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of only one function ca@ which belongs to the irre-
ducible representation [3j.The manifold (uab) consists
of three functions, aub, abu, and bau, which can be com-
bined into three linearly independent functions (@ah

+baa+aba), belonging to one-dimensional represen-
tation [3], (aab ba—u) and (agb+ baa 2a—ba) both

belonging to the irreducible representation [2+1j.
From the six functions in the manifold (abc), six
linearly independent functions can be formed, two of
which belong to each of the two two-dimensional
representations [2+11,and. one each to the one-dimen-
sional representations [3j and [1+1+1].
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The vacuum Quctuations. of the photon and pair fields modify the interaction of an electron with an
electromagnetic field. The effects on the energy levels are conveniently described in terms of the mass
operator and the vacuum polarization potential. A gauge-covariant expansion of the mass operator for the
motion of an electron in a weak external electromagnetic field is derived; the expression contains terms
quadratic in the field but includes only the lowest order electrodynamic correction. The modification in
the Fermi formula is then computed by specializing the external field to consist of the Coulomb and mag-
netic dipole fields of the nucleus and by taking the matrix element of the operators in an 5-state of a
hydrogen-like atom. All changes can be described as a correction Ag = —2ZcP(5/2 —ln2) in the gyromagnetic
ratio of the electron. The value of the fine structure constant deduced from measurements of the hyperfine
structure becomes a '= 137.0364.

I. INTRODUCTION

'HE success of the covariant reformulations of
quantum electrodynamics is predicated in the

first instance on their unambiguous prediction of the
observable effects associated with the coupling of an
electron to the vacuum fluctuations of the photon field.
The experimental investigation of these phenomena
depends primarily on experiments performed on
hydrogen-like atoms. By this means, it has been pos-
sible to test the predictions of the theory concerning the
effective static magnetic moment of the electron' ' and
the electrodynamic shift of energy levels (Lamb shift). ' '
In addition, the use of the magnetic moment result in
the corrected Fermi formula, ' in conjunction with a
precise determination of the hyperfine structure splitting
of the ground state of hydrogen, ' has been the most
accurate way of determining n, the fine structure
constant. '

With the exception of the calculation of the static
magnetic moment, which has been carried out to the
inclusion of fourth-ord. er (cP) electrodynamic correc-
tions, ' the present theoretical predictions must be
termed incomplete in several well-defined respects.
These are the following: the dependence on the nuclear

i Koenig, Prodell, and Kusch, Phys. Rev. 83, 687 (1951).
~ R. Karplus and N. Kroll, Phys. Rev. 77, 536 (1950).
3 W. E. Lamb and R. C. Retherford, Phys. Rev. 81, 222 (1951).
4 Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950). Further

references are given here.
J. W. M. Dumond and E.R. Cohen, "A Least-Squares Adjust-

ment of the Atomic Constants as of December 1950" (A report
to the Natl. Research Council). See also Phys. Rev. 82, 555 (1951).' A. G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950).

field has been obtained only through linear terms and
for a slowly varyirig field; the n' electrodynamic cor-
rection has not been fully ascertained; and the nucleus
has been treated as a structureless particle possessing a
charge add a magnetic dipole moment.

It is the purpose of the present paper and of one that
is to follow to describe methods of treating the pre-
scribed nuclear field (or any external electromagnetic
field) to higher approximation. The results will find
twofold application. First we shall obtain corrections to
the Fermi formula which arise from interference between
the Coulomb and dipole fields of the nucleus. Second, we
shall compute the contribution to the Lamb shift
formula of terms which are quadratic in the Coulomb
field.

The investigation proceeds from a Dirac equation
modified to include the electron self-energy and the
polarization potential induced in the vacuum. ' The
former is described by the mass operator, an integral
operator whose general structure has been analyzed
elsewhere. "We restrict our discussioii to the electro-
dynamic correction of order 0.. The explicit field de-
pendence of the mass operator is contained only in the
Green's function for the electron in the prescribed field.
Several procedures have been developed for the repre-
sentation of this dependence to the desired order of
approximation. " In this paper, we describe one of

~ J. Schwinger, Proc. Natl. Acad. 7, 432, 455 (1951).' J. Schwinger, Phys. Rev. 82, 664 (1951).We follow the nota-
tion of this paper, hereafter referred to as I.' Some of these are discussed by R. P. Feynman, Phys. Rev.
.84, 108 (1951).
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these methods which is suited to the treatment of a
weak held, in which case a power series expansion is
permissible. The construction of the Green's function
is related to the construction of a transformation func-
tion and its associated momentum operators. ' By direct
expansion and extensive rearrangement, these are ex-
hibited as gauge-covariant quantities correct to second
order in the external field. In the resulting mass operator,
a separation is effected between the infinite field inde-
pendent part which is the mass renormalization and the
finite field dependent part, which forms the starting
point for further discussion and application.

The assumption of a weak field is adequate for the
treatment of the coupling of the electron to the dipole
field of the proton. " The largest contribution, which
is the well-known (a/2~) correction to the static mag-
netic moment, is obtained by neglecting the high
Fourier components of the magnetic field in the linear
field term. For an S-state, the associated magnetic
energy depends only on the density of the electron wave
function at the origin, as io the Fermi formula. The
essentially new results involve the corrections of relative
order Za compared to the above. From the structure of
the mass operator, it will be seen that these arise from
the behavior of the electron within a neighborhood of
its Compton wavelength from the nucleus and are thus
present only for an S-state. In a P-state, for example,
there will be another factor of Zo. arising from the
reduced, probability density near the origin.

The present considerations do not sufFice for the
treatment of the Lamb shift. There one encounters the
well-known infrared difficulties arising from the fact
that the bulk of the e6ect is not confined to the neigh-
borhood of the nucleus. The emission of soft virtual
quanta is thus given full play, with the resultant break-
down of an expansion in powers of the field. The presen-
tation of a modified approach, which subverts this dif-
ficulty, the evaluation of results, as well as other
methodological advances in the treatment of the mass
operator are reserved for a subsequent paper.

II. PRELIMINARY CONSIDERATIONS

A. The Mass operator; Green's Functions

The description of the motion of an electron in a
prescribed electromagnetic field, including vacuum
polarization and self-energy effects, will be based on a
modi6ed Dirac equation of the form' '

y„( i 8„eA„(x))P(x)+— M—(x, x')|t (x')d4x'= 0. (2.1)

"As will be seen below, this interaction is eRective in an
S-state only when the electron is within a Compton wavelength
(1/m) of the nucleus. At this distance, the kinetic energy of the
electron, P'/2m~m, whereas the potential energy (in the Coulomb
field), a/r, am. The magnetic coupling is smaller still by a
factor of the order of the ratio of the electron to the proton mass.
Thus, both interactions can be treated as small perturbations in
this problem. It is also clear why we shall never consider terms
which are quadratic in the magnetic coupling.

