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The Relativistic Dynamics of a System of Particles Interacting at a Distance
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The dynamics of a system of particles acting on one another at a distance can be relativistically invariant
if the assumption of invariant world-lines is given up. This is shown by constructing a particular dynamics
in which invariance over the homogeneous Lorentz group is trivial, but space as well as time disp]acement
requires the solution of equations of motion or of a Schroedinger equation. This particular dynamics reduces
in the nonrelativistic limit to the most general dynamics of a system of interacting particles admitting the
Newtonian group.

I. INTRODUCTION: DIFFICULTIES WITH
WORLD LINES

HE Newtonian equations of motion of two inter-
acting particles are, in one dimension of space,

where
mixi = —8 V/l9xi, rrtmx2 = BV/B—x2,

x'= x—Nt, (1.2)

and in such an inertial frame of reference the accelera-
tions of the particles depend only on their relative
position. This assumes a common time t, but does not
identify points of space at one time with points of space
at any other time (see Fig. 1).

In relativity theory we replace x'=x—Nt by

x' = (x Nt)/g(1 I—'/c')—
t' = (t Nx/c')/g— (1 u'/c'), — (1 3)

c being the speed of light. A relation between x and t,
transformed from frame to frame by these formulas,

V= V(x2—xi).

These keep the same form if we change to a frame of
reference in uniform relative motion by the equation

specifies a world-line for the motion of a particle (see
Fig. 2), but when we try to generalize the equations of
motion we immediately run into difFiculty. In (1.1),
xi(t) and x2(t) depend on xe(t) —xi(t), and this is in-
variant for the transformation (1.2); but with (1.3),
t2=tj does not lead to t2'=tj' unless x2=x~. There is,
indeed, no reason why any property of the motion of
particle 1 at a definite location on its world-line should
depend on any one location of the second particle
rather than on any other which can be made simul-
taneous with the location of the 6rst particle by the
transformation (1.3).

The current methods of avoiding this difficulty are to
deal only with collisions, or with the interactions
between particles and. fields, for which we can take
xe ——xi, or to use retarded interactions, xi—xe= c(ti—t2)
leading to xi' —xe' ——c(ti' —t2'). When these methods are
applied in detail, consistent 6nite results are not ob-
tained, and one seems to be led to noncausal theