)

@i;= Gji,

2 Ft f fm(t')Gi(r’, r)n;(r)drdr’

989

and, introducing the notation
F ,‘EN Wi, (6A)

we are able to establish the equivalence of (3A) to the
following variational problem

FiFt f n2(0)dr— f (O, (£)dr

TPt f n2(x)dr

§(1/T)=0,

as is easily verified.

1 .
DI 5

(7A)
Z" F.-—lfn.z(r)dr

(8A)

The positive-definiteness of 1/T" can be demonstrated by a procedure analogous to that used in reference 1,
p. 1217. Namely, we can write (7A) in the alternate form

2. F n"l[ f n?(r)E;(r)dr-}—% f f [7:(x) — (") G (x, I’)drdr’]

oIk

S Fit f nd(r)dr

where

E()=1— f Gi(x, t')dr’.

In (9A) all the integrals are positive definite. The
eigenvalues of 1/7 can thus be arranged in a series of
ascending positive numbers; the lowest of these, which
is the one of interest to us, is an absolute minimum.

Use of the Ritz variational procedure will therefore pro- -

vide for 1/7 an upper limit which will converge toward

the true value as the number of adjustable parameters in

the assumed functional forms for the #;(r) is increased.
We now choose

ni(r) =nf(x), (11A)

1 3 Find/Ti 1344

f [F AF —ni(t) — FiF-iny (1) P
+% Z"J' T4 1] y
Z.’ F.-—lfn.z(r)dr

(9A)

(10A)

when #; denotes the value of #;(r) at a convenient refer-
ence point in the enclosure. In the case of infinite
cylinders we assume a parabolic form for f(r):

f@=1-p/R,

where p is the distance of the point r from the cylindrical
axis; the reference point is, then, any point on the
cylindrical axis.

Inserting (11A) into (9A), we obtain

(12A)

G FAF T ni— FAF{ 4, P

E:_ ZiF.'—ln,z I2

where

, (13A)
> niFt

. f f’(r)E;(r)dr-i—% f f [f(6)— (&) PG x, ¥)drdr’

T;— T

bl

f FA(Ddr

1 49; is the ratio of the statistical weight of the ith state divided by the statistical weight of the ground state, as employed in Egs.

(6) and subsequent text.
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1/T; is actually the variational expression for the decay
rate of an isolated line, as shown by comparison with
Eq. (3.10) of reference 1. ‘

An absolute minimum for (13A) is achieved by
differentiation with respect to the »; The resulting
equations are

nif T=mn;/t422; Asj(Fni—Fn;), (14A)

which, with the aid of (4A) and (6A), are seen to be just
the equations one obtains by substituting the steady-

state solutions
ni()=ni(0)e "

into Egs. (4). In other words, our text procedure based
on Egs. (4) provides a variational approximation
for 1/7.

There remains the question as to how accurate a
value of 1/T is obtained variationally by use of the #(r)
defined by (11A) and (12A). In this connection it should
be pointed out that (a) the presence of the collision
terms in (3A) or (7A) tends to equalize the spatial forms
of the different #,(r); if, in particular, one passes to the
high-density limit, where the collision terms dominate,
the #,(r) bear constant ratios to each other [as given by
the text Eqs. (5)] independent of position. (b) In the
case of a single resonance state whose radiation is
strongly imprisoned, reference 1 has shown that the
assumption of a parabolic form for the density function
yields a sufficiently accurate value for the decay time;
in fact, Eq. (1) was derived® on this basis. (c) In the case
of a weakly-imprisoned line, for which the parabolic
function does not give good results, computational
errors may be quite appreciable. These errors arise from
the use of approximations, at various stages of the calcu-
lation, which are only asymptotically valid for the case
of large optical opacities (kR>>1). It is these errors, in
fact, which, as remarked in the second paragraph after
Eq. (9), prevent us from achieving quantitative accu-
racy at intermediate vapor densities ~5X10%/cc. Re-
finements in the variational treatment will not improve
the situation unless they are accompanied by a reduc-
tion of the computational errors; this undertaking,
however, promises to be exceedingly difficult and
tedious.

