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The Angular Correlation of Two Successive Nuclear Radiations*

STUART P. LLoYD
Institute for Advanced Study, Princeton, Xez Jersey

(Received Novermber 12, 1951)

A general formula'is derived, using group-theoretic methods, which gives the correlation as series in
Jacobi polynomials whose argument depends on the angle between the radiations. The coefficients factor
into quantities depending on the separate nuclear transitions, and the factors are worked out explicitly for
the directional correlation cases where one of the interfering radiation angular momenta is the lowest or
next-lowest allowed by conservation of angular momentum. Correction factors are given for converting
lowest multipole y —y correlations into an extensive class of directional correlations.

1. INTRODUCTION

'HE theoretical aspects of the problem of the angular
correlation of successive nuclear radiations have

been treated by many authors, several of whom have
presented results in numerically tractable form. ' ' The
problem is now well known, and we refer the reader to
(FU) for a detailed general examination of the theory,
as well as references to earlier work. Briefly, the problem
is the following. A nucleus in an excited level El decays
to excited level E by emitting radiation El. The inter-
mediate nucleus in E then decays to level E2 by emitting
radiation E2, and one wants to find the relative angular
distribution of E2 with respect to E~ in terms of the
total angular momenta Jq, J, and J~ (and perhaps other
nuclear properties) of the successive levels E&, E, and E2,
respectively. This relative angular distribution is called
the angular correlation of El and E2.'

In the initial form for the angular correlation func-
tion, the form given by quantum-mechanical perturba-
tion theory, the nuclear matrix elements appearing are
those for emission of the radiations into plane wave
states, but for computational purposes these matrix
elements must be expanded in terms of those for emis-
sion into angular momentum eigenstates. The resulting
expression for the angular correlation function contains
summations involving many magnetic quantum num-
bers of various nuclear and radiation states; several of
these summations are not trivial. In this paper we show
that most of these summations can be eliminated by

*This paper is an exposition of results described in: S. P.
Lloyd, Phys. Rev. 80, 118 (1950) and Phys. Rev. 81, 307 (1951).
The preliminary stages of the work were performed while the
author held an AEC Predoctoral Fellowship. Much of the present
material is part of: S. P. Lloyd, thesis submitted in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy
in Physics in the Graduate College of the University of Illinois,
1951.' D. R. Hamilton, Phys. Rev. 58, 122 (1940).

~ D. S. Ling, Jr., and D. L. Falkoff, Phys. Rev. 76, 1639 (1949),
to be referred to as (LF).

3 D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950),
referred to hereafter as (FU).

4 J.W. Gardner, Proc. Roy. Soc. (London) A62, 763 (1949).Our
list is not complete.

~ It is assumed that: (a) the initial nucleus is randomly oriented,
(b) the intermediate nucleus is not disturbed by extranuclear
fields before it emits R&, and (c) e8ects caused by nuclear recoil
are neglected.

use of the formulas of Racah' for certain sums of
products of vector-addition coeKcients, so that the
angular correlation function can be simplified to the
point where the main considerations in its evaluation
in a given case are physical in character, e.g., the de-
pendence of a correlation on P-ray energy or on the
relative amplitudes of simultaneously emitted p-ray
multipoles, etc. Put another way, the complicated sums
over magnetic quantum numbers are geometrical enti-
ties, having to do with the properties of the three-
dimensional rotation group, ' and the geometrical
problem of obtaining a closed form for these sums has
already been solved by Racah in connection with the
theory of complex spectra. Numerically tractable
results obtained previously without the use of Racah's
formulas have been in general limited to those cases
where the angular momenta of the radiations do not
exceed two units or where the initial or final nuclear
spin is zero.

A general correlation formula is derived in Sec. 3,
together with the directional correlation formula re-
sulting from it. The directional correlation is set up to
make use of existing y —y numerical tables' as far as
possible; formulas for coefficients not to be found in
reference 8 are given in Secs. 4 and 5. The explicit
formulas are limited to those cases where, in each tran-
sition, one of the interfering particle multipole orders
is the lowest or next lowest allowed by conservation
of angular momentum. The final directional correlation-
formula is Eq. (31), Sec. 6, where a summary of results
is given for the benefit of those readers who are mainly
interested in the application of the formula to practical
problems.

2. PRELIMINARIES

We give here a general proof for the multipole ex-
pansion of nuclear matrix elements assumed in (FU).

' G. Racah, Phys. Rev. 62, 439 (1942), referred to hereafter"as
(R).