Here A„(x) is the four-potential of the external 6eld
augmented by the potential induced, in the vacuum.

M(x, x') is the mass operator which formally contains
self-energy effects to all orders. To the lowest order in

e (second-order electrodynainic correction), it is given by

M(x, x')=mob(x x')—jie'y„G~(x, x')y„D+(x x'),—(2.2)

where G+(x, x') is a Green's function for the Dirac
equation in the external field, which is specified more
precisely below, and D+(x x') i—s a photon Green's

function represented by (note that ah = a„b„=a h —aobo)

D+(x x') =—~(2') 'd4ke'"—&* 'i(k') '

I(2 ) 'd'k '" " ' dt pL —'tk'j

= (4~)-'
Jp

t 'dt expt
—s(x—x')'i4t]. (2.3)

ds exp[i''s] ,' {ni yil, e—xp[—i(yil)'sj). (2.5)
0

In Eq. (2.3) it is implicitly understood that for k, one
should read k' —ie, with e small and positive so that
the Green's function D~(x—x') contains only outgoing
waves in the remote past and future.

The procedure for extracting the physical conse-
quences of Eq. (2.1) rests, in the approximation con-

sidered, on a perturbation calculus which takes the
wave equation in the given field as starting point and
treats the polarization potential and the second term
of Eq. (2.2) as the perturbing elements. Of these, the
former has already been computed, to the accuracy to
which we shall require it and will be stated and used
when needed. On the other hand, previous treatments
of self-energy eGects have, with the exception of Bethe's
nonrelativistic calculation, been confined to a con-
sideration of Eq. (2.2) in first Born approximation. Our

first aim will be to explore means of representing the
mass operator in explicit form to a higher order of
approximation in the external field. We consider here
one such means based on the direct expansion of

G+(x, x'), applicable when the field can be considered
weak. The method in question was devised so as to
exhibit the Green's function and any operator of which

it is part in gauge-covariant form before any specializa-
tion of electromagnetic potential is made. It has already
been applied in several forms in I to the problem of
vacuum polarization by a slowly varying field of arbi-

trary strength. We briefIy recall those aspects which are
relevant to the present case.

The particle Green's function satisfies the operator
equation

(yii+m)G+ ——1. (2.4)

The solution of Eq. (2.4) can be written in the sym-
metrical form

G+=-,'(m —yli, [m' —(VII)'j—')
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The introduction of the integral representation (2.5)
implies that m' has a small negative imaginary part and
that the Green's function G+ is therefore the one
which propagates with increasing phase in any time-
like direction from the source. We might emphasize
here once and for all that we shall be interested in the
real part of any matrix element of the mass operator
since we are concerned with energy level shifts. It will
thus be unnecessary during our future work to take
cognizance of the presence of the small imaginary
addition to the mass that makes Eq. (2.5) well defined
and of the corresponding addition to k' in Eq. (2.3).
When we eventually perform an integration over the
parameter s, it will be correct merely to treat oscillatory
exponentials as if they were decaying exponentials.
More formally we could, make the substitution of vari-
ables s'=is and integrate with respect to s' along its
positive real axis.

The electron Green's function is the matrix element
of the operator Eq. (2.5) with respect to space-time
coordinates,

G+(x', x")= (x'
I G+ I

x"). (2 6)

We employ the notation

(x'I exp[i(yli)'s] I
x")
=(x'I U(s) I*")=—(*'(s) I*"(o)) (2 7)

which will be termed the "transformation function";

(x'I II„U(s) I
x")—= (x'(s)

I II,(s) I
x"(0))

= (—i8„'—eA„') (x'(s)
I
x"(0)) (2.8)

and

(x'I U(s)II„Ix")=—(x'(s)
I II„(0)I

x"(0))
= (i8„"—eA„")(x'(s) I

x"(0)) (2.9)

are the correspond, ing matrix elements of the mo-
mentum operators. The Green's function can thus be
written"

G+(x', x")=i I ds exp[ —Ae'sg[m(x'(s) I
x"(0))

—2v(x'(s) Ill(s) I
x"(o))

—l(*'()Ill(0) I "(0))vl (2 1o)

The procedure is now to expand (x'(s)
I
x"(0)) about its

value for a free particle up to terms quadratic in the
external field, the result to be exhibited in gauge-
covariant form. The matrix elements of the momentum
operators are then obtained by means of Eqs. (2.7) and
(2.8) and the results amalgamated to form the mass
operator, Eq. (2.2). The details of this calculation are
contained, in Sec. III.

"The combination of momentum operator matrix elements
that appears in Eq. (2.10) will henceforth be written for con-
venience as —k(x'(s) I ~n(s)+n(0)~l*"(O))
with the understanding that the more precise rendering is that
of (2.10).

B. The HyperQne Structure

In order to lay the basis for the application of the
results of Sec. III to the calculation of corrections to
the Fermi hyperfine structure formula, we shall briefly
discuss pe&tinent background material.

The full vector potential of Eq. (2.1) has the form

A„(x)=A„E(x)+A„~(x)+A ~~(x)+A ~~(x), (2.11)

where the superscripts E and M indicate electric and
magnetic, respectively, and the additional superscript P
indicates the corresponding vacuum polarization poten-
tial. A~(x) is the Coulomb potential of the nucleus,

A~ =0, A os = —Ze/4~r (2.12)

(e is the electronic charge), and belongs to the unper-
turbed problem. A~(x) is the vector potential of the
proton considered as a point dipole. It is given by

A~=pXr/4st'=vX(p/4sr), AOM=0, (2.13)

where p is the proton dipole moment operator. The
Fermi formula is the diagonal matrix element of the
interaction of A~ with the electron current in the
ground state of hyd, rogen. Since only the polarization
current of the electron is relevant here, the interaction
energy AEo has the form

hE, = —(e/2m)
~

dr/, (r)eP, (r) H(r). (2.14)

For an 5-state the spherical symmetry reduces the mag-
netic field to a b-function, .

H= vxA= vx(vx(p/4wr)) =vv (p/4wr)-V'(t/4 r) --:V'(t/4 r) =-:t~(r) (2»)
An adequate repr sentation of the large and small com-
ponents of the Coulomb wave function g, (r) by means
of the corresponding Schrodinger wave function yo(r)
then gives the Fermi formula with the Breit correc-
tion12, 13

~Z, = —-', &o& &) I &,(0) I'(I+-', (Z )'). (2.16)

The corrections we shall obtain will be exhibited as
multiples of the leading term in Eq. (2.16).

The largest addition of electrodynamic origin is, of
course, the relative change (n/2') in the spin density
of the electron, which will emerge again from our cal-
culation. Further corrections are at least of relative
order Zo.2 compared to the reference term and may all
be said to arise from the spatially distributed mature of
quantum electrodynamic corrections. This statement
is perhaps most clearly illustrated by preliminary con-
sideration of the effects due to the interaction of the
electron current with the vacuum polarization poten-
tials. In this connection it proves convenient to intro-

~ E. Fermi, Z. Physik 60, 320 (1930).
» G. Sreit, Phys. Rev. BS, 1447 (1949).
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duce the four-dimensional Fourier integral represen-
tation

A„(x)= ) (2zr) 'd4kA„(k)e'"* (2.17)

2prA px(k) = b(k—p) Ze/k'

2zrA~(k) = b(k )ik X tz/k',

2zrR(k) = 8(kp)Zeik/k'

2zrH(k) = 8(kp)ikX (ikX ti)/k' —+aptzb(kp),

2zrJpe(k) = —8(kp)Ze,

2 zJr~(k)=b(kp)ikXp

(2.18)

The last expression for H(k) is the Fourier transform of
the result Eq. (2.12). In terms of the definition Eq.
(2.17)'4

n t' dvv'(1 —-'v')
A„~(k)=—J„(k)

4zr &p m'+4k'(1 —v')

From Eq. (2.18) it follows that

Hz'(k) =zk XA~~(k)

n 8(kp) p' dvv'(1 'v')—-
-k'H(k)

4zr 2zr " m'+-'k'(1 —v')

with analogous definitions for the current J„(x) and the
field tensor F„„(x). The transforms that will be of
particular interest in the following work are

The matrix element of Eq. (2.21) now becomes

Za' t. drdk
(zip(e tz)I ppp(0) I' rk'm

2zr & (2zr)'

dvv'(1 —xpv')

X . (2.23)
m'+-'k'(1 —v')

Further consideration of expression (2.23) is reserved
for Sec. VI, where an analogous contribution from the
Coulomb polarization potential taken in conjunction
with a wave function modified by the magnetic field will

also be considered. We merely note there that Eq. (2.23)
is of prototype form, since it contains one factor of a
of electrodynamic origin, one factor of Za of Coulombic
origin, and is linear in the magnetic coupling.

The Zn~ corrections that are contributed by the
matrix elements of the mass operator will be considered
in Secs. IV and V.

III. MASS OPERATOR

An expression for the mass operator in a weak,
arbitrarily varying external electromagnetic field will

now be derived up to quadratic terms in this field. .
Since the formulas are quite involved, it is useful to
obtain as a preliminary result, the matrix element of
the transformatiori function U(s) to the necessary order
of accuracy. The calculation of the momenta 1T„ from
the transformation function then furnishes all the
necessary ingredients for the Green's function which
contains the entire dependence of the mass operator on
the prescribed field.

In order to exhibit the gauge covariance of the trans-
formation function, it will be expressed in the form

The corresponding interaction energy is

dk n—p, drat, (r)eP, (r) -', tz
e'"'—k'

(2~)' 4x

dvv'(1 —-', v')
X I

& p m'+-'k'(1 —v')
(2.21)

(*'(s)
I

x"(o))= (x'I U(s) I*")
= —i(4zrs)

—'C (x', x")
Xexp[z(x' —x")'/4s]U'(s; x', x"), (3.1)

where the function U'(s; x', x") must depend on the
field in a gauge invariant way and must reduce to unity
as the field vanishes. An expansion of the form dis-
cussed in Sec. VI of reference 8 yields the transformation
operator

The magnetic field is no longer confined to the origin,

but, as is evident from its form, is spread out over a
distance of the electron Compton wavelength, 1/m. In
fact, if one approximates lt, (r) by yp(0), expression

(2.21) is easily seen to vanish. To obtain a nonvanishing

result one requires the more accurate representation

1

U(s) =exp[ —isp']+ise I pidv exp[ isp' ,'(1—v)]——
—1

X (PA+AP+ ', oF eA') exp[ is-P' ,'(—1+—v)]-

P,(r)~ ppp(r) (0p)p(p1
—Zarm), —

pp*(r) pp(r) —I q&p(0) I
'(1—2Znrm)

(2.22)

of the wave function in the neighborhood of the origin.

"J.Schwinger, Phys. Rev. 76, 790 (1949).

Xexp[ zsp' ', (1 v,)](—pA+A-p+—,'oF)-
Xexp[ isP' ,'(v, v,)](—PA+A-P+—,'oF)-

Xexp[—zsP'p(1+vp)], (3.2)
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which has the matrix element

(x'{U(s) (
x")

(x'—x")„=Ax„,it then follows that

'

(2v') '—O'Pe'" *exp[ isP'](1; P„;P„P,; P„P,P1)

(2ir) 'd'pe'"'*' "& exp[ is—p']

l

+ise -,'dv (2') 'd4ke1*'&*'+*"'

Xexp[—is(p+-', k)'-', (1—v)] 2pA+ ,'oP-

—
eJ (2ir) 'd4k'A. (k')A(k —k')

&«xp[—is(p —-', k) -', (1+v)]+(ise)

p'Ug

-,'dvg(2ir) 'd'kid'kate'*"~'+~" '*'+"'
-1

Xcxpt —is(p+ l(»+k )'l(1—v )]

X[(2p+k,)A+& P]e p[ is(p —,'k,+—', k—,)-
&& l(»—»)]L(2p—k')A'+2oP]

&( (2ir) 'd'ke'"& exp[—is-,'k'(1 —v')]
J

X ((Ax/s)+kv)A+ ', oP e-~ (2—x) 'd'k'A(k')

XA(k —k') +(ise)'
p&l

Id'~ ~ikey
—l

Xe'"2&*(2') 'd'k, d—'k& exp[—is-,'E']
y {[((ax/s)+k, (1+v,)+k,v,)A'

+x2oP'][((hx/s)+ kivg —ki(1—vg))A'

i—(4v-s)-' exp[i(hx)'/4s]{1; (2s)-'hx„;

(2s) 'hx Ax i—(2s) '8 '(2s) 'hx„hx„Ex'

i(2s)—'(b„.Axe,+b„idx,+b, i,hx„)}. (3.6)

The function U'(s; x', x") defined in Eq. (3.1) can now
be written

pl
U'(s; x', x")= [C (x', x")]-' 1+ise -', dv

Xexp[—is(p ——',ki ——',k,)'-,'(1+vi)], +;P]-2iA A/sj-, (3.S)

{ A„(k,) =A„'= (2 )-~«xe-'1'*A„(x) ~. (3.3)]
The translations

p„~(p+-', kv)„and p„—+(p+-,'(kivi+kgvg))„(3. 4)

of the momentum coordinates in the linear and in the
quadratic expansion terms serve to eliminate all scalar
products (pk) from the exponents and yield the common
factol exp[—isP ].It 1s tllcn possible to carry oiit tile
integration over the variable p„by noting that

J~(2%') d pe "1*
ipse exp[—isp ]

=
J (2ir) d Pe v * is (8/BP ) c-xp[—isP ]

(2x)- d pe' &*'-"' (2s)- (x'—x") exp[—isp']

= —i(4ws)
—'(2s) '(x' —x")„exp[i(x'—x")'/4s] (3.5)

on an integration by parts. Kith the notation

4=1[x.'(1+v*)+x."(1—v*)]
(3 &')

E'= k,'(1—v, ')+2k k (1—v )(1+vs)+4'(1—vs').

By a fairly extensive rearrangement it can now be
shown that up to second-order terms in the external
field the function U'(s; x', x") really depends only on

gauge invariant quantities. This fact will be verihed
. explicitly for the first-order terms

iseJ" ',dv(2') 'd—'ke"&{[(hx/s)+kv]A

&&exp[ is,'k'(1 —v')]-(6—x/s)A —} (3.g).
The last contribution in the bracket has come from
an expansion of the gauge dependent exponential
[C (x', x")] '. An integration by parts with respect to
v of the rniddle term

1

" ~idve'"sv exp[—is-,'k'(1 —v')]

= (isk')-'e"'&(exp[ —is-,'k'(1 —v')]—1)

—(khx/sk') ,'dve "&(exp[ —is-,'k'(1 v'—)] 1) —(3.9)—
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d'k, = j ', dv; -(2m)'d'k, .e"~&~

~J

(3.13)

-', dv~ ,'dvi (—2m)4d4k~.d4kie*"'&'e"'&'
4 —1

for the Fourier integral operators, the function
U'(s; x'x") becomes

U'(s; x', x")

shows the identity of Eq. (3.8) with

1

ise I —,'dv(2ir) —'d'ke*'&(6 xJ/sk')
—I

X (exp[ i—s ik~'(1 v—')] 1—), (3.10)
since

k'A„k—„(kA)= ik—„F„„=J„. (3.11)

By a similar treatment the second-order terms from
the expansion of [C (x', x")] ', from the linear expan-
sion term, and from the quadratic expansion term can
be combined into an expression that depends only on
field strengths and current densities and their deriva-
tives. With the abbreviations

e;(s) =exp[ —is-,'kP(1 —v,i)], E(s)=exp[ —is-', E']
(3.12)

for the ubiquitous exponential factors, as well as

and

(x'(s)
i II„(0)i

x"(0))

= (iB„" e—A„(x"))(x'(s)
~

x"(0))

= —i(4irs) ' exp[i(»)'/4s]C (x', x")

X (»„/2s) ej—d'k-', (1—v)(p»)„

X U'(s; x', x")+i8„"U'(s;x', x") . (3.16)

Since the momenta enter the mass operator in the com-
bination ~i(&II(s)+II(0)p), only this quantity will be
given in detail. The fact that the operator is a Dirac
matrix suggests that the contributions to the momenta
and to the transformation function be classi6ed ac-
cording to their spinor character. Thus we have the
scalar part (a multiple of the unit matrix), the "spin"
part (a multiple of o„.), and the pseudoscalar part (a
multiple of pz) which is introduced by the decom-
position

LeP&lvP&=LP&P~ —i tr[P&vP&]+piiP&P&i' (3 17)

and involves the dual of Ii„„,

F„„*=-,'ie„,&„F&, (cf. Eqs. (I, 3.25—3.27)). (3.18)

In terms of integral operators that will be defined
below, we can now write the Green's function for the
Dirac field:

=1+isej d'k{(»J/sk')(e(s) —1)+-',ape(s) )

G+(x', x")

ds exp[ im's]—
0

X (x'(s)
~
m —~2(pli(s)+ II(0)y) ~

x"(0))

= (4ir) 'jt s 'ds exp[—im's+i(»)'/4s]C (x', x")
0

X ([m—(v»/2s)][1+A (s)+C(s)]

y„[A+„(s)+C+„(s)] —,' {yB+(s)——
+[(yAx/2s) m]B(s), —,'op )——,

'—[7B (s), iso F]

,'{yD '(s)+[(yhx/2s—) —m]D'(s),', F')——
—lhD-'() l P']—l{vD+'()

+ [(yax/2s) m]D'(s), —',oF')—
—l[vD-'( ), l F']+l'{vG+()

+[(yAx/2s) —m]G(s), tr[p'o F'])
+-,'i[kG (s), tr[p'ap']]

X U'(s; x', x") iB„'U'(s; x'—, x") (3.15)
+[ G ( )+mG( )]-', F'F'*). (3.19)

+(ise)'jtd'g{(»J'/sk ')(»J'/sk ')

X[E(s)—eq(s) —ez(s)+ 1]
+i[(J'F'»/ski') (1—vg)

—(J'F'hx/sk ') (1+vi)]E(s)
+-,'(J'J'/skgki') [kihx(1+ vi) —k~&x(1—v~)

+ski vl(1 vl) sk2 v2(1+v2)]E(s)
+-'0F'(»J'/sky') [E(s)—ey(s) ]
+,'op'(»J'/skP) [E-(s) ei(s)]-
+[-',o F'(kg J'/k2') (1+vi) —-'o F2(kpJ'/kP)

X (1—»)]E(s)—(1—v~) (1+vi)-,'F'F'E(s)

+,'op' 'op'E(s) ). (3.14-)-
We may now proceed to an evaluation of the matrix

elements of the momentum operators:

(x'(s)
~
II„(s)

~

x"(0))= ( i8„' eA—„(x'))—(x'(s)
~

x"(0))
i(4irs)-' —exp[i(»)' /s4] C( 'x, x")

X (»„/2s)+ej d'k ', (1+v)(p»)„-
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The symbols have the following signi6cance:

a(s) =ise d'k(»J/s)V)[e(s) —1j.