III. Neglect of Collision Terms 4, ;N;N;, Where
Neither i Nor j Are Equal to 1

In our treatment these terms are neglected relative
to the terms A4 1:1V; and Ay, ;1N ;; the reason is simply
that both Ni=1/N <1 and ni=1/7:<1. The first in-
equality is valid “by construction,” i.e., by virtue of the
isotopic constitution of our samples. To demonstrate
the validity of the second inequality, we observe the
following: (a) In the limit of large vapor densities, where
the collision terms become dominant, the ratios ni=1/7:
are given by the text relations (6) which, apart from
the weight factors and Boltzmann exponentials, are
equal to the ratios Ni=1/Ny, and are hence <1. (b) In
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obtaining the approximate solution (8) of Egs. (4)
according to the prescription of reference 8, we find

m;ﬂ/m:A,; 1N1/(1/T1+A,, 1N1), (15A)

which is even less than the high density limit as given
by (6). Thus, in this case the inequality is @ forfior:
valid.

IV. Pressure-Broadening Effects

The initial manifestation of pressure broadening,
with which we are alone concerned, have been treated
in reference 1, pp. 1223-1224. In our case, we consider
only the broadening of the Hg!'® component and ignore
the absorption of this line arising from the other hyper-
fine components. The effect of pressure broadening may
then be represented quite simply by adding to the right-
hand side of (8) the term

Ap=2a,/m(logkeR)ir; (16A)

(16A) is derived in much the same way as Eq. (5.14)
of reference 1, which describes the effect of natural
broadening in plane-parallel enclosures. The correspond-
ence between the two expressions arises from the as-
sumption that the pressure-broadened line shape is of
the dispersion type ~[$v,*+ (w—wo)? 1™, which differs
from the shape of the naturally broadened line, ~[ %72
~+ (w—wo)?] only in the line width constant. The main
differences between (16A) and (5.14) are (a) in the
logarithmic factors, which are characteristic of en-
closure geometries and (b) the replacement of the factor
ax=(N\o/47)7(2RO/M)* by a,=an7v,; the absence of
the factor 1/7 from (5.14) is due to the circumstance
that the time unit is there taken to be the natural life-
time of the isolated atom.

For v, we take the theoretical result of Furssov and
Vlassov,® which, as shown in reference 1, p. 1224, may
be written as

vp7=NN*/27%=0.83X 1071\, (17A)

Combining (16A), (17A), and the expressions for a,
and ay given above, and inserting numerical values, we
obtain the text expression (9) for A,.

V. Transfer of Excitation between Atoms

For the case of transfer of excitation between two
identical atoms an approximate expression for the cross
section may be derived from the results of Furssov and
Vlassov. These authors treated the case in which the
atomic ground and excited states involved in the
collision are S and P states. The expression which they
obtain for the probability of excitation transfer in a
binary encounter (Eq. 28 of their paper) may be
written as

P(p)=3e' Y/ mPwip'®. (18A)

Here, P(p) (in the notation of Furssov and Vlassov,
Ala|?/|a|?) is a function of impact parameter p, the
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frequency wo associated with an optical transition from
the excited level to the ground state—in our case the
frequency of the resonance line—the oscillator strength
f of the line, the relative velocity v of the colliding atoms
and fundamental constants; the numerical factor, %,
present in our version comes from the averaging of the
quantity sin?y; occurring in the original equation.

Equation (18A) holds only for p large enough so that
P(p)K1. We shall nevertheless apply it up to that
impact parameter, p;, such that P(pi)=%. For p<pi,
P(p) oscillates between zero and unity; we assume that
its effective value is 3. With these simplifications, the
cross section for excitation transfer becomes

Q=3mp+27 f P(p)pdp,

28
which is readily evaluated. The result is
Q=mp*=(4/3) re*f/mve,

A=Qv=(4/3) re*f/mw,

which, by virtue of a well-known relationship!? between
f and the radiative lifetime of the excited state =, may
be written as

(19A)

or

A=V3IN\?/8n?r, (20A)

where ), is the wavelength of the atomic resonance line.
Substituting appropriate numerical values, we find

A=23.4X10"° cm®/sec,

as quoted in the text.

