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Isotope Effect in the Jmpriso~ment of Resonance Radiation

T. HoLsTEiN) D. ALPERT, AND A. 0. McCoUBREY
Westingholse ResearcII Laboratories, East Pittsbgrgh, Pennsy/mania

(Received December 4, 1951)

On theoretical grounds it is expected that the decay time of imprisoned resonance radiation in the vapor
of a single even isotope of mercury should be some six times larger than that observed with the natural
samples of mixed isotopic constitution. To investigate this effect experimentally, decay measurements were
carried out with samples of Hg'" (3 percent Hg"' and 0.1 percent Hg"'). For vapor densities N «10"/cc, the
predicted effect was verified. For N)10"/cc, the observed decay time drops below that predicted theo-
retically for pure Hg' 8. This secondary effect is here attributed to the transfer of excitation from Hg"8 to
Hg" and Hg' ' by collisions of the second kind. Comparison of experimental data with an appropriately
generalized theory permits estimation of the cross section for such collisions. The value so obtained is 10 "
cm, some twenty times the gas-kinetic cross section, and in order-of-magnitude agreement with theoretical
expectations.

CCORDING to theory, ' the persistence of im-
prisoned resonance radiation in gases is strongly

dependent upon the line shape of the radiation. In
particular, it is found that a correct description of the
phenomenon necessitates taking into account the hyper-
6ne structure of the resonance line. ' For example, the
persistence time of the 2537A line of Hg, which in
naturally occurring samples consists of Gve hyperfine
components, is theoretically some six times smaller than
that associated with a pure even isotope, which does not
possess hyperdne structure. Measurements carried out
with samples of Hg"' (3 percent contamination of
Hg'", 0.1 percent of Hg'") not only con6rm this
marked difference, but also exhibit in a striking manner
additional eGects arising from small admixtures of
isotopic impurities.

The measurements of the persistence time T of
imprisoned radiation, as a function of vapor density X,
were carried out in a manner previously described. ' A
special procedure4 was required for the preparation of
resonance tubes of Hg'" from two 2-milligram samples,
kindly supplied to us by Dr. Meggers of the National
Sureau of Standards. The experimental points are
shown in Figs. 1(I) and 1(II) (black circles). By way of
comparison, the corresponding data for natural mer-
cury, presented in reference 3, 'are reproduced in both
Figs. (black squares).

The dashed curves labeled "natural mercury, " also
reproduced. from reference 3, represent upper and lower
limits of the theoretical prediction for that case. The
curves coincide in the region of Doppler broadening
(X(10'~/cc); in this region T is given analytically by
the expression"

T= SskoR(s' Iogk+) 4',

' T. Holstein, Phys. Rev. 72, 1212 (1947).
~ Reference 1, Sec. 5.
~ Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).

Footnote 7 of this reference contains the theoretical expression
for T given in Eqs. (1) and (2) of the present paper. For the deriva-
tion of the result see T. Holstein, Phys. Rev. 83, 1159 (1951).

4 To be reported by D. Alpert and C. G. Matland in Rev. Sci.
Instr.

I T. Holstein, Phys. Rev. SB, 1159 (1951).
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FIG. 1. Experimental and theoretical results on the imprison-
ment of resonance radiation in natural Hg, mono-isotopic Hg '8,
and in a mixture of Hg'" (96.9 percent), Hg" (3 percent), and
Hg'00 (0.1 percent). In the latter case the theoretical curves depend
on the transfer coeKcients, A2, , ~ and A~It,, ~. Figure 1(I) is for the
case Am~y=A2g ~, Fig. 1(II) for the case A2, , h= )A~g, 1.

where r, the lifetime of the isolated atom, is 1.08' 10 '
sec, R is the radius of the resonance tube, and ko is the
absorption coefFicient at the center of the Doppler-
broadened line. ko is given by the formula

k0=2.19X10 "A/tt& cm ' (2)

where tI is the absolute temperature. Equation (2) re-
sults from the assumption that the five hyper6ne com-
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FIG. 2. Absorption spectrum of experimental Hg samples. On
the scale of the figure the contribution of the Hg 00 line is too small
to be shown. In the case of Hg" there are two hyperfine com-
ponents, (a) and (b), corresponding to two excited states of total
angular momentum —,

' and 2, respectively.

' For these lines, the values of k0 to be inserted in (1) are smaller
than (2') by factors of 50 to 1000.

ponents of the line are all of equal intensity; the more
exact treatment, ' which takes account of the actual
intensity ratios of the different components, yields
substantially the same result for T as (1) and (2).

