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The most general form of the scattering matrix in spin space for two spin § particles is derived subject to
invariance under rotation, reflection, and time-reversal. The result may be used to prove a relationship
important for polarization experiments and previously stated without proof,

COMPLETE description of the scattering of two

particles of spin % is given by a matrix specifying
the amplitude of any outgoing spin and momentum
state as a function of the incident spin and momentum.
This matrix will be written

M((’l: 02, kiy kf)

and is to be considered as an operator in the four-dimen-
sional spin space operating on the initial spin state.
Here k; and k; are the initial and final momenta of one
of the particles (in the c.m. system) and o and o3 are
the Pauli spin operators for the two particles. The
treatment is nonrelativistic.

I. RELATION OF M TO EXPERIMENT

A polarization state for a system of two spin %

particles is, in general, described as a mixture of many
separate pure spin states in which the system may be
found at any particular time. If the polarization state
of the particles before the collision is specified, the
most general scattering problem is that of finding the
outgoing polarization state and intensity as a functio
of the angle of scattering. :
A polarization state of the system can be completely
specified by the average values of a suitable array of
16 observables! pertaining to the spins of the two par-
ticles. This is most easily shown with the help of the
von Neumann density matrix p for a mixture of states:

P=Zn Panan,
where x, is a column vector with four components
11t is convenient throughout to include the unity operator as
one of the operators whose average values specify the polarization

state; that is, the normalization of the state will be considered as
part of the specification of the polarization state.

representing one of the spin states present in the mix-
ture, x.' is the adjoint row vector, and P, is the relative
probability of finding the system in state x.. Knowledge
of the matrix p suffices to obtain the average value (S)
of any spin operator .S, for the mixture, through the

relation
(S) Tr(p)="Tr(pS). (1

Since the matrix p is Hermitian and 4X4, it is fixed by
giving 16 real numbers which may be chosen as the
average values of a complete set of 16 Hermitian
operators S* in the spin space. A set of operators will
be called complete if it obeys the orthogonality relations

TrSkS?=43,,. (2)

For example, the operators 1, o1, o1y, 012y sy T2y, T2z,
and the nine products of one of the Pauli spin operators
for particle 1 with one of those for particle 2 form such
a set of operators. Any matrix must be expressible
linearly in the S*. Thus

p=1 24 S* Tr(pS¥) =1 Tr(p)Lu(S*)S*  (3)

showing how p is characterized by the (S*).

The desired relation between ingoing and outgoing
polarization states is obtained by giving averages (S*);
in the final state in terms of the (S*); for the initial
state. By the definition of the matrix M,? the density
matrix for the final polarization state at any angle is

Pr=2n Pril Xnxn M= MpM". ()
Using Egs. (1) through (4) we get, therefore,
(ST =1 24S"): Tr(MS"M'S*), ®)

2 Matrix notation is used only for the spin dependence of M
and not for the momentum dependence. Thus k; and ky are fixed
parameters in Eq. (4) and those that follow.
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where
I="Tr(ps)/Tr(ps) (Sa)

is the differential scattering cross section at the angle
in question.

Two special cases of interest are (a) the polarization
of particles 1 produced by the scattering of an un-
polarized beam on an unpolarized target, and (b) the
differential scattering cross section of initially polarized
particles 1 against initially unpolarized particles 2. In
the first case all (S”); equal zero in Eq. (5) except for
the unity operator, yielding

(01)/Lo=1% TrM oM. (6)
In the second case one obtains
[=% TrMTM'f‘%(Gl)i'TIMTMGh (7)

or, for the case of a beam completely polarized in the
direction N({o1);:=N),

I=Io+I,=3% TrM'M+1 TeM'Moy-N,  (7a)

where I, is the scattering cross section for an un-
polarized beam and I, is the contribution to the cross
section due to initial polarization. In previous papers®
it is stated as obvious that the quantities in Egs. (6)
and (7a) are related by

I,/To=N-{o1)s ®)
implying that

TI‘MunM= Terﬂl. (83.)

Since the ¢ matrices do not commute with M, this is
not a mathematical identity; it will be shown herein,
however, that this relation follows from the condition
on M of invariance under time reversal.

II. MOST GENERAL FORM OF M

The most general form of the matrix M may be found
following a procedure similar to that used by Eisenbud
and Wigner* to find the most general form of the inter-
action Hamiltonian for two particles of spin }. Condi-
tions placed on the matrix M are invariance under space
rotations and reflections and time reversal. The matrix
M must be a scalar obtained by combining the sixteen
linearly independent matrices in spin space:

1 (scalar)
(01-02—1) (scalar)
(01+02) (axial vector)
(01—03) (axial vector)
(61X 02) (axial vector)
tap= (012028 01502,) (Symmetric tensor)

3L. Wolfenstein, Phys. Rev. 75, 1664 (1949), Phys. Rev. 76,
541.(1949). One of us (L.W.) takes this opportunity to apologize
for having stated as obvious a relation which is far from being so.
( 4L.) Eisenbud and E. Wigner, Proc. Nat. Acad. Sci. 27, 281

1941).
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with functions of the momenta:

1 (scalar)
k;—k;=K (polar vector)
k;Xk;=n (axial vector)

nXK=P (polar vector)
KoKg, nqng,
PuPs, K.Ps+KsPe

Any of these functions of momenta may be multiplied
by an arbitrary function of the scalars ki-k; and
k2(=k?). Each of the symmetric tensors above have
only five independent components, since the sum of the
diagonal elements of the tensor is one of the scalars.
Among the functions of momenta, only those symmetric
tensors are listed which do not change sign under space
inversion.

The resulting forms invariant under space rotation
and reflection are:

}(symmetric tensors).

1, (61-02—1), (01}02) n, @
(01—02) n, (ID)
(01X @2)n, (I11)
2 ap tapKaKp, 2 ap laghtamp,

erﬂ taﬂPaPﬂ; (IV)

2 ap tap(KaPp+ KpPu).

The set (IV) is equivalent to

o.- Koy K, 0,-ne:-n, o,-Po.- P, (IVa)
(01- Koz P+o0;- Po:- K). (IVb)

Only two of the forms (IVa) are really independent,
since the three may be combined to give o1-03.

If time-reversed quantities are indicated by a prime
superscript, the effects of time reversal® may be sum-
marized by

ki=—k;, k/=—k,

o'=—oc,
and therefore,
K'=K, n'=—n, P'=-P.
It is seen that (IIT) and (IVb) change sign under time-

reversal and these are therefore ruled out. Thus the
most general form of M is

M=A+B(0'1'0'2— 1)+C(01+02) 'n—i—D(ﬂl"Uz)‘n
+E(01-K) (02 K) 4+ F(01-P) (02 P), (9)

where the coefficients are functions of the scalars %2
and k;-ky, that is, of the energy and cos, where 6 is
the c.m. scattering angle.

Substituting from Eq. (9) into Egs. (6) and (7a) one
finds

N-(o1);To=1I,=N-n 2 Re{CA*+D(4*—2B%)}, (10)
thus proving Eq. (8). If the forms (III) or (IVb) were

5 E. P. Wigner, Gottinger Nachr. p. 546 (1932).



INVARIANCE CONDITIONS ON

included in Eq. (9), this would no longer be true; thus
the condition of invariance under time-reversal is neces-
sary in order to prove Eq. (8). The important con-
sequences of invariance under space reflections (and
rotations) have been previously noted;® these include:
(a) the polarization (o); resulting from an initially
unpolarized beam is normal to the plane containing the
initial and final momenta; and (b) the contribution I,
to the scattering due to the initial polarization of one
particle is proportional to the component of {(o:);
perpendicular to the initial direction of motion and
contains as a factor sinf cose, where ¢ is the azimuthal
angle measured from the normal to the plane defined
by the initial momentum and polarization.

Of special interest is the 3X3 submatrix of M which
involves scattering in triplet states only. The usual
representation® of this matrix is 8§m,'ms, where m,” and
m, are the final and initial z-components of the total
spin, respectively. Each of the conditions imposed here
on M may be translated into this representation if it
concerns matrix elements which are nonzero only
between triplet states. For example, since the matrix
(IVb) may be regarded as one of a complete set of ma-
tricesin terms of which M maybeexpanded, the condition
that (IVb) cannot enter into the expansion is expres-
sible by the vanishing of the trace of the product of M
and (IVb). Computation of this trace yields

S11— Soo— e2"‘f’81_1=\/§ COtg(e_i“’Sor*- ei‘PSm) . (1 1)

This equation, which is seen to follow from the time-
reversal condition, is not apparent in explicit formula-
tions and thus may be used as a check on the accuracy
of numerical calculations. Similarly the condition of
invariance of M under space reflections may be trans-
lated into this representation:

€78 _19=—€"%81y,

62“’81_1 = 6—2“’8..11.

Su=8_1-1, (12)

€780 = —€§o_1,
III. GENERAL PROOF OF EQUATION (8)

Equation (8) may be shown to be valid in the more
general case of the scattering of a spin % particle from

6 J. Ashkin and T. Y. Wu, Phys. Rev. 73, 973 (1948).
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TasLE I. Transformation properties of factors in Eq. (13).
S—scalar. PS—pseudoscalar.

Reflection-rotation Time reflection

b S +
¢ PS —
d PS +
bid, bdt PS +
ctb, bet PS -
dic, dct S -

a scatterer of spin I. As a complete set of operators in
the combined spin spaces of the two particles one may
use all the products of the form(¢*X sf), where o% are
the four spin operators of the spin % particle and s# are
a complete set of (2I4-1)? operators in the spin space
of spin I particle. It is important to note that all the
operators (¢*Xsf) have zero trace except the unity
operator (1X1). The most general form of M may be
written

M=d+b01'n+601' K—{-du‘l'P,

where a, b, ¢, and d are linear combinations of operators
of the form sf. To prove Eq. (8), one evaluates

4]0(Ip/Io“" N <0‘1>f) = TI‘(MTM—MMf)O'l’ N
=21 Tr{e1- (nX P) (b'd— bd")+01- nXK) (B'c—c'd)
+a1- PXK)(dlc—c'd)}or-N.  (13)

Here contributions to the commutator of Mt and M
from the noncommutation of @, b, ¢, and d have been
omitted, since these terms must contain an s# factor
other than unity and so will have zero trace. Further-
more, for our considerations the factors b&'d—bdt,
bf¢—c'b, and dfc—ctd are not operators in the spin space
of the spin I particle, but depend only on the vectors
k; and ky, because any term containing an operator s
other than unity will yield zero trace. Following the
arguments used previously one finds the transformation
properties indicated in Table I. Since it is impossible to
construct from k; and k; quantities having the trans-
formation properties required for dd, b, dct, etc., it
follows that each of the terms in Eq. (13) is zero.