7 Or more precisely, with the properties of the group {P}of
unitary unimodular two-dimensional matrices, the group of the
Pauli electron. The group theory used in our derivations can be
found in: E. Wigner, Gruppentheorie use (Vieweg, Braunschwieg,
1931), referred to hereafter as (W), or in: C. Eckart, Revs.
Modern Phys. 2, 305 (1930).

g S. P. Lloyd, Phys. Rev. 83, 716 (1951).
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The matrix element for the emission of radiation E. into
a state specified by a set of quantum numbers A in the
nuclear transition J,m,—+J~~ will be denoted by
(Jfmr I

A
I
J,m~). A set A includes the direction Q of the

detected particle of R, and in the conversion electron
case, for example, it includes the quantum numbers of
the hole left by the ejected electron. We omit all nuclear
quantum numbers except the total angular momentum
quantum number J and its magnetic quantum number
(s-projection) m.

Under the operations of {P}these matrix elements
transform according to

(Jmr I
A

I J,m;) =Z; r (mr I
P '

I
nor')

X (Jrmr'I PA
I
J.m'') (m''I P

I
m')", (1)

where the (m
I Pl m')z are the usual (2J+1)-dimensional

unitary irreducible representations of {P}.' Equation
(1) is obtained simply by evaluating the matrix element
in a rotated coordinate system and using the scalar
property of the perturbation Hamiltonian describing
the emission of E.. The product of matrix elements

( I I
)z of {P}in Eq. (1) can be reduced (Clebsch-

Gordan series"):

( mrl P'fmi') r(m,'IPlm;) '

=(—1)"r™r'(—m, 'IPI mr)'—r(m
I
Plm, )"

= ( 1)" ™—'&zwu-(J,J, m, 'm, 'I—J,J,L, M')—
X(JrJ;—mrm, l JrJ,L M)( M'I Pl —M—)—

=&.~~ $(2L+1)/(2J,+1)j{J,Lm M'I J,LJ~,')
X(J,Lm, Mf I;LJr1lZf)(M'fPfM) (2)

to give

(Jrrrzr I
A

I
J,m, )

=&r.zr(2Jr+1) '(J,Lm, MI J;LJrmr)Gz"(A)*, (3)

where

Gz, (A)*—=Zm'mr'zz'(2 Jr+1) '*(2L+1)

X(J,Lm,'M'I J,LJrm, '){M I P IM)i*

X(J~,'I PA
I
J,m,')

=Em mz(2Jr+1) '(2L+1)
X (J Lm M

I
J;LJrmr) (Jrmr I

A I Jm,). (4)

Various symmetry properties given in {W)for ( I I )z

and in (R) for vector-addition coe%cients have been
used in Eqs. (2)—(4). It is easy to verify from their
definition, Eq. (4), that the Gr~(A) belong to (. I I )z

as indicated Qy the indices, i.e. :
G,~(A) =Z~ G,"'(PA)(M'I Pl M)'. (5)

Hence, if & denotes the ({P}-invariant) summation
over the angular variables in set A, the Gr~(A) are

' The (m f
P fm')r are the D&r&(P) ~ of (W).

"We use the vector-addition coeKcients of (W), but in the
Condon and Shortley notation. See E. U. Condon and G. H.
Shortley, The Theory of Akomic Spectre I;Cambridge University.
Press, Cambridge, j.935), Chapter III. This work will be referred
to as (CS).

unitary-orthogonal under S, and one can write

@Gz (A)*Gz '(A)=~«f~~~ l(JzllLIIJ') I', (6)

I {JrllLIIJ') I'=—(2I.+1) '&~8 fGz, '"(A) f'
=RIG.~(A) I-",

Numbers (JzllLIIJ, ), independent of angles, are deter-
mined by Eq. (7) to within a phase factor, so that if
one puts

Gz"(A) = (JrllLII J~)*'tfz (A), (g)

the 'tip, (A) belong to ( I I
)z and are unitary

orthonormal under Ni. Usually the 'tlr~(A) will be
those whose phases are fixed by convention or con-
venience, e.g. , the (CS) spherical harmonics, so that
Eq. (8) is to be thought of as determining the phases of
t e(J,flL, ffJ,).

The rate of emission of E in the transition J,—+Jf will
be proportional to

I= (2J~+1)—'2; rS,
l (Jrmr I

A
I
J,m, ) I

'
=(2J;+1) 'Zzzr(2L+1) 'I IGz~(A)l'
=(2J*+I) '&zl(JrllLIIJ') I', (9)

so that
I (JrllLII J~) I

is simply the relative probability
that E. is emitted with angular momentum I.. It will
be convenient in the following to use a diferent nor-
malization for these scalar amplitudes. Put

(Jz:L:J~) = (JrllLII I')/(~z
I {JrllLII J') I

') *'

hen ~zl(Jr'L'J )I 1 an'd the l(Jr'L:J')I' a«
actual probabilities.