The broken curve labeled "single isotope" is also
given by an expression of the form of (1), in which,
however, ko has to be multiplied by a factor of five, i.e.,

&3= 10.95X10 I2 X/0*

The factor of Ave arises from the coalescence of the
hyperhne components into the single line characteristic
of Hg" . It is immediately evident that for %&10"/cc
the curve is in agreement with experiment. It will now
be shown that the deviations for X)1014/cc can be
explained in terms of nonradiative transfer of excita-
tion between atoms of Hg"' and the other isotopic
constituents.

The absorption spectrum of our samples is illustrated
in Fig. 2. The maxima of the absorption lines are, in
this case of Doppler broadening, proportional to the
"line intensities, " i.e., to the areas under the curves.
Each line intensity, in turn, is proportional to the
product of (a) the concentration. of the absorbing iso-

tope, and (b) the ratio of the statistical weights of
excited and ground states of the line in question. The
separations of the hyper6ne components are large
enough so that the absorption bands' of the different
lines do not overlap; hence, radiative transfer of excita-
tion between different isotopes or between different
hyper6ne states of the same isotope can be ignored.
Then, at sufficiently low vapor densities, where non-

radiative transfer is also absent, each line decays inde-

pendently with its own characteristic persistence time.
We may thus expect a very rapid decay' of the radiation
from Hg'" and Hg"', followed by a relatively long

persistence of the Hg"' line. This is actually what is

observed by visual examination of the oscillographic
traces of light intensity vs time; the time constants given

d222o/dt 232 /T2 232 A2, I+I+231AI, 2aE2

d232b/dt= 2323/—T23 2323A23, IlVI+231A123X2,,

dm3/dt= 233/T3 N3A3, 1Ãl+221A1, 3+3.

(4b)

(4c)

(4d)

In these equations the subscripts 1, 2, 3 refer to
isotopes Hg'" Hg"' and Hg"', in the case of Hg'" the
additional subscripts a and b are used to specify the two
excited states of angular momentum —,

' and ~, respec-
tively. Terms of the form —23,/T, describe the radiative
decay of the ith excited state, ' with time constants T;
characteristic of the isolated lines. Terms of the type
e;A;, ,S; represent the transfer of excitation from the
ith to the jth excited state; each "transfer coefhcient"
A;, ; is the gas-kinetic average of the cross section Q;, ;
for the process multiplied by the relative velocity of the
colliding atoms.

Equations (4) are actually a simplitied version of the
more exact formulation which is given in the appendix
of this paper. The simplification is twofold. Firstly,
the radiative decay is not a straightforward emission

process, as implied by the terms —23;/T;, but actually
involves transport of radiation between different parts
of the enclosure. Secondly, all excitation transfers

among the isotopic impurities have been ignored; the
collision terms in Eqs. (4) represent transfers either to
or from Hg" . The applicability of these simplifications

to our problem is also discussed in the appendix.
Before solving Eqs. (4) we take advantage of the

principle of detailed balancing to establish relationships
between the different A;, ;. We consider the situation in

which the enclosure is surrounded by perfectly reQect-

ing walls. In this case both dn;/dt and 23;/T, are zero in

' The subscripts i and j are here used primarily to enumerate
the excited states, i.e., they take on the values 1, 2u, 2b, and 3. In
the case of the isotopic densities S; of normal atoms, however,
the distinction between the notations 2u and 2b is meaningless;
in this case, then, i and j assume the values 1, 2, and 3, which
enumerate the isotopes.

in Figs. 1(I) and 1(II) are taken from the terminal por-
tion of these traces and hence represent the longest time
constant, which is associated with Hg'".

As the vapor density is increased, it becomes neces-
sary to take into account collisions involving nonradia-
tive transfer of excitation between the different hyper-
fine states. These collisions have essentially the effect
of transferring excitation from the slowly decaying
Hg'" line to the much more rapidly decaying lines of
Hg"' and Hg"', with the result that the over-all decay
rate is speeded up.

A quantitative description of the phenomenon is
afforded by the following set of equations for the time
variation of the densities e; of the different excited
states:

d231/dt= —231/TI —23II AI, 2 X2+AI, 231V2+AI, gX3j

+ t232aA 2a, I+232bA2bl+23, 3A 3, I]+1) (4a)
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Kqs. (4) and one obtains from (4b), (4c), (4d)

332 /231 ——(1V2/1V1)(A1, 2 /A2, 1),

3323/mt = (N2/1V1) (A 1, 2b/A 2b 1),

333/131 (1V3/1V1(A 1, 3/A 3, 1)

On the other hand, we have from general statistical
considerations a kind of local thermodynamic equi-
librium involving the ratios of the densities of the
diferent excited states such that

331/1V1 C——wle '1'"' 332 /1V2 Cw——s,e '"'"
(6)

3323/1V2 ——Cw2 be
—'»'33, 233/1V 3 Cwse ——'3'"'. —

Here e; is the energy of the ith excited state and m; its
statistical weight relative to the ground state of the
isotope involved. In the case at hand +~=+3=3,m2, ——1,
and e2&——2. Finally, C is a constant which, in the ab-
sence of complete thermodynamic equilibrium, is not
determined.