A+„(s)= 'se) d'k-,'[ (—F»/s)„—vJ„]e(s);

B(s)=ise d'ke(s)

D'()=(' )' O'&{(»J'/ k')(E()— ())

—(1—v&}(k&J'/kg)E(s) } (3.20i)

(3 20h} D+ '(s) = (ise)')t O'Z{ 'v -k (»J'/sk ')(E(s)—es(s))

~2iv &(F'»/s)„E(s)

—-', J.'L +(kk!k')(1+ )j ()
~

whence B(s)-,'eF=ise ld'k-,'oF (e)s~; (3.20c)
J +l(k +k ).(k J'/k')E()}' (320')

B+„(s)=ise)l d'k-,'vk„e(s); (3 20') D+„'(s)= (ise)' OSIi {-,'v, kv„(»J'/sky') (E(s)—e,(s))

B „(s)=ise "d'k-,'k„e(s);

C(s) = (ise)', ' O'E{(»J'/skP) {»J'/skg')

(3.20e)

—-',ivy(F'»/s)„E(s)

—!vgJ„'[vm —(k~k2/k2') (1—vg) 7E(s)

—-', (kgv~+k2vg)„(kgJ'/k2')E(s)}; (3.20k)

X[E{s)—e~(s) —eg(s)+1)+-', (J'J'/skPk2')

g [k2»(1+v2) —k~hx(1 —v~)

+skgv~(1 —vi) —skgv2(1+ v2) $E(s)

+ [( ' ' */ ')( — )

D „'(s)= (ise)') O'E{', kp (»J'-/skP)(E(s) em(s))—

'i (F'hx/—s)-E(s)

—-',J„'[vi+(kikm/kg) (1+v2}]E(s)

+-', (kg+k2)„(k2J'/kp)E(s)}; (3.201)—(J'F'»/skP)(1+v2) )E(s)

+ (vg v2+vgv2) 2F'F'E(s) }, (3.20f) D 2(s) (ise) 2 ~OS+{Lk (»J2/sk '2) (E(s) e (s))

C+„(s)= (ise)' ' O'E{ ,'(vps) J—„'—(»J'/sk2')

&([E(s)(v)+ (kgk2/k, ') (1+v2)) —v~e, (s)$

——', (v 2/s) J„'(»J'/skP)

&& [E(s)(v2 —(k~k2/kP) (1—vg)) —v2e2(s}j
+(» 'k ') '[O'J'(k (1+v )—k (1—v )). G(s) = (ise) 2 OsgE(s) . (3.20n)

,'i (F'»/s)„E(s)—-

——',J'„'[v2
—(kgk2/km'} (1—v g) $E(s)

—-,'(kg+ k2)„(k~J'/k2')E(s) ); (3.20m)

+ikP(J'F') „(1—v~) —ik22(J'F') (1+v )j
&([»„2(kgb+ kmvm)„—i8„.]E(s)
——,'iv~(F'hx)„(»J'/she) [E(s)—e~(s)$

G+„(s)= (ise)' O'Z-,'(k&vg+k2v2)„E(s); (3.20o)

+-',zv2(F'») (»J'/ k ') [E(s)—em(s) j
+[2(J'J'/kPk2')(kd»(1 —vi)

—km'vm(1+ v2))+ (vi —v2+ v@2)-,'F'F'j

)(-', (kivg+ kmvp)„E(s) }; (3.20g)

D'(s) = (ise)', O'E{(»J'/skP) (E(s)—e2(s))

+(11vg}(k2J'/kP)E(s) } (3.20h)

G „(s)= (ise)' O'E-', (kg+ k2)„E(s).

%e may note that the A and C are scalar parts, that the
8, D, and 6 are spin parts, and. that the G are pseudo-
scalar parts.

There still remains the task of constructing the entire
mass operator and of separating that part of it rvhich

merely represents an addition to the rest mass of the
electron. In terms of the proper-time representation of
the Green's function of the photon GeM., the mass
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is an eigenfunction,

(7II+m) p =0 (3.24)

bm(w; x', x")P(x")d'x" = —2m(2 —w/s)

Xexp[im'w]f(x'). (3.25)

If we adopt a procedure that treats the electrodynamic
correction as a perturbation to be evaluated to Grst
order, ,wave functions satisfying Eq. (3.24) may be
used and the content of Eq. (3.21) can be rewritten

3II(x', x")P(x")d4x"

' (mb(x' —x")+3II(x', x"))p(x")d4x" (3.26)

in terms of the observed mass of a free electron~

~
OQ

m=mo+(nm/2x) s 'ds ' dw(2 —w/s)
0

Xexp[ —im'(s —w)] (3.27)

operator is written

M(x', x")=mob(x' —x")+ie'(24r) 4

OD ~I
XC'(x', x") s 'ds w 'dw

J,
Xexp[—jm's+i(»)'/4w]7q( )7q, (3.21)

where ( ) stands for the same bracket of Eq. (3.19) and
the variable w = (s '+t ') ' has replaced t of Eq. (2.3).

We may now observe that the leading terms in the
correction to the rest mass,

i(4—sw) ' exp[i(»)'/4w][ 4m—2(—7hx/2s)] (3.22)

are also the leading terms in the expansion of the
operator

(x'(w)
~

—4m —(w/s) (7II(w)+ II(0)7) I
x"(0))

=8m(w; x', x") (3.23)

of which the wave function satisfying

matrix element, one can combine the two parts of Eq.
(3.27 ). The following identities are useful in this con-
nection:

Vx'= -4; &~VsV), -4V5 (3.2Sa)

7y7„7y= 27„; 7),7„747'= 27„74 —(3.28b)

pNpvpA. =0 j

7&[7v n]7& [7w n] i

7~(7w o n)»=2(7. , o")

(3.28c)

(3.2Sd)

The expansion of the mass operator Eq. (3.27')
analogous to the expression (3.19) for the Green's
function may now be written by inspection with the
help of the operators A(w), B(w), etc. :

3f(x', x")= —in(4m. )
—', s—'ds w-'dw

J0

Xexp[—im's+ i»'/4w]C (x', x")

X ([4m+ 7»/s][A (s)—A (w)+ C(s) —C(w) ]
+27„[A+„(s)—A+„(w)+C+„(s)—C+„(w)]

+ 4m[B(w)-'o F+D'(w) 'o F'+D'(w) '—oF'—
iG(w—) tr[F'oF']+ (G(s)+G(w))74-', F'F'*]

—(7B+(s)+(w/s) 7B+(w)+ (7»/2s) (B(s)

+B( )), l F)+[7B-()—( /)7B-( ) -'

-(7D. ()+(-/)», (-)+(. /. )

X(D'()+D'( )), l F') —(7D+'()

+(w/s)»~'(w)+ (7»/2s) (D'(s)+D'(w)), ~
oF' }

+i(7G+(s)+ (w/s) 7G+(w)+ (7»/2s)

X (G(s)+G(w)), tr[F'oF']}

+[7D '(s) —(w/s)7D '(w), -', oF']
+L7D-'(s) —(w/s) 7D-'(w), koF']

—i[7G (s)—(w/s)7G (w)) trp'oF']]

+2[7G (s)—(w/s) 7G (w)]742F'F'*]). (3.29)

00 pS
M(x', x")= —(n/4s) )' ds exp[ im's]) —dw

0 0 IV. FIRST-ORDER PART

and of the finite operator that describes the eGect of
Q f th fi M th b h f I™ y be noticed that this operator has appreciable

an electron in an external Geld,
values only for (»)'~m ', for otherwise the exponen-
tial factors oscillate rapidly and average to zero on
integration over the proper time parameters.