3. A GENERAL T%'0-STEP CORRELATION FORMULA

We start with the usual expression

W(A t, A 2) = aZ i 2
I
Z„(J2m2

I
A 2

I
Jm) (Jm

I
A i I

Jim, ) f

'
QZmlm2mm (J21Ã2

f
A 2 f

Jm)(Jm
I
A i f Jimi)

X (Jgm2I A 2 I
Jm')*(Jm'

f
A i

I
Jimt)* (10)

for the angular correlation function W(Ai, A2)."The
normalization constant e will be chosen later. Multipole
expansion of the nuclear matrix elements after Eq. (3)
gives:

W(Ai,' Ae) = aZ (z~)QZmimgmmi'U,

where we abbreviate

(LM) =Li, Mi, Li', Mi', L2, M p, L2', M2'

g=Gzi '(Ai)*Gr i &'(Ai)

XGz2~'(A z)eGr i™(Ae),

't) =L(2J2+1)(2J+1)j '(JzLlmlMll J1LtJm)
(11b)

X (JzLi'mzMi'I JiL,,'Jm')

X{JL,mM,
I
JL,J,m, )
X(JL, mM,

I
JL, J,m, ).

n G. Goertzel, Phys. Rev. 70, N7 (1946), treats the y —7 case
and his results are easily generalized.
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%e have used the fact that the vector-addition coef-
ficients are real. It is known that Eq. (11) can be con-
siderably simpli6ed by assuming that one of the particles
is emitted along the s axis-of-quantization; ' a further
reduction is possible when the correlation is expressed
in terms of the matrix elements for emission of both
particles along the s axis, as follows.

The angular correlation is a scalar function of the
whole set A ~ plus A~, so that without loss of generality
ollc call Rssulllc tllat thc (+s) RXIS iles Rlollg 'tile dll'ec-

tion Qj of the detected particle in the 6rst transition
and that the s-(+x) half-plane contains Qs of the
second. -transition particle. I.et P2I be the rotation by
angle 8, 0&8 &Ir, around the (—y) axis whichrotates
Qs (in these axes) into the s axis, so that 8 is the angle
between Q~ and 02. Denote by A ~' the values of the A ~

in these axes and by A2' the values of the A& after P»
has been performed on them: As' ——PsIAs. The Gns~'(As)
belong to ( I I

)i', so that"

ru=Grt~'(AI*)*Gr '~I' (AI*)Grs~'(As)*Grs™(As)

= Zzr rrs Gzt '(AI*)*Grt™(AI')Gno"'(Ar')*

XGxs ~'(A")(Esl PsII Ms)~'*(1Vs'I Perl Ms')~'

& i( 1)rrs srsGr —M1(A s)eGr iM&'(A s)

XGns"'(As')*Gr. '"'(As*)E1.rss(LsLs'

—X,.iV, 'I L,Ls')tps)(I. ,I.,' —m, iV, 'I L,L,')1—p,)

x (as I Psr I
—I I)". (12)

Two more vector-addition coefFicients have been
introduced into the formula for W(AI, As), but they
are the ones that make Racah's formulas applicable.
The sums over (Ms, 3Is', ms) and (rrrt, m, rts') can be
eliminated, in that order, using Eq. (R41) and others,
to give:

W(A A )= &( )(—1)"' "(—1)"""+"
XQ&stsg( —1)"+"'d'"'(8)s2—sl'(W(LIJLI Ji JI))
X&~I(—1)'+ (I.,I.,'—ilfIM, 'I L,LI') P,,)
XGnt '(AI')*Grl' "(AI')) (W(LsJLs'J; Js)t)

Xpsrs( —1) '+ '(LsLs 3IsMs I LsLs )1'—s)

XGre '(Ae*)*Gr." "(A ')} (13)

where (L,)= (L,I, I.I', Ls, Ls'), with the sum unre-
stricted. , and W(abed; ef) is de6ned in Eqs. (R36)."

"J.A. Spiers, Phys. Rev. 80, 491 (1950), gives an equivalent
form which differs considerably in appearance from Eqs. (11)-(12),
but which can also be used to obtain Eq. (13), following. The
essential point is the reduction of the outer product of ( ! ! )r
which appear. This is a generalization of the method used by
,Gardner to obtain nonrelativistic conversion. electron (spinless
particle) correlations, reference 4.

"The derivation to this point is similar to one shown to the
author by Professor Racah (private communication). The sum-
mations were performed in a different order in Lloyd's thesis (see
footnote to title). )Note added ~ri, proof.—See G. Racah, Phys.
Rev. 84, 910 (1951), where a semiclassical interpretetion of the
various quantities appearing in Eq. (13} (Eq. (8} of Racah's
paper) is given. ]

Tiled( (8)rrs, -st Rl'C tile JRCObl pOlyI101111alS glVCI1 111

(&):
d"'(8)ss, -st

(—1)"[()+at) (~—I I) '() +ps) '() —I s)!]'

()1—Irs —s)!()1—Irt —ir)!«!(Ir+ Irt+ rrs)!

X (COsr 8)21—sl—ss—2x(Sin 18)Sc+sl+ss ~

the sum on I(: is over aH integral values for which the
arguments of the factorials are not negative.

Let us consider the (2)1+1)quantities

U1&(A) =zsr( —1)~+~(LL' MM'—
I
LL') Ir)

XGr~(A)* Gr ~'(A) (14)

I1= —) —)t,+1 h. From their de6nition and the
.transformation properties of the Gr~(A), it can be
shown easily that the U1&(A) belong to ( I I

)", as
indicated by the notation. Let S denote the ({P)-
invariant) summation over all angular variables in set
A except for the direction Q of the detected particle.
Since S is invariant, the quantities SU1"(A) belong to
( I I

)" or vanish identically. Their angular de-
pendence is on Q only, and from parity considerations
they are even functions of Q. Also, since L+L' will

always be an integer, X is an integer. These conditions
fix the SU1"(A) rather thoroughly, and one must have"

SU1"(A) =N1 I'1"(Q), )t even,
=0, X odd;

SUo'(A) = (2L+ 1)'I (JrllLII I) I
'8«/(4 )

where V1&(Q) are the (Cs) spherical harmonics and u1
is a constant independent of p. %hen Q is along the
s axis the spherical harmonics I'1"(Q) vanish unless

. Ir =0. Tile tcl'111s Irr+0 ol' Iree 0 111 Eq. (13) tlllls
describe only the dependence of the correlation on the
polarization of the first or second radiation, respec-
tively, since these terms drop out when the correlation
is summed over the corresponding polarization.

For directional correlations [the function W(8)
=SISsW(AI, As)] with which the following will be
mainly concerned, one needs only then that dt"I(8)s, s
=P1(cos8), so that the directional correlation has been
obtained as a series of even I.egendre polynomials. One
sees from Eq. (13) that the coeflicients of I'1(cos8) factor
into quantities depending on each transition separately.
It is convenient to put

a1(LL'; JJ')sr=a), (L'I.;JJ')sr
=(—1)n' ~a1(LL'; JJ') sr

= (2—8„)(—1)&'-&+~+»[(2L+1)(2L,'+ 1)(2J+1)!
(2)t+1)]&W(LJL'I J'h)(LL' —%MILL')10) (15)

"Suppose fy"(Q) belong to ( ! ! )".By considering rota-
tions around. the s axis, fp,+(Q'}=8 0fg0(Q'). Also fp,"(0)
=Z„'f1"'(PQ)(y'~P)n)"= f1'(Q')(0!P!p)1, where P is any rotation
of Q which brings it to the s axis. From the known form of the
( I I

)" f&"(Q)=L4v/(21+I)l'f1'(Q')y1"(Q).
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and also, after (LF),

g cg M(A)8 cg,M(g)

=L(2L+1)(2L'+1)3'(4~) 'F»' (P), (16)

(P=O)=I"zz *

where P is the angle the detected particle makes with
the s axis. This notation is intended to be that of (FU),
except that the speci6c normalization

~MFLL' (p) '4I'y

Fzz (P)d(cosP) = (L+-', ) 'Hzz, , (all M) (17)

is required. "In terms of these the directional correlation
takes the form"

lf'(H)=1+ Z Z (—1)"' "E(2l+1)
L1 ~L'1 L2 ~L2

XPi(COSH) Emily(Limni, JJi)Mi

XR.P.[(J:Li'.Ji) (J:Li".Ji)*Fzizi'~'j
.Z~,ai, (L2L,', JJ2)~.

xR.P.[(J2:L,:J)(J,:I„'iJ)*Fz2~, j. (18)

The normalization constant has been given the value
a=(4m)'((2Ji+1)IiI~) ' to normalize W(H) to unit
average. The angular correlation selection rules appear
as properties of Racah's coeKcient W(abed; ef); the
sum on X in Eq. {18)is over the even integers satisfying
simultaneously: Li' —Li&X&Li+L,'; L2' —L2&X&L2
+L2', 2&X&2J. There is no correlation if J=O or
J=—,'. (These are the multipole mixture modifications
of Yang's rules. ")

For spinless particles the 'Jjz~{A) can be only the
spherical harmonics Fr~(Q), so that Fzr~ Hero. For-—
y-rays, from (LF) Fr,&~ ,'H~ir~i, also, (—I—L—, 11~ LLANO)—
= (LL1—1 LLANO), X even. In most cases of physical

interest the 1.s will be integers, i.e., spinless particle,
P-ray, y-ray, conversion electron (exception: single

nucleons), so that in Eq. (18), considering only the pure
multipole terms, the quantities in square brackets are
the fractions of the radiations that behave as 2~-pole:
spinless particles (M=O), y-rays (ldll =1), massless

quanta of spin-two (~3II~ =2), etc.—at any rate for
directional correlation purposes. The quantities in

square brackets are the physics of the problem and

involve through the IiI,L, ~, the type of radiation, and

through the (Jr'.L:J;), the particular nucleus emitting
it. The quantities ai,(LL', JJ')ir a,re simply numerical

coeKcients and can be obtained from formulas in (R).
The calculations for ai(LL', JJ')ir are rather simple if

one of the radiation angular momenta I., 1.' is the lowest

(L=
I
J—I'I) or next »west (L=

I
I—I'I+» allow«

by conservation of angular momentum, provided also

that ~M~ is not too large. The coefH.cients for these

cases are given explicitly in the next section. The
quantities in square brackets in Eq. (18) are discussed

in Sec. 5.