Comparing Eqs. (5) and (6) and noting that, in the
case at hand,

~
e;—3;~ 10 4 evoke, we obtain

The solution of Eqs. (4) is achieved by the standard
technique of substituting e;=c,e '1', where the c; and
T are constants to be determined. Elimination of the c;
then yields an algebraic equation of the fourth degree
in T. The roots, T, of this equation characterize the
"decay modes" of the e, in the sense that each n;, in
general, can be written as a superposition of exponential
decay terms e 'I .As pointed out in the text preceding
Eqs. (4), the experimental observations refer to the
terminal portion of the decay curve, for which the
largest T is alone significant. For the case at hand,
where F 2, 1V3«1V1, the largest T (which we henceforth
denote simply as T), may be approximated sufficiently
accurately by the expression'

1 1 —',(1V2/1V1) 3(1V2/1Vt)—=—+ +
Tl T2a+ 1/(A 2a, 11V1) T2b+ 1/(A 2b, 11V1)

(1V3/1V1)
+ (8)

Tb+1/(A 3, 11V1)

For low vapor densities such that T2,«1/(A2, , 11V1),

Tsb«1/(Asb, 11V1), and Ts«1/(As, 11V1), (8) reduces to a
relation which with the use of (7) can be written as

1/T 1/Tl+(A1, 2 +Al, asb)—1V2+A1, 37V3 (8 )

In this case the isotopic impurities act essentially as
quenching agents; whatever excitation is transferred to

A simple way of deriving (8) is to assume that T))T2, T», T8.
One may then take the left-hand sides of (4b), (4c), and (4d) equal
to zero, thereby obtaining the appendix Eqs. (15A) for the ratios
n, ~1/n1. Inserting the latter into (4a) and employing (7), we
immediately arrive at (8). The assumption that T&)T;pI can then
easily be justi6ed u posteriori for the case of N;~I/NI&&1 by in-
spection of (8"),which provides a lower limit for T.

them is for the most part radiated from the enclosure
and hence constitutes a net loss.

At the other extreme of high densities such that

T2a»1/(A 2a, 11V1)y T23»1/(A 23, 11V1)p

and T3»1/(As, 11V1), we obtain

3 (1V2/1V1) 3 (1V2/1V1) 1V3/1V1==+ + + . (8")
T Ti T2. T2$ T3

In this limit the predominance of the collision terms in
Eqs. (4) gives rise to a thermodynamic equilibrium of
the same type as described by (5) or (6).The right-hand
side of (8")may then be regarded as a weighted average
of the decay rates, 1/T;, of the different excited states,
each weighting factor being equal to the equilibrium
fraction of excited atoms occupying the state in
question. '

The first numerical calculations of T, based on (8)
were carried out under the assumption that the O. j.
percent Hg"0 impurity could be neglected. Results were
obtained for various values of Asb, 1 and for different
ratios' of A2, , 1 to Asb, t, unity and —,', they are repre-
sented by the light-dashed curves of Figs. 1(I) and 1(II),
respectively. The behavior of these curves in the limits
of high and low vapor density, in accordance with the
remarks of the preceding paragraphs, is to be noted.

More recent computations have taken into account
two refinements. Firstly, it was found that the presence
of Hg'", even in the small concentration of 0.1 percent,
could not be ignored at densities (of the main isotope)

10"/cc. A second complication which manifests itself
at high densities is the incipient eGect of pressure
broadening. Relegating the detailed calculation of this
effect to the appendix (Sec. 4), we here write down the
result. Namely, one adds to (8) the term

6„—=1.01X10 "1V/(0 logibbR)f sec '

The results obtained by the inclusion of these refine-
ments are shown in Figs. 1(I) and 1(II) as solid curves
for the cases of A2, , 1/A», 1——1 and —'„respectively. The
computations were performed only for vapor densities
less than 10"/cc; it was found by sample calculations
that, for 1V1)10"/cc, the complicating effects of the
overlap of the diferent hyperfine components rapidly
become important. The limited results presented here,
nevertheless, provide at least a qualitative understand-
ing of the high density deviation of the experimental
points from the simple theory as represented by the
light-dashed curves.

9 From the considerations of Sec. 5 of the appendix, the relative
magnitudes of A 2, ,1 and A», 1 are seen to depend upon the energy
differences

~
asa —aq ~, and

~
asb —aq

~
of the excited levels involved

in the excitation transfer. These are given in Table I of that section
in wave-number units. Since (43a—aq()

~
asb —aq~, the qualitative

indication, based in Eq. (24A), is that A2~, 1&A2q, 1. Hence, the
assumption A&~, 1/A», 1=1 doubtlessly represents an upper limit
for the ratio. The other choice, namely —'„appears to us, on the
basis of Eq. (24A) and Table I, to be a reasonable lower limit.



Before procced1ng fill'tllcl' with thc comparison of
theory vrith experiment, @re must point out that in the
intermediate region of vapor densities (~5X10'4/cc),
«» which T&. 1/~2 I&»nd T» 1/~», i, the quan-
tltRtlvc I'csults Rrc subject to some error. Namelyq ln
this region it turns out that T~, and T2~ are not much
greater than the lifetime 7; of the isolated atom; in
other vrords, the lines of Hg'" are only moderately
imprisoned. Unfortunately, our imprisonment formulas
of the type of (1) are not quantitatively accurate for
Ti~IOT+ This inaccuracy ls cRIllcd overp by vlItue of
(8), to the final values for T; some crude estimates indi-
cate that the error thus incurred may be 20 percent.
Kith decreasing vapor densities, the errors in the T;
increase; however, as shown by (8'), T becomes essen-
tially independent of the T;.

Kith these considerations in mind, wc have not at-
tempted a d.etailed comparison of experiment vrith

theory; it is nevertheless apparent that one can make
RQ order of Q1Rgnltudc cstlnlatc fol A2g, y which will glvc
the best 6t with the experin1ental points. Thus

A 1s, 1~2X10 ' cm'/sec. (9)

This estimate is Qot radically affected by diGerent
assumptions Rs to 'tllc I'Rtlo A2N I/A2y i.

Further comparison indicates that of the two choices
for A2, , I/Amp I analyzed here, namely unity and xs, the
latter provides somewhat the better agreement viith
experimental facts. However, in view of the above re-
marks on the errors in the quantitative theory, we do
not regard this indication Rs conclusive.

The order of magnitude of the transfer cocKcient, as
given by (9), deserves some comment. If we divide (9)
by the mean relative velocity ( 2XM' cm/sec), we
obtRln RQ cBcctlvc cross scctlon

Q~10 "cm' (10)

which is some 20 to 30 times the gas-kinetic cross section
(depending on the definition of the latter quantity).
Actually, this result is not too surprising; in fact, cross
sections for transfer of excitation can exceed gas-kinetic
cI'oss scctloDS, cspcclRlly when thc energy lcvcls of thc
collldiDg atoms RI'c 1MMly coincident, as 18 thc case % 1th
diGerent isotopes of the same element.

An upper limit to A2~, ~ can be estimated by consider-

ing the transfer of cxritation betwccQ identical atoms.
For this case of exact resonance, the approximate
theory presented in a paper by Furssov and 7lassov'0
may be employed. The calculation which is carried out
in the appendix, Sec. V, yicMs the result

A gI,, 1~3.4X 10-' cm'/sec, (11)

which is in good order-of-magnitude agreement with (9).
There remains the question as to the CGect of the

energy-level discrepancy between Hg"s and Hg"9. The
estimation of this efI'ect, on the basis of a simpli6ed

» W. Furssov and A. Vlassov, Physik. Z. Sowjetunion 10, 8N
(1936).

theory of transfer of excitation, is also presented in
Sec. V of the appendix; the conclusion therein reached
is that the level discrepancy is too small to cause any
order-of-magnitude dlmlnutlon of Amp, 1 from the reso-
nance value given in (11).

1. Formulation of the Decay Problem in Terms of
Integfo-DNerential Eqttations

In this section~ wc scck R formulRtloQ %'hlc11 tRkes
into account not only thc COHision-induced transfer of
excitation in a given volume element (which is pre-
sented explicitly in Eqs. (4) of the text) but also the
radlat1ve tlRnspor't of cxcltatlon between dlGcrcnt vol"
ume elements of the enclosure. This goal is achieved by
a straightforward generalization of the intcgro-di6er-
ential Eq. (3.4) of reference 1,

rBn(r)/N= —n(r)+ ' n(r')G(r' r)dr' (1A)

which describes the radiative transport of excitation for
the cRsc of R sln1plc rcsoQRDcc stRtc without hypc16nc
structure. In this equation the key quantity determining
the time variation of the density of excited atoms, e(r),
is the kernel, G(r', r), of the integral term; it is defined
as the probability that a resonance quantum emitted
at f' is captured in a unit volume dement centered at r.