The foregoing considerations apply only to collisions
between identical atoms. In the case of interest, how-
ever, we have to do with excitation exchange between
different isotopes, and have therefore to take into ac-
count the effect of the energy level discrepancy of the
colliding atoms. This problem has been investigated by
Stiickelberg!® and, more recently, by Dr. Bernstein and
one of the present authors (T.H.)."* Both treatments
employed a simplified model in which the excited and
ground atomic states were assumed nondegenerate; the
interaction responsible for excitation transfer was taken
to be of the form K/R? suggestive of dipole-dipole
coupling. It was found that the dependence of Q
on the energy discrepancy AE between the excited
states of the two colliding atoms is characterized by the
parameter,

3= (AE/R)(R./v), (21A)
where R,, a “critical radius,” is given by the formula
R.=(2K/AE)*. (224)

12 Reference 1, equation subsequent to (5.17). The right-hand
side of this equation is incorrect; it should contain an extra factor
of 7 in the numerator.

BE. G. G. Stiickelberg, Helv. Phys. Acta 5, 369 (1933).

14T, Holstein and I. B. Bernstein, Phys. Rev. 83, 201 (1951);
Bulletin of the Conference on Gaseous Electronics, November 3-5
(1949), paper D3.

991

TaBLE L. Values of the parameter 8.

|ul

0.85
0.58

1.07
0.72

81, 20
01, 2

In our treatment of the problem the following results
were obtained:

(a) for 61

Q=(m*K/m)[1—(28°/)(log*(8°/2)

+0.705 log(83/2)+48)], (23A)

(b) for 61
0=mK/v(3.2/8)e 1125, (24A)

These results, while qualitatively similar to those of
Stiickelberg, differ in quantitative detail.

One may conclude that in the region §=1 the order
of magnitude of Q is that of the resonance value,
72K /hv. On the other hand, for §>2, Q lies appreciably
below the resonance value and diminishes rapidly with
increasing .

The difficulty in applying these results to the transfer
of excitation between Hg isotopes (as well as to any
other actual transfer problem) is that either the excited
or ground states are degenerate. One of the consequences
of this degeneracy is that the magnitude of the dipole-
dipole coupling term is not constant, but depends upon
the component of electronic angular momentum
parallel to the axis of figure. For example, if the two
colliding atoms both possess ground and excited states
with angular momenta zero and unity, respectively,
the dipole-dipole interaction constant K is given by
the expression!®

K = ué*fh/2me,

where u=1 or —2 for Q=1 or zero.

Despite this ambiguity, the theory should still be
capable of yielding an order-of-magnitude estimate of
the energy-discrepancy effect. We limit ourselves to the
aforementioned case of angular momenta zero and
unity for atomic ground and excited states; while this
situation is not the one encountered in our most impor-
tant reaction—excitation transfer between Hg'*® and
Hg!**—we believe that it is sufficiently illustrative for
order-of-magnitude considerations.

Inserting (25A) into (21A), and utilizing the above-
quoted! relation between f and 7, we obtain

8= "(c/2v)No(3u/mcT)}(A)?, (26A)

where Aq is the wavelength of the composite resonance
line, A is the wave-number discrepancy corresponding
to the energy difference of the excited levels of the
colliding atoms, and ¢ the velocity of light. For Hg,

(25A)

15 H. Margenau and W. W. Watson, Revs. Modern Phys. 8, 22
(1936), Sec. 5, Eq. (1).
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taking v=2X10* cm/sec, we obtain
0=2.8u¥(A5)k (27A)
Now the relevant wave-number separations in our case

are (in the subscript notation of the excited states
employed in the text)

APy, 2.=0.47 cm™,

Ay, 25=0.26 cm™1, (ZSA)

HOLSTEIN, ALPERT, AND McCOUBREY

The values of the §’s corresponding to (28A) and to the
two different values of |u| are given in Table I.