4. THE GEOMETRICAL COEFFICIENTS

(a) Dependence on M

We observe first that the ai,(LL'; JJ') ir as defined in

Eq. {15)depend on M' through the vector-addition coef-
6cient only. Since the y —y correlation coefficients

(~ Mi~ =
~
iV2~ =1) are already tabulated as functions of

nuclear angular momentuIn, ' it is convenient to intro-
duce, for integral I. and I.', the ratios

b(LL')is= (—1)z' zh{LL')-is

= a),(LL'; JJ') ir/ai, (LL', JJ') i

= (—1)~-~(LL' —mm~ LL'~0)/

(LL' 11
i
LL'XO). (19)—

From Eqs. (R3) and (RS),

2[I.(L+1)L'(I.'+ 1)]-:
8),(LL')0= L+L'=even

L(L+1)+L'(L'+ 1)—X(X+1)

$g(LL') 0
——0, L+L'= odd

& (LL').=—

(&—1)(l +2)—(L—1)(L+2)—(L'—1)(L'+2)
b(LL')2=

((L-1)(L+2)(L'-1){L'+2))'

(L—1)L(L+1)(L+2)+ {L'—1)L'(L'+ 1)(L'+ 2)—X(X+1)[2(L—1)(L+2)+ 2(L' —1)(L'+2) —(X—2) (X+3)g L+L'= even,
({L—1)(L+2){L'—1){L'+2))'[L{L+1)+L'{L'+1)—&(~+1)j

(20)

'f' The summation in Eq. {17)is —min(L, L') &M &min(1. , L').
'6 The pure multipole terms in Eq. (18) have been given by K. Alder, Phys. Rev. 83, 1266 (1951), and, for a special case, by

Biedenharn, Arfken, and Rose, Phys. Rev. 83, 586 (1951), who also consider triple cascade correlations.
'7 C. N. Yang, Phys. Rev. 74, 764 (2948).
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and in particular, for the pure multipole terms I-'= I-:

~(&+1) --'
g),(LL)0= 1—

2L(L+1)

2X{X+1) (X—2)X(X+1)(X+3)
$)(LL)2= 1— + kx(LL)o,

L(L+1) 2(L—1)L(L+1)(L+2)

N, (X+1) 3(X—2)X(X+1)(X+3) (X—4) (X—2)X(X+1)(X+3)(X+5)
5~(LL)3= 1— + b(LL)o

2L(L+ 1) (L 1)L(L+—1)(L+2) 2(L—2) (L—1)L(L+1)(L+2) (L+3)

The $x(LL')0, $q(LL')2, are the factors which convert the L,L' terms in a y-ray correlation into the corre-
sponding terms in spinless particle, spin-two quantum, . . . correlations, and, as it turns out, the ones given in
Eqs. (20)—(21) cover the spinless particle, P-ray to second. -forbidden, and E and L conversion electron cases.

(b) The y-Ray Coefficients

The lowest and next lowest y-ray coefficients are, from Eq. (R36) and others, with L&L' and L= &(J—J') or
L= +(J—J')+1:
L+L'= even:

aq(LL', JJ'),= (2—81.1,.)( 1)&&~' ~&—aq(LL')N(LL'; JJ')vq(LL', JJ')[mq(J)$+' (22)

X!+ L+ L'y I(2L'+1)(L+L')(L'—L+1)(L+L')!(2L+1)!ql

I
—I'(~+L'-L)!

i

2
)(2L)

(L'—L)!
a),(I.I.') =

iX+L+L'i iX+L' Li pL+L'—Xi—
I!{&+L+L'+1)!&~(LL')0

2 ) 2 ! 2 )
(J+J'—L)!{J+J'+L+1)!

N(LL' JJ') =
(J+J' L')!(J+J'+L'+—1)!

(2J—X)!(2J+X+1)!
wg(J) =

(2J)!(2J+1)!

w(LL' JJ')=1 for L=+(J J')—
(J'+-,'~-,'))I,(x+1)

vt, (LL', JJ') =1— for L= W(J—J')+1;
{J+',~ ', )(I+I.')(I.' I.+1)-—

in particular, the pure multipole coefFicients are

(LL JJ') = (LL) (LL' JJ')L (J)j+'

g(g+ 1) (2L+1) lg!LL+ (g/2) j!
ag(LL)= 1—

2L(L+ 1) (2L+X+1)!P(X/2)!]'LL—(X/2) j!
~(LL; JJ')= 1 for L= ~(J—J'),

(J'+-,'w-,')aP+1)
vq(LL; JJ')=1— for L=&(J—J')+1.