The required generalization to the case of present
interest reads

v BN;(r)//Bt= —e;(r)+ e;(r)G;(r', r)dr'

+r g; j A;;AI,~;(r), A;,X,~—;(r),j, (2A)

where the subscripts i and j each take on the values
1, 2u, 2b, and 3. In these equations, the G,(r', r) charac-
terize the radiative transport for the diferent excited
states. The relationship of Eqs. (2A) to Eqs. (4) of the
text is treated in the foHovring section.

II. Variational Treatrn. ent of the Basic Integro-
DifFerential Transport Equations (2A)

For the purposes of the present paper vre arc inter-
ested in steady-state solutions, e;(r, t)=e,(r)e-"r, of
(2A). For this case (2A) reduces to

—v I (r)/T= —I (r)+ e (r')G (r' r)dr'

+I p; t A;, +pa;(r) —A„.;Spa;(r)j. (3A)
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Now, by virtue of the text Kqs. (7), which are readily and, introducing the notation
generalized to"

A„. ~= 8;~Ms)
(6A)

where
~'i =~i s]

we are able to establish the equivalence of (3A) to the
(SA) following variational problem

e,(r')G;(r', r)n;(r)drdr'

Q; F; 'n, 2-(r)dr

F;F; '~ n,'(r)dr —
~

n;(r)e;(r)dr

g; F; '~ nP(r-)dr

(7A)

b(1/T) =0, (8A)

as is easily verided.
The positive-definiteness of 1/T can be demonstrated by a procedure analogous to that used in reference 1,

p. 1217. Namely, we can write (7A) in the alternate form

f
P; F; '

~
n (r)E;(r)dr+ Le—,(r) —N, (r')]'G(r, r')drdr'

g; F; ' n;2(r)dr

)I [F;&F, &e;(r) F-&F&e)(—r)]'dr-

+$Q;;rA;, (9A)

P; F; 'nP(r)dr—
where

r

E,:(r)=1—
~

G;(r, r')dr'. (10A)

e,(r) =I;y(r), (11A)

In (9A) all the integrals are positive definite. The
eigenvalues of 1/T can thus be arranged in a series of
ascending positive numbers; the lowest of these, which
is the one of interest to us, is an absolute minimum.
Use of the Ritz variational procedure will therefore pro-
vide for 1/T an upper limit which will converge toward
the true value as the number of adjustable parameters in
the assumed functional forms for the e,(r) is increased.

We now choose

when e; denotes the value of n;(r) at a convenient refer-
ence point in the enclosure. In the case of in6nite
cylinders we assume a parabolic form for f(r):

f(r) = 1—p'/R', (12A)

where p is the distance of the point t from the cylindrical
axis; the reference point is, then, any point on the
cylindrical axis.

Inserting (11A) into (9A), we obtain

where

1 Q; F; 'n~/T 1 Qo A,,(F,&F; &m; —F;&F; &eg]'-
+- '''

T QF; 'Np 2 QePF; ' (13A)

P(r)Z;(r)dr+- ~ [j(r)—f(r')]'G, (r, r')drdr'
1 i~ 2~ ~

P(r)dr

"m; is the ratio of the statistical weight of the ith state divided by the statistical weight of the ground state, as employed in Eqs.
(6) and subsequent text.
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1/7 ' ls actually tllc VRIIRtloIlal cxplessI011 fol' tllc decay
x'Rtc of Rn lsolRtcd linc~ Rs shQwn by coIIlparlson with
Kq. (3.10) of reference 1.

An absolute minimum for (13A) is achieved by
diGerentiation with respect to the e;. The resulting
cquRtlons al'c

n;/T =n„/r+P, A;, (I"ps, F,n—,), (14A)

which, with the aid of (4A) and (6A), are seen to be just
the equations one obtains by substituting the steady-
statc solutions

n, (*)=n;(0)o "r
into Eqs. {4).In other words, our text procedure based
on Kqs. (4) provides a variational approximation
for 1/T.

There remains the question as to how accurate R

value of 1/T Is obtained var1atlonally by llsc of tllc n;(r)
defIned by {11A)and {12A).In this connection it should
be pointed out that (a) the presence of the collision
terms in (3A) or (7A) tends to equalize the spatial forms
of the different n;(r); if, in particular, one passes to the
high-density limit, where the collision terms dominate,
the n;(r) bear constant ratios to each other tas given by
the text Eqs. (5)j independent of position. (b) In the
cRsc of R slnglc resonance state whose radlRtlon ls