From these numbers and from the remarks subse-
quent to Eq. (25A) we arrive at the conclusion stated
in the text subsequent to Eq. (11); namely, the energy-
level discrepancy is too small to cause any order-of-
magnitude diminution of the cross section from its
resonance value.
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The Response of Anthracene Scintillation Crystals to High Energy y-Mesons*

TaEODORE BOWEN AND FraNcis X. ROSER}
Department of Physics, University of Chicago, Chicago, Illinois
(Received December 7, 1951)

The response of an anthracene scintillation counter to high energy charged particles which lose only a
small fraction of their energy in traversing the crystal was determined, using z-mesons in the cosmic radia-
tion at sea level with energies from 29 Mev to greater than 1 Bev. The light output was found to have a
sizeable fluctuation for mesons of the same initial energy, due to ionization loss straggling. The scintillation
efficiency of the phosphor was found to decrease for increasing specific ionization, in agreement with the
work of others on electrons and protons. The response of the crystal showed no rise within 2 percent for
relativistic meson energies, which agrees with calculations of the density effect reduction in ionization loss

for anthracene.

HE light output of scintillation crystals has been
A shown to be approximately proportional to the
total ionization energy loss for low energy particles
which spend their entire range in the crystal.! Such
proportionality between energy loss and light output
would also be expected to be true for high energy
charged particles which pass completely through the
crystal and lose only a small fraction of their total
energy by ionization in the crystal. It was the purpose
of this work to find the light output of an anthracene
crystal as a function of the energy of the traversing
particle. Anthracene was used for this investigation
because it has the largest light output of the known
organic phosphors. p-mesons from the cosmic radiation
at sea level provided a good source of particles for such
an experiment, because a wide range of energies is
available and absorption by radiation losses and by
nuclear collisions is negligibly small. The results which
would be found for other charged particles should be
the same as for u-mesons, except for a simple change of
scale.

I. THEORY

For the case of a charged particle traversing a thin
absorber, a large fluctuation in the ionization energy

* Assisted by the joint program of the ONR and AEC.

t Preliminary results of this investigation were reported in
F. X. Roser and T. Bowen, Phys. Rev. 82, 284 (1951) and T.
Bowen and F. X. Roser, Phys. Rev. 83, 689 (1951).

1 Now at Universidad Catolica, Rio de Janeiro, Brazil.

1'W, H. Jordan and P. R. Bell, Nucleonics 5, 30 (1949); R.
Hofstadter and J. McIntyre, Nucleonics 7, 32 (1950); R. W.
Pringle, Nature 166, 11 (1950); and S. A. E. Johansson, Ark. Fys.
2, 171 (1950).

loss is to be expected. This “straggling” has been calcu-
lated by Williams? and, later, more accurately by
Landau® and Symon.t The straggling is essentially
caused by the fact that large energy transfers to single
electrons can occasionally occur. These electrons, which
are seen as “8-rays” in nuclear emulsions or as “‘knock-on
electrons” in cosmic-ray work, lose their energy in the
crystal in most cases; hence, the light output is in-
creased. For high energy particles, where

W, (€))
with
W2mc*6/ (1— 62 (mesons and protons),
£=2mnetx/mc®B?,

the energy loss distribution approaches a form which
can be expressed in terms of a universal function. Here
» is the electron density, m is the electron mass, e is the
electronic charge, ¢ is the velocity of light, 8 is v/c for
the incident particle, and « is the absorber thickness in
cm. W is the maximum energy loss possible in a single
collision, and £ is a parameter with the dimensions of
energy which is a measure of the thickness of the
absorber. If the probability of an energy loss between
e and et+de is P(£, €)de in an absorber with a thickness
parameter £, then it was shown by Landau® that

P, e)=—1£¢(f—:f—";3@).

2 E. J. Williams, Proc. Roy. Soc. (London) 125, 420 (1929).
3L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944).

+K. R. Symon, Harvard University thesis (1948).

& See reference 3, Eq. (18).
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