2L(J+4~2)

a){LL',JJ') g f'), (LL', JJ')ag(LL"——; JJ') g

where L"=I.'—1 (and L&L"), and

f'), (LL', JJ') = x(LL'; JJ')yg(LL')sg(LL'; JJ'),
(2—8r,r, i i)

(23)
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with
J+J' L'+—1 +&

for L=W(J—J') or =+(J—J')+1,x(LL', JJ') =+
J+J'+L'+1

" (L+L')(L' L+1)—&
II&,,(LL', JJ')

s&, (LL', JJ')= —,for L =&(J J')+1-.
(L+L")(L" L+ 1—) v1(LL";JJ')

(L+L"+1)(2L"+3)
yl(LL') = (X+L L")—(X+1+L" L)— ~.(LL").,

L(L+1)(L"+1)(L"+2) (2L"+1)(L"+1—L)
SI(LL'; JJ') = 1 for L=+(J J')—,

In particular, if L'=L+1
~(&+1)-(2Ly3)--:- ~(~+1)--

~(LL+1)=
(L+1) L(L+2) 2L(L+1)

*(I.I.+1;JJ')=~
(26)

x(12; JJ)s,(12;JJ)=L(2J—1)(2J+3)/3)-',

this last giving the dipole-quadrupole interference in
J'= J-+J.Thus the L+L'= odd type interference terms
are given in terms of the lower L+L'—1=L+L"= even

type terms.
Note that the factor Ill(LL; JJ') is all that is needed

to obtain pure next lowest multipole terms from a
complete tabulation of pure lowest multipole terms. For
example, if Ll &(J—Jl)+1,——the JI(LI)J'(X)Js corre-
lation with I= any l'adlatlon ls

W(8) = 1+Zge), (LIL„JJI)CIF),(cos8)

if the coefficients of the Jr&1(LI)J(X)Js correlation
are CI. Similarly, the coefficients CI' of the X-(2~'-pole)
correlation for JI~J~J&%1 yield the JI(X)J(L,)Js
correlation

W(0) = 1+XIv&,(LILI, JJl)CI'P), (cos8)

when L,= W(J—J,)+1.
Kqllatlolls (19)—(26) will give lllost. of 'tile coll'elatlolls

of physical interest in the p-ray, P-ray, and conversion
electron cases. In the rr-particle case the (Jf.'L:J;) are
not always sharply decreasing with increasing I. 8 and
comparison with experiment might require the use of
several of the higher terms in:

~
J, Jf

~
(L) L (Jj+Jf—

5. THE PHYSICAL PARAMETERS

The analysis in Sec. 3 shows that the natural param-
eters for Ftl, ~(P) are simply Ftr. ~=F1,t~(P=O)
DiGerent parameterizations have been used, elsewhere,
however, so we collect here various properties of the
Fl,l, ~(P) which will prove useful in obtaining, for
example, p-ray correlations from the work of Fuchs"
or Falko6 and Uhlenbeck. 20

"See H. A. Bethe, Revs. Modern Phys. 9, 69 (1937), Secs.
66—73; in particular, Table XXXIII, p. 172 and TAsLE XXXIV,
p. 179.

'9 M. Fuchs, thesis, University of Michigan, 1951.
~00. L. Falkoff and Q, K. TJhlenbeck, Phys. Rev. 79, 334

(1950).

In the erst place, the Ii I.J. ~ always occur in the com-
bination Zsr( —1)~(LL' MM~LL—'XO)Flt ~, and it is
convenient to introduce a special notation for it. Put,
for integral I.and I',

81(LL') =Q (I(LL')IrFII, ~, v=min(L, I.'). (27)

Bs(22) = (14+1214s)/vr ——(2—42ks)/v,
= (148+12C)/vs,

84(22) = (—214s)/vr ——2/vs ——(—2C)/vs,

vI=S+15141+314s, vs ——2 —15kl—30ks,
vs ——15A+58+3C,

(28b)

lf Fss (P)~A+8 cos P+C cos P alld (14I, 14s) ol' (kl, ks)
are the L=2 parameters of (FU). LEquation (FU20)
should read

Fs+ (tS)=III+sus+s (IMs+1) cos'&+sees cos'~ j"
For L,=L,'=3, lf

Fsss(P) =A+8 cos'P+C cos'P+D cos'P,
Bs(33)= 10(78+6C+SD)/v,
84(33)= 8(11C+15D)/v,

Bs(33)= 16D/(5 v), —
v= 105A+358+21C+15D.