strongly imprisoned, reference 1 has shown that the
assumption of a parabolic form for the density function
yields R suKclcntly Rcculatc VRluc fox' thc dccRy tImcq
in fact, Eq. (1) was derived' on this basis. (c) In the case
of R weakly-Imprisoned llncp fox' which thc pR1Rbollc
function docs Ilot, give good lcsults, computational
errors may be quite appreciable. These errors arise from
the use of approximations, at, various stages of the calcu-
lation, which are only asymptotically vRM for the case
of large optical opacities (koE&&1). It is these errors, in

fact, which, as remarked in the second paragraph after
Eq. (9), prevent us from achieving quantitative accu-
racy at intermediate vapor densities 5)&10"/cc. Re-
6nements in the variational treatment will, not improve
the situation unless they are accompanied by a reduc-
tion of the computational errors; this undertaking,
howcvcl, promises to bc cxcccdingly dl6icult Rnd

tedious.

HI. Neglect of Collision Terms A;, ,¹¹»Where
Neither l Nor J Are EqUal to I

In Qur txeatrnent these terms are neglected relative
to the tex'ms A„ ines%; and A ~, ,ed%;; the reason is simply
that both EIwI/cVI«1 and nIwI/nI«1. The 6rst in-

equality is valid "by construction, "i.e., by virtue of the
isotopic constltutlon of oux' samples. To dcInonstrRtc
the validity of the second inequality, we observe the
following: (a) In the limit of large vapor densities, where
the collision terms become dominant, the ratios nI~ I/nI
are given by the text relations (6) which, apart from
the weight factors and Boltzmann exponcntials, are
equal to the ratios NISI/SI, and are hence «1. (b) In

Thc lnitlRl mRnlfcstRtlon of plcssurc bx'oadcnlng,
with which we are alone concerned, have been txcatcd
in reference 1, pp. I223—1224. In our case, we consider
only thc broadening of thc Hg'98 component and ignore
the absorption of this bne arising from the other hyper-
6ne components. The CGect of pressure broadening may
then be represented quite simply by adding to the right-
hand side of (8) the term

d „=2II~/Ir(logk(g)'r; (16A)

{16A) is derived in much the same way as Eq, (5.14)
of reference 1, which describes the CGect of natural
broadening in plane-paraM enclosures. The correspond-
ence between the two expressions arises from the as-
sumption thRt thc prcssure-broadened linc shRpc ls of
the dispersion type Lay„'+(Io—&oo)'j ', which differs
from the shape of the naturally broadened line, ~L-,'r'
+ (Io Ido) j ollly III thc 1IIIc WIdth coIlstRllt. Tile maIn
dlffel'CIlccs between (16A) Rnd (5.14) Rl'c (R) III tile
logarithmic fRcto1 s~ which Rrc chRTRctcx'istic of cn"
closure geometries and (b) the replacement of the factor
RID = {)%,0/4Ir) r(288/3II)& by u„=aIray„; the absence of
the factor 1/r from (5.14) is due to the circumstance
that the time unit is there taken to be the natural life-
time of the isolated atom.

For y~ we take the theoretical result of Furssov Rnd

Vlassov, "which, as shown in reference 1., p. 1224, may
be written as

y„r=S)0'/2II =0.83X10 I~X. (17A)

Combining (16A), (1/A), and the expressions for u„
and e~ given above, and inserting numcncal values, we
obtain the text expression {9)for hI, .

V. Transfer of Excitation between Atoms

For the case of transfer of excitation between two
idcntlcRl Rtoms Rn approximate cxpx'csslon fol thc cxoss
section may be dcxived froIn the results of Furssov arid
Vlassov. "These authors treated the case in which the
atomic ground Rnd excited states involved in the
collision are 5 Rnd I' states. The expression which they
obtRln for thc plo13Rblllty of cxcltRtlon transfer ln R

binary encounter (Eq. 28 of their paper) may be
written Rs

P{p) = 3e4P/nI'Ioo'p's'.

Here, P(p) (in the notation of Purssov and, Vlassov,
6)ej~/[a(') is a function of impact parameter p, the

obtaining the approximate solution (8) of Eqs. (4)
according to the prescription of reference 8, we find,

nI&I/nI A——;IS,I/(1/T, +A;, IVIII), (15A)

which is even less than the high density limit as given
by (6). Thus, in this case the inequahty is II forII'ori
valid.



frequency coo associated with an optical transition from
the excited level to the ground state in our case the
frequency of the resonance line —the oscillator strength

fof the line, the relative velocity w of the colliding atoms
and fundamental constants; the numerical factor, 3p

present in our version comes from the averaging of the
quantity sin'pj occurring in the original equation.