X(s-'(x'(w) I4 +(w/s)(7rr(w)+rr(O) h)) Ix"(O))

yw-'7), (x'(s)
~
m —-', (7II(s)+II(0)7) ~

x"(0))7),

Xexp[4'i(»)'(w-' —s-')]}. (327')

By consulting Eq. (3.19) for the spinor character of the

Since we desire to obtain a result accurate to terms
quadratic in the Geld, it is clear that the matrix elements
of those terms in Eq. (3.29) which involve the field only
linearly —all operators A and 8—must be calculated
more carefully than the quadratic terms. In particular,
the field dependent terms that are contained i' the rela-,
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tlonships between +II and 'r»/2s, Eqs. (3.15) and
(3.16), must be retained in the former while they may
be ignored in the latter. Similarly, in thc latter terms
the factor C'(x', x") may be approximated by unity,
while in the former it must be expanded to include
EQcRT tcrlns. These rearraI1gelncnts that must be car-
ried out mull now be considered without restricting the
generality of the vector potential A„.%C shall suppose,
hovrever, that R matrix element of the mass operator
is taken between wave functions that satisfy Eq. (3.24);
hence operators y( i8—' oA—(x')) and y(i8" &&(x—",))
acting from the left or right, respectively, may be
transferred to the vmvc function by an integration by
parts and then replaced by (—m).

The procedure is illustrated by its application to the
first term in Eq. (3.29):"

4m expLi(d x)'/4w jC (x', x")ise

X ' d'k( —-', {yAx, yJ}/sk')(e(s) —o(w))

If tll gauge dependent fRctox' ls novf expanded Qp
to 6rst-order terms, one obtains the contrlbutlons to
the mass operator that axe linear in the external 6eld,

37g(x', x")
g

=(~/2~), ~ s-'ds &wexpIim'(s —w)J

XJ~(2F) d po + *expL tw(p +tn )jto

X, d'% {L2m'w(2 —w/s)+iw/sg

XLo(s)—o(w) jvJ/k +-',Ls+w —s (s—w)l

Xo(s)yJ mw(1—w/s)o—(s)-,'oF}. (4.3)

Vfe hRvc returned hcx'c to R Fourlcr representation of

i(4—ttw) 'exp—fi(»)'/4w1

=4miso, (—w/s) yI —i8'—oA(x') —-',k(l+s)

—.dk,—;(I+.,){F») I&J

i (2x) 'd'po'"~*expL —iwp'l. (4.4)

The remaining parts of the terms wc have considered
ax'c explicitly second order 1D the 6cld,

+yJyI i8" Ao( —)x+-,'k{1 o)— = (o./2') ~ s 'ds dw exp) im'{s—w)j—
+o d'k&-', (1—o&)(F'hx)

I
C (x', x") X (2s) 'd'po'"~* exp) iw(p'—+m'))(io)'

XemLi(»)2/4wld4k(o(s) —o{w))/k~

=4m expLi(»)'/4wjc (x', x")

«o d kI 2m' —k'koF)Lo(s) —o(w)3

I

+(i )'owl'kid'k2 i''(yF'dx)-'(1 —og)

—i(yF'Ax)yJ'~(1+F2) (e2(s) —ot(w)) kP . (4.1)

In carrying out this reduction Rs weB Rs ln thc trcatDlent
of the other 6rst-order terms the following identities
help to simplify the results:

{yJ,yk}=0;

2LyJ, yk$= k'-', oF;

k{&w ~&F}=i»h'F*)~' s{v» koF}=0; (4 2c)

kb' '~Fj='(7F).; khk, soF]=vJ (4'2d)

& Note that d4k concea1s a dependence on the coordinates x'
and 4

d'k, d'k2{-'iw{sg —s2) (7F'd x)(»J')2

XLo,(s)—o,(w) j/k, '+Anw(2 —w/s)

X{otPF'hx+ 'fy J' yF'd xj)-
X I e2(s) —o2(w) j/kP ——,'iw(op{yF'hx, —,'oF' }
+s o LVF'», -'o'F'j)Lo (s) —.(w/s)o (w)j
——,'iw{og{yF'hx, —,'oF'}+LTF'dx, -,'oF'$)

XLo~(s)+(w/s)o2(w)1+(v J') (~'»)
X L2m w(2 —w/s)+iw/s)$82{s) —82{w)1/kg

+-,' (yJ') (A 'Ax) Ls+w —o22(s —w) fe2(s)

—m(-', oF')(A'hx)w(1 —w/s)os(s) }. (4.5)

They %'iB bc consiclercd lRtcx' together with tlM second-
order terms C, D, and G in Eq. (3.29).

In the evaluation of the matrix element of Eq. (4.3)
in an S-state of a hydrogenic atom,

Mg= J' dr'dr"dÃ$0(x')lPg(x', x")&0(x"), (4.6)



DISPLACEMENT OF ATOMIC ENERGY LEVELS

it must be remembered that only corrections of orders
a and ZoP with respect to the matrix element of the
hyperfine energy density $o F are required. Since a coef-
6cient 0. appears explicitly, all other factors need be
treated only to order Za. Thus the energy of the elec-
tron in this state can be approximated by the rest
energy, so that the integration over t" can be carried
out when it is noticed that for a static potential

Ao(k)=do(k)b(ko) and Po(x)=go(r)(; ' ' (4.7)

Then one obtains

M, = ~I dr'dr"Po(r')(n/2or) ~~ s 'ds dw
0 "0

quadratic Geld-dependent terms. The Green's function
is therefore replaced by that of the free particle,

G(x, x') = ~(2') 4d-oke" (~'')(m y—k)/(m'+k') (4.11)

and the energy of the state is approximated by the rest
energy

k(x)=4(r)o '"' 4 (x)=4 (r)o i™ (412)

After the integration over I,', the spatial dependence of
the wave function is"

P(r)=P, (r)+ "(2or) '(k') 'dkdr'e'

Xexp[—im'(s —w)j, (2~) 'dye'o o'

1

Xexp[ —iwP'jie ~ -,'d() (2x)—'dk

X&~In ~ ('T(1 +e)+r" ((—e)] { }p (r&&) (4 g)

where { } stands for the bracket of Eq. (4.3).
The presence of the exponentials e(s) and e(w) in

every term together with factor e~'+'~'+"~ implies that
most of the contribution to M~ comes from the region
of space within one electronic Compton wavelength 1/m
of the origin. The crudest approximation to My ls tliele-
fore obtained when the small components of fo are
neglected and the function itself is replaced by the value