(28c)

For y-rays, the polarized spherical harmonics of Eq.
(8) are, with the direction Q' of the quantum along

2'As a result of this misprint the results involving the (y1, p, m)

parameters given in Lloyd's thesis (see footnote to title) are
incorrect,

Particular cases are

8,(11)= (4X)/(3+ X)= (—28)/(3A+8) (2ga)

if FIIs(p) A+8 cos'p and X is the L,=1 parameter
of (FU).
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Fr.z,
+'= ts( 1)'*'~'—+, L+L'= even (e—e or ns ns)—

jp~~, +t= ~&( 1)f(Je &m r)— —

L+L'=odd (e—its or m —e),
so that, for y-rays,

B),(LL') = (—1)ft~' +, L+L =even)
(30)

B),(LL') = (—1)**'~ -i" '&, L+L'= odd.

The (J~.'L:J,) in the y-ray case are real, "and theo-
retical and experimental evidence indicates that all
except the one for smallest I are small or negligible. "

~ The phases and normalization used in S. P. Lloyd, Phys. Rev.
81, 161 (1951) have been changed to conform more closely with
those of (FU), but the proof and results remain essentially
unchanged. The (Jr~]L~(J;) for y-rays in the present article are
(—1)~J& ~(2L+1) & times those of Phys. Rev. Sl, 161 (1951).This
leads to a change in sign of the interference terms, Eqs. (25)-(26)
above, compared to those of reference 7, so that the phases are
now the same as those of (LF), i.e., (Jf([L 1[[J;)=n, (Jr[|L—[]J;)
=P. A point overlooked by Ling and Falkoft is that the matrix
aP* is antiHermitian, so that the interference terms for the first
and second transitions must have opposite signs, whatever the
choice of phase. The signs in the (LF) tables are those which hold
when the 6rst p-ray is mixed, the second pure, although they
claim the converse.

"M. Goldhaber and A. W. Sunyar, Phys. Rev. 83, 906 (1951).
The dipole-quadrupole mixture case may be an exception, and

we conclude by remarking that (X)-(mixed dipole-quadrupole
y-ray) correlations can be obtained from the (LF) quadrupole-
(dipole-quadrupole) tables as follows. (1) For J—Aj~J—+J+M,
express t/t/(8)='Q+R cos28+Scos48 as a Legendre series: 8'(8}
= & 1~2~2{cos8)+A4P4(cos8}, where

As-—[-'R+(45/7)g[Q+~R+(5/5)] '
A4 ——(8S/35) (Q+-'Z+-'S)-1

{2) Multiply these Ag by

B),(LILI') ay(LILI', JJi}I/u), (22; JJ—Aj )i.
One then has the (X—2~&—2~&'-pole)-(dipole-quadrupole y-ray)
coeScient of Py(cos8} for Ji—+JR+M. This is independent of
the value of Aj chosen, of course, and the calculations will be
easiest for hj= +2. (3}Multiply by the appropriate scalar matrix
elements (taking the real part of the product if necessary), and
sum over Li and Li'. (4) Change the sign of the O.P* term for the
second y-ray. (See reference 22.) If the (dipole-quadrupole)-y-ray
ls 61st& thc pl'occduic ls csscntlally thc same, cxccpt, that the
signs in the (LF) tables are applicable as they stand; one obtains
J+4J~J~J—Aj, with d,J mixed, as J—Aj —+J—+J+hJ from

the s axis,

'JJ +'(&' )=~kL(2L+1)/(4 )1"e+",( l)

'tlr, +'(Q' e) =-'I (2L+1)/(4w) jfsn-'e+'& (mag) (29)

'JJn+'(Q', e) =0, I
M

I W 1, (el or mag),

where cp is the angle the linear po1arization vector a of
the quantum makes with the x axis; in Eq. (13), fs is
the angle that a (in either transition) makes with the
plane containing the directions of both particles. The
8 process is simply:

~f(&', ~)=f(&', g)+f(&', i+St)r
One Ands that

6. SUMMARY

It has been shown that the angular correlation func-
tion can be expanded naturally as a series in the
matrix elements ( I I

)" of the Pauli spin group
(Jacobi polynomials of sinsrsf)) naturally in the sense
that the coefFlcients are factored into quantities which
depend on the 6rst and second transitions in J~~J~J2
separate1y. This feature makes it easy to modify,
e.g., y —.y directional correlations to get other corre-
lations of physical interest. "The general formula is Eq.
(13), Sec. 3.

Thc dlrcctlonRl correlation ls obtained Rs R scrlcs of
even Legendre polynomials, the formula intended for
numerical use being:

W(8) = 1+ p Q p{(—1)r 2'-~2(2K+1)
I1 +Ll Lo +L2 X

X&),(LtLr', JJr)tw(LsLs", JJs)t}A(«»&)

R.P.I (J:L Jt)(rJ:Lt'.J,)*By(LtL,')]
~ R.P.L(Js.'Ls.J)(J;:Ls'~J)*By(LsLs')j. (31)

The coefFicients in curly brackets are the coeScients
for y —y correlations, given in Sec. 4, and tabulated for
pure lowest multipoles in Lloyd's thests (see footnote
to title). The quantities (Jr.'L:J,), introduced in Sec. 3,
are relative scalar RmpHtudes for emission of the radia-
tion in J,—+Jy with angular momentum I., normalized
«»& I (Jr.'L:J;) I

'= 1.They appear as unknown nuclear
parameters in the correlation unless the corresponding
radiation is clnitted as a pure multipo1e. The coefFicients
Bq(LL') are the physical parameters of the emitted
radiation. In the y-ray case they are (&1), after Eq.
(30). In the scalar particle case they have the value
$q(LL')s, Eqs. (27) and (20), and again are simply
numerical coefficients. The Bt,(LL') for conversion
electrons are functions of nuclear charge and electron
energy, diGerent for each atomic shell; the pure multi-
pole Bq(LL) up to L=5 obtained by using Dirac wave
functions for the atomic electrons have been given by
Rose, Hiedenharn, and Arfken for the E shell for
certain values of the energy and s.25 The angular dis-
tributions Fi.r.s(/f) of (FU) have been given by Fuchs"
for P-decay up to second forbidden; the B&,,(LL) are
then to be had from Eqs. (28). They are, again, func-
tions of partic1C energy and nuclear charge.
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Section I discusses brieRy different types of models for a 6nite-sized electron from the classical point of
view with each model being characterized by a particular type of charge-current distribution. Each of
these models can be quantized by the Feynman Lagrangian procedure and the new problems encountered
are analyzed in Sec. II. These problems are illustrated in Sec. III which goes into the detailed calculations
for the 6rst-order perturbation calculation of a fjnite-sized electron interacting with an external 6eld.

INTROBUGTIO N

1
~~UR point of view has been to place emphasis not

so much on the elegance of the physical model
but rather on the exposing and the understanding of
some of the problems of the new quantum-mechanical
framework developed by Feynman. We shouM like to
stress the fact that this framework is the most ideally
suited at the present time to handle, in a relativistically
covariant manner, the Lorentz type of 6nite-sized
electron.

We can consider a 6nite-sized electron as a worthy
subject for investigation for several physical reasons,
In reality the electron may not be a point singularity
but actually extends over a region in space-time. Or,
it may be that the notions which we have concerning
space and time, in particular their continuity properties,
actually are incorrect in the very small but because
there is no suitable theory that one can use, the finite-
sized electron may, for the time being, introduce the
necessary fuzziness. Finally there is the physical possi-
bility that the electron is a complex structure in the
extremely small regions of space surrounding its center.
This structure may be connected with meson particles
concerning whose nature we know nothing at present.
The 6nite-sized electron can serve us then as a useful
mechanism for calculating physical processes by lump-

ing our ignorance into a suitabje structure function
with thc hope thRt Rn cxpllc1t cvRhlRtlon of the stluc-.

ture function by experiment will give rise to new clues
for a deeper insight into the electron.

The present theory of quantum electrodynamics still.

is in a basically unsatisfactory state because of the
existence of well-known legitimate problems which the
theory is inherently incapable of solving. These prob-
lems perhaps can be separated into two categories which

may have little to do with each other. The first category
contains the in6nities of mass and charge and it is the

thesis of this work that a finite-sized electron will solve
these problems. The second category pertains to the
deeper problems of the 6ne structure constant, the
relationship of the electron to the mesons, and the
reason for the great stability of the electron. There
has been no indication so far as we know from experi-
ment or theory up to the present time as to how to
proceed with the second category of problems and we
have not attempted to consider these problems in our
analysis.

With regard to the first kind of problems, i.e., the
mass and charge infinities, the following point ought
not to be ignored. The existence of these infinities is in
itself unsatisfactory. But techniques for calculating a
physical process involving electrons and photons by
subtracting out the in6nities have now been developed.
Nevertheless, the crucial question still remains open
whether this calculated value will agree with experiment
at extremely high energies. For example, in the scatter-
ing of a moving electron against an electron at rest,
we have in mind energies of several billion electron
volts, for it is only at such high energies that the
classical radius of the electron comes into play.

Now undoubtedly the reason for the in6nities in the
present theory is that the electron is treated as a point
singularity. Our assumption is that if one does not
have a point but an extended electron we would not
have such in6nities. By an extended or 6nite-sized
electron we mean that the electron charge-current
density is no longer a point singularity but has some
sort of smeared-out distribution. This smeared-out
distribution is not rigidly 6xed with respect to the
center of the electron as the electron moves along its
world line, but will change its shape as the motion of
the electron changes because of the fundamental
requirement of conservation of charge-current density.

The dif6culty which one immediately encounters is
how to treat quantum mechanically such an extended