Equation (18A) holds only for p large enough so that
P(p)«1. We shall nevertheless apply it up to that
impact parameter, p~, such that P(p~) =-', . For p& p&,

P(p) oscillates between zero and unity; we assume that
its eGective value is —,. %ith these simplifications, the
cross section for excitation transfer becomes

Q=-,'xpP+2m P(p) pdp,
P1

which is readily evaluated. The result is

Ol

Q= m pP= (4/3) &me'f/mv(o,

A =Qv = (4/3) 4.e'f/mes,

(19A)

~ Reference 1, equation subsequent to (5.17). The right-hand
side of this equation is incorrect; it should contain an extra factor
of x in the numerator."E.G. G. Stiickelberg, Helv. Phys. Acta 5, 369 (1933).' T. Holstein and I. B. Bernstein, Phys. Rev. 83, 201 (1951);
Bulletin of the Conference on Gaseous Electronics, November 3-5
(1949), paper D3.

which, by virtue of a well-known relationship" between

f and the radiative lifetime of the excited state r, may
bc m'llttcn as

a =&ST,'/g~", (20A)

where Xo is the wavelength of the atomic resonance line.
Substltutlng Rppl'oprlRtc numerical values wc f1nd

2=3.4)&10 ' cm'/sec,

as quoted in the text.
The foregoing considerations apply only to collisions

between identical atoms. In the case of interest, how-
ever, we have to do with excitation exchange between
diGerent isotopes, and have therefore to take into ac-
count the eGect of the energy level discrepancy of the
colliding atoms. This problem has been investigated by
Stuckelberg" and, more recently, by Dr. Bernstein and
one of the present authors {T.H.)." Both treatments
employed a simpli6ed model in which the excited and
ground atomic states were assumed nondegenerate; the
interaction responsible for excitation transfer was taken
to be of the form E/R', suggestive of dipole-dipole
coupling. It was found that the dependence of Q
an the energy discrepancy dE between the excited
states of the two colliding atoms is characterized by the
parameter,

s= (sz/I )(z,/w), (21A)

whcrc Eg~ a crltlcRl radius~ ls glvcn by thc formulR

R,= (2E/hE) &. (22A)

TA.@LE I. Values of the parameter 4.

0.85
0.58

1.07
0.72

K=p~'f A/2~+ o (2sA)

where p, = 1 ol —2 for 0=+1 or zclo.
Despite this ambiguity, the theory should still be

capable of yielding an order-of-magnitude estimate of
the energy-discrepancy eGect, %e limit ourselves to the
aforementioned case of angular momenta zero and
unity for atomic ground and excited states; while this
situation is not the one encountered in our most impor-
tant reaction —excitation transfer between Hg'" and
Hg'"—we believe that it is suKciently illustrative for
order-of-magnitude considerations.

Inserting (2SA) into (21A), and utilizing the above-
quoted" relation between f and r, we obtain

8= (c/2v) Xo(3p/scan) &(d P) &,

where Xo is the wavelength of the composite resonance
line, /k' is the wave-number discrepancy corresponding
to the energy diGerence of the excited levels of the
colliding atoms, and c the velocity of light. For Hg,

"H. Margenau and VV. W. %'atson, Revs. Modern Phys. 8, 22
(1936), Sec. 5, Eq. (1).

In our treatment of the problem the following results
were obtained:

(a) for S«1

Q= (n'E/fin) L1—(2P/s) (log'(P/2)
y0.70S log(V/2)+4S)], {23A)

(b) for 8«1

Q= m'E/Sv(3. 2/8') e ' "'. (24A)

These results, while qualitatively similar to those of
Stuckelberg, diGer in quantitative detail.

One may conclude that in the region 8~1 the order
of magnitude of Q is that of the resonance value,
m'E/hv. On the other hand, for 8& 2, Q lies appreciably
below the resonance value and diminishes rapidly with
increasing 8.

The difhculty in applying these results to the transfer
of excitation between Hg isotopes (as well as to any
other actual transfer problem) is that either the excited
or ground states are degenerate. One of the. consequences
of this degeneracy is that the magnitude of the dipole-
dipole coupling term is not constant, but depends upon
the component of electronic angular momentum 0
parallel to the axis of 6gure. For example, if the two
colliding atoms both possess ground and excited states
with angular momenta zero and unity, respectively,
the dipole-dipole interaction constant E is given by
the expression"



taking c=2X 104 cm/sec, we obtain

8=2.8pkg, f)f. (27A)

NO%' thc relevant wGvc-Dumbcx' scpRratlons IQ. Our ~c
are (in the subscript notation of the excited states
employed in the text}

dsas, =0.47 cm ',
(28A)

APg, gg, =0.26 em '.

The values of the 8's corresponding to (28A} and to the
two diferent values of )p( are given in Table I.