(oo(0) of the Pauli wave function at the origin. Only the
last term in Eq. (4.3) fails to vanish, whence, with
u= 1—w/s,

CO 1

M) ———(n/2 or) im'ds I du exp[ im'su j-
~o ~o

X2 (1—)l o( &I o(0)l'

X [m(1+yo) —y' key Au(r') P,(r'). (4.13)

+ (r)+~ (2u)-3(ko)-id/dr ~ik ~ (r—r')&. k&.A))((r ) + (rl)

=(oo(r)+e (2s.) '(k') 'dke'~'ur (kXAu(k))(oo(0)

~go(r)+os(r yq o(0)/4orr, (4.14)

where the second step results fr~+a the recognition that
the constant (oo(0) is a suKc')ent approximation to the
slowly varying wave function, and the third step antici-
pates the spherically symmetrical averaging in the
matrix element. Finally, the small components of the
wave function Eq. (4.13) are

i ((r V/2—m) o o.(r) (4.15)

to the required accuracy. With these wave functions,
the evaluation of the Dirac matrices in Eq. (4.8) leads
to the four kinds of terms,

yo(r')epS Po(r")

In terms of the Pauli wave function, the large com-
ponents of this wave function for an S-state are

—ohio(n I)&I (oo(0) I (n/2or) (4.9)
o o*(r')[on ~ (k)n. (1 —ok(1—~))

This formula leads to an addition to the hyperfine
structure separation due to the anomalous magnetic
moment yon/2or.

To obtain the corrections to this result one must use
more accurate solutions of Eq. (3.24). The first-order
effects of the magnetic field are included in. the ex™
pression

+n (p+-', t(1+v))en J (k) j(()o(r")/2m

-'uo( 'S&k'o)o*(r') o)o(r )/2

A(r') oV~'A(r")

(4.16)

f(x) =p, (x)+e G,(x, x')y Au(r')p, (x')d'x', (4.10) 6(') -' ~"0o(") —: ( ) o*(') (')/2, (4»)
Po(r )8yo'P Po(I )~0. (4.19)

which depends on the exact Coulomb wave function

f,(x) and on the Coulomb Green's function G,.The last
term may be approximated quite crudely because the
vector potential appearing in it, taken with the mass
operator that is linear in the field, gives explicitly

The symmetry of M)(x', x") in r' and r" and the fact
that it is large only near the origin imply that the ex-

~'We are indebted to Norman M. Kroll for calling to our
attention the necessity for this magnetic correction.
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pansion of the Coulomb wave function

q p(r) = ooo(0) (1—Znrm),

q o*(r') ooo(r") =
[ q o(0) (

'(1—2Znr'm),

With the help of a table of integrals Eq. (4.25) is eval-
uated to

(4.20) Mg ———
p pp(a tp)

~ q p(0) ~'{(n/2or)
—i~Zn'(60 ln2 —23)). (4.26)

is sufliciently accurate to be used in Eq. (4.8). With all
these approximations the matrix element simplifies to

oo ~].
llllq xppp(o" tp)

~ q p(0) ( '(n/2or) ~ im'ds du
0 0

1

Xexp[—ism'u)Jt ,'dvJ—I (2') Pdpdkdr'dr"
—1

tp (r' —r") i' [r'(1+v)+r" (1—e)]~e ' ' e'

X {[1—2Znr'm+4Znm/r'k'][(2(1 —u')

—(1—u)/im's) (e(s)—e(s(1—u)))

+-', (2—u —uv') (k'/m') e(s)j
—(1—2Zar'm) 2u(1 —u) e(s) ).

The integrations of r" and p are trivial because

I (2or) 'dr" exp[ir" (-,'k(1—v) —p)j

The integratio~s over r' and k are of the form

(2or) Pdr'dke'" "exp[ ——,'isk'X„j

X{1 k'r'r'k' (r'k') ' (r') '}
= {1;0; 2(ih„s/m)l; —4(.ih„sor)

—(AE s/ )l;2(A s ) l), (s=1, 2) (4.23)

where

X& ——(1—v) (2—u(1 —v)) from terms involving e(s),

Xp ——2(1—v) (1—u) from terms involving e(s(1—u)).
(4.24)

The proper time. integrations are F functions. - These
operations leave the following integral over the two
parameters I and z:

I 1

M, =-'puo(a p)i qpo(0) ['(a/2or)
J duJ

0 —1

X{—2(1—u) (1—2Znu **lb.i&)

+[—2Zn+4Zn( ——,')][2(u &(1—uo)

—u—
&(1—u))(Xg&—Apl)

—2(2 —u —uv')u-4 -&]) (4 25)

A(x)= pop(0)e '"'. (5.1)

To carry out the coordinate integrations it is con-
venient to return to momentum space with the aid of
Eqs. (4.4) and the inverse of Eq. (3.6),

Bxq~2wpp)

hx„hx„~4wPP„P„+2pwb„„,

d,x„hx„hoe~8wPP„P,P,+4iw'(b„„P,+b„yP„+b„gP„)

(5 2)

The coordinate integrations now lead to Dirac 8-func-
tions relating the momentum variables k~, kp, and p as
follows:

00 S

37,=(a/4or) t s 'ds " dw exp[ im'(—s w)J-
J,

X ~~(2~) 'd&~d&pd'P expL —iw(P'+m')3

pl &1

X (ie)'J' pdvqj pdvpb(kz+lrp)
-l -]

Xb(p+~k, (v, —v,))b(po —m)

X"*(0){ )"(0), (53)

where { ) stands for the details of Eqs. (3.29) and

(4.5); the terms of the latter have been symmetrized
in the arguments v~ and v2. This bracket will now be
evaluated in the light of the fact that it is of interest
only when the arguments of the 8-functions vanish,
when

lr, = —kp, p=-,'k, Av= ——',kpav, Av=v, —vp. (5.4)

These relations, coupled with the facts that the two
field vectors are the product of an electric with a mag-
netic 6eld and that in the final integration over k~ only
spherically symmetrical quantities can survive, greatly
simplify Eq. (5.3). It is easy to verify that in addition
to the anticommutators in Eqs. (3.29) and (4.5) only
two terms,

qpo*(0)-,'o F'A'&x opo(0)
-+'p (a lp) i qpo(0) i

'(2Zn) (2mw/2orkg') (5.5a)

V. SECOND-ORDER TERMS

The host of second-order terms in Eqs. (3.29) and
(4.5) must now be treated in a manner similar to the
treatment of the first-order terms, except that an order
of accuracy can be sacrihced in the expressions for the
wave functions which are now approximated by their
value at the position of the nucleus,



where the X; have the following significance:

) r=»(2 —»}from E(s),
Xo ——2»(1—u) from E(w),

Xo——1—vop+ (»)'(1—u) from eo(s),

ko ——(1—voo+ (»)')(1—u) from eo(w).

«o*(o)l vJ', vF'»j~oo(0)
—+-'(e ««) I «(0) I'(2Za) (4imw/27r) (5.5b)

in Eq. {4.5), fail to vanish. 'r The anticommutators are
evaluated as follows .(for the sake of brevity, the
symbols of Eq. (3.20) are used to represent the inte-
grands given there, and it is supposed that the sub-
stitution (5.2) is made):

«*(0)L{(v»/2s) (D'(s)+D'(w)), 2eF'}
+ f(V»/2s)(D'(s)+D'(w)), oeF'}3« (0)
~'o {e ««) I pop(0) I'(2Za)4(m'w' —ow)

X I:2E(s)—er(s) —~o(s}+(w/s) (2E(w)
—e, (w) —eo(w))$/2prkP; (5.5c)

v o*(o)Lf ~(D+'(s)+ (w/s)D+'(w)), l F'}
+{v(D+'(s)+(w/s)D+'(w)), oeF'}j«o(0)

XL(»)'w(E(s)+ (w/s)'E(w))
+»(1—»)s(E(s)+(w/s)'E(w)) j/27r; (5.5d)

—o«*(0){(pox/2s}(G(s)+G(w)), tr(FreF&)}«(0)
—+so(e ««) I «(0) I'(2Za)2swhv

X (E(s)+(w/s)'E(w))/27r; (5.5e)

—o«*(0)f v(G+(s)+ (w/s)G+(w)), tr(F'eF') }«(0)
~-;{e t) I «o(0) I'(2Za)( —2s'»)

X (E(s)+ (w/s)'E(w))/2or; {5.5f)

«*(0)f yF'd x, —,'o.F'}«(0)
—+-'{e"to) I «(0) I'( 2Z}a( i4w»/ 2)or(5.5g. )

One exponential factor simplifies,

E(s)=exp L
—-',oskP»(2 —»)j,

while the others can be combined (see Eq. (5.5c)},

The proper time integration, as before, involves half-
integral I'-functions. It leaves the two contribution to
the hyperfine energy

Mo"=-', «rp(e to) I «(0) I'(2Za'/2pr)

pl p8$ pl
—,'dvr, '

-,'dvo, du{4(1—u)'u —
«

X()tt *—Xo *)+4(1—u)u

X(2)tt « —(1—u)Xo «) —4(ulhv(1 —»)
+u lhv)Xr '—4u '*(1—u)'»Ão '*}

= »o{e &) I «(0) I'4Zao(1 —ln2) {5.10)

cVo ——pup(e ««) I «(0) I
'(2Za'/27r)

~l 1 pl
XJ' —,'dvr t odvo du4u

—l —1 0

X f —(1 u)).o
—«+(1—u)'a—v(v, +v,)) o

i—
—(1—u)'X4-«+ (1—u)o{»)'k4 «}

=-,'uo (e ««) I «(0) I
'Za'(5 —12 ln2). (5.11)

The sum of the three corrections is
(5.6 ~= —o»&e ««) I «(0) I'

X f (a/2 pr) —4Za'(13 —4 ln2) }. (5.12)
'UI

—,'dv, t -', dvo(er(s)+eo(s))

so that they will be taken together with the contribu-
tions (5.5a, b, g) from Eq. (4.5).

Then, after the parameter u=1—w/s is introduced,
the remaining momentum integration is carried out.
The relevant}t formulas are

J~dk expL —$sk9, 'j{1 '
()o ) }

=fg «(o )-: 4 «(o)t)-«} (Sg)

"Take, for example, the Grot term in C, Eq. (3.20f)

o p*{0)ax1'hog'o p{0)~I o p{0) l
'(4tpp(p J') (pI') +2«w{J'J')) '

Now J ~J ~—0 because J~—(0 JP) J~—(J~ 0) Further

(PJ (4))(PJ~(&2))~P0Jo~(4)I}- J~(4)~—m Jp~(~~ALII. 2 J~(k2)) =0.

M~= —e ~ «f(r)y A~&(r)dr (6.1)

in conjunction with Eq. (2.19),permits direct utilization
of the matrix elements calculated in Eqs. (4.16) and
(4.17).The resultant expression,

m&=-', «,{e ««)l«(0) I (Z /2e)

X (2 )- drdk. ' '(.~ —2/. )m

v'(1 —ov')
X "dv, (6.2)

m'+-', k'(1 —v')

VI. VACUUM POLAMZATION

We shall now obtain the contribution of the vacuum
polarization effects discussed in some detail in Sec; II.
An equivalent to Eq. {2.14),



ds expL is—(m'+-,'k'(1 o'—)}j (6.3)

brings Eq. (6.2) into a form corresponding precisely to
Eq. (4.21). The space, momentum, and proper time
integrations are carried out in exectly the same way
as there. The 6nal integral involves only the parameter

M~ =-'ohio(e. p) i q o(0) i '(Zn'/2m)

X do o'(1——',o')[—4(1—o')-&—4(1—o')-&j

= —:so&-p)l.o(0)I {4Z-).
VII. SUMMARY

(6 4)

The two contributions to the Fermi formula are, Eqs.
(5.12}and (6.4),

M= —so go&e p) ~
ooo(0) )

'{(n/2or)+~Za'( —13+4 ln2) )

~ = —ao~o&~ I»loo(0)I'{ +-'«').

in which the expansion Eq. (2.22) has been made,
includes Eq. (2.23) as the erst contribution. The second
one arises from the matrix clement of the electric charge
density. The substitution

Pm'+ k'(1—s')$-'

Hence the Fermi formula Eq (2 16) becomes"

~= -5po(e' y) ~ o o(0) ~'{1+a/2or —$ZcP(5 —2 ln2)
—2.97cx'/or )(1+$(Za)')

when the fourth-order correction to the magnetic
moment is included.

%'ith this change, the deduction of the value of the
6ne structure constant a from experimental quantities
is modi6ed. In terms of the notation of Dumond and
Cohen, '

F=1.807aP+2X 10 '
b(a ') = —0.880a—1.5X10 '= —0.0065.

Hence
0, '= j.37.0364&0.0009.

Recent experimental and theoretical investigations
of the deuteron"' suggest that our treatment, of the
proton as a point magnetic dipole of in6nite mass is
inaccurate. An estimate of the necessary corrections is
contained ln reference 19.

It is a pleasure to acknowledge numerous stimulating
and enlightening discussions with Julian Schwinger and
with Norman M. Kroll.

xs This result has been already reported by Karplus, Klein,
and Schminger, Phys. Rev. 84, 597 (1951}.The same result has
been obtained by a diferent method by N, M. Kroll and F.
Pollock, Phys. Rev. 84, 594 (1951}.
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