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pulse height between different pieces varied by less than 10
percent. The proportionality between energy and pulse height was
checked within 6 percent by using Cs"' gamma-rays (Fig. 2).

From this it is evident that large LiI(Sn) crystals can be grown
which give good resolution and pulse height. This makes it pos-
sible to build relatively small detectors with high eSciency for
thermal and epithermaj neutrons. The resolution makes it also
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Fto. 2. Lil(Sn) 1 in. Xg in. Xf in. crystal response. (f) irradiated
with thermal neutrons; (2) Cs»7 gamma-rays.

possible to use these crystals for rough neutron-energy measure-
ments in the region where the Li'(g, a)He' cross section is large
enough (~1 barn).

~ This work was done under the auspices of the AEC.
1 Hofstadter, McIntyre, Roderick, and West, Phys. Rev. 82, 'N9 (f951).
~ W. Bernstein and A. W. Schardt. Bull. Am. Phys. Soc. 26, No. 6, 15

(1951).' A. VF. Schardt and W. Bernstein, Rev. Sci. Instr. 22, 1020 (1951).
~ We are indebted to Morris Slavin for the spectroscopic analysis.
g Harshaw Chemical Company (private communication).
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N view of the recent discussions of Bethe and Salpeter' and.. Low and Gell-mann' on the derivation of an integral equation
for describing bound states in 6eld theory, it is of interest to see
whether this kernel is likely to show any irregular type of con-
vergence. Although it is the intention of these authors to escape
some of the limitations of perturbation expansions, particularly
when dealing with problems concerning bound states, it has not
been found possible to obtain a tractable equation in a closed form,
so that the kernel can only be employed in the form of a power
series expansion in the coupling constant.

The kernel for the two-particle scattering process. is composed
of "irreducible" parts. These parts are such that it is not possible,
by cutting the two spinor lines carrying the external energy and
momentum, to separate the graph into two portions such that
each portion has exactly four external spinor hnes.

As an indication of the possible convergence of the power series
describing the kernel, a lower limit to the number of irreducible
graphs is given.

Let $(e) denote the number of graphs of order e, whether
reducible or irreducible, and Xl(n) the number of irreducible
graphs. Then a difference equation for Ey(n} can be set up, in a
manner exactly parallel to the Bethe-Salpeter equation.

N(n) Nq(e) El(+—2) $(2) Ã1(2) $(n —2)+ +" + . (1)e! e! (I—2)! 2! 2! (n —2)!
This equation is obtained by requiring that the last (e—2r)
points, as described by. the arrows on the spinor lines carrying the
external energy and momentum, should form an irreducible
graph, while the 6rst 2r form a graph which may be reducible.

If
„E(e) ~ „EI(e)

salsa I! @—2 I!
Eq. (1), in terms of generating functions, can be written

e(~) =1+e(~)e(t), (2)

which models the Bethe-Salpeter equation.
Now if "ladder" graphs are considered, for which only virtual

boson exchange between the two spinor lines takes place, then we
have

&(~)/~!=k(&/2)!,

and it is evident that E(e) &» $1(n).
Also

y(+) ~&-» X(2&} E(n —2r)
2r! (~—2~}!

Then the ratio of succeeding terms in the summation,

E(2r)X(e—2r) (2~+2)(2~+1} —2&

$(2r+2)E(e—2r —2) (e—2r) (e—2r —2) 2r+2

and EiE2 Eg~ @=1.Also E„=1for (e—2r)/(2r+2) =1, that
is for r=(e—2)/4, so that

R„~1 for r) {n—2}/4.

Then the inequality can be written

Sg(e) X(n) 2E(n —2) X(2}
n! e! (e—2)! 2!

2E(e—4}E(4) 1 1
1+~,+~ ~+" +

p E(s) 2X{s—2) E(2) E{N—4) X(4)
(I—2)I 2! (e—4)I 4! '

where C is independent of n.
So

LX(N)/a! jL1—O(1/a) j&ltrr(N)/I!(X(a)/e!.

Hence SI(n)/n! increases as rapidly as E(e)/n!, namely
log[Sr(rr)/e! j~,'a loge+0(e). Thu-s there are, in this sense, as
many terms in the kernel of the Bethe-Salpeter equation as in the
original perturbation expansion, and so this kernel may very well

not form a convergent series in the coupling constant, in the same

way as the Born approximation for the 5-matrix may not lead to
a convergent series.

This result then raises the question of the meaning of the ap-
proximate solution of an integral equation, obtained by neglecting
further terms in the kernel, when this kernel could not be approxi-
mated inde6nitely with increasing order. This would be par, —

ticularly dificult to justify in the case of pseudoscalar meson-
nucleon interactions, for which the experimentally determined

coupling constant is large.
This result can be modified trivially to 6t any of the 6eld theories

so far introduced.

' H, A. Bethe and E. E. Salpeter, Phys. Rev. 82, 309 (1951).
~ M. Gell-mann and F. I ow, Phys. Rev. 84, 350 (1951}.