Froln these numbers and from the remarks subse-

quent to Kq. (2SA) we arrive at the conclusion stated.
in the text subsequent to Eq. (11);namely, the energy-
lcvel discrepancy is too small to cause any order-of-

magnitude diminution of the cross section from its
rcsona ncc value.
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The Response of Anthracene Scintillation Crystals to High Energy s-Mesons~ f
Trrzonozz Bowzm awn FzaNcrs X. Roszzt

Dsportrsent nf Pkysks, University ef Ckscsge, Ckkoge, f1 limo'

(Received December 'I, I95i)

The response of an anthracene scintillation counter to high energy charged particles vrbich lose only a
small fraction of their energy in traversing the crystal was determined, using p-mesons in the cosmic radia-
tion at sea level with energies from 29 Mev to greater than 4 Bev. The bght output ~s found to ~ve a
sizeaMe Quctuation for mesons of the s~e initial ener~, due to ionization loss straggling. The scintillation
egjciency of the phosphor %as found to decrease for increasing speciGc ionization, in agreement %1th the
work of others on electrons and protons. The response of the crystal showered no rise within 2 percent for
relativistic meson energies, which agrees vrith calculations of the density eGect reduction in ionuation loss
for anthracene.

'HE hght output of scintillation crystajs has been
shown to bc approxiIQRtcly plopoI'tlonal to tlm

total io~ation energy loss for lo%' energy partlclcs
which spend their cntlrc rRDgc in thc crystal. Such
propose'tlonallty bet%'ecn cncrgjj' loss and light output
vrould also be expected to be true for high energy
charged particles vrhich pass colnpletely &rough the
crystal and lose only a.small fraction of their total
cner~ by ionization in thc c~taL it was the purpose
of this vrork to 6nd the light output of RD anthracenc
crystal Rs a function of the energy of the traversing
pRrtlclc. An&racenc was used for this lnvestlgatlon
because it has &c largest light output of the known
ol'ganlc phosphors. p-mcsons froQl thc cosIDlc radlRtlon
Rt sca level provided. a good souI'cc of pRl'tlclcs for such
RD c~riment, because a %idc range Gf cncrgies ls
available am.d Rbsoiption by radiation losses and by
nuclear collisions is negligibly small. The results @which

would bc found for other charged particles should bc
the same as for P-mcsonsy exccPt fol R slIGPlc CIlangc of
scale.

I. THEORY

Fox' the ease of e, charged, particle traversing a thin
absorber, a large Quctuation ia the ionization cner~

~ Assisted by the joint program of the ONR and AKC.
)Preliminary results of this investigation were reported in

F. X. Roser snd T. Bowen, Phys. Rev. 82, 284 (1951) snd T.
Sowen snd F. X. Roser, Phys. Rev. 83, 689 (1951).

jNo%' at UnlversHjad Catohcay Rlo de Janenoy Bran.
' W. H. Jordan and P. R. Sell, Nucleonics 5, 30 (1949); R.

Hofstsdter snd J. McIntyre, Nucleonics 7, 32 (1950); R. W.
Pringle, Nature 166, 11 (1950);and S. A. E. Johansson, Ark. Fys.
2, 171 (1950).

loss is to bc expected. This "straggling" has been calcu-
lated by tIttllllams andy latcl q 91orc Rccu1ately bg
Iandau' and 8~on.' The straggling is csscntiaHy
caused by the fact that large cner~ transfers to single
electrons can occasionally occur. These electrons, vrhich
Rl'c scen Rs 8-rays ln DucleR1 cnlulsions or Rs knock-OD

clcctrons ln cosmic-ray work~ lose their energy ln the
crystal in most cases; hence, the light output is in-
creased. For Mgh energy pa, rticles, sphere

5'»p, (1)
vFlth

W—2rzcsP/(1 —i3s) (mesons and protons),
(2)

$=2wtse'x/mcsi3',

the energy low distribution approaches a fo~ mhi&
CRD bc cxprcssed lQ terms of a Qnlvcrsal function, Herc
I is the electron density, m is the election mass, e js the
electronic charge, c is the velocity of light, P is % for
the incident particle, and. x is the absorber thickness in
cm. K is the Inax~um cncr~ loss possible in a single
collision, and, ( is a parameter with the dimensions of
energy vrhich is a measure of the thickness of the
absorber. If the probabibty of an energy loss between
e and a+de is I'($, e)de in an absorber with a thickness
parameter $, then it was shown by Landaus that

1 mrs
—ee b(g))

J'(8 e)=H( [* (8)&*

s E. J. Williams„Proc. Roy. Soc. (London) 125, 420 (1929).' L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944).
' K. R. Symon, Harvard University thesis (1948).
8 See reference 3, Eq. (I8).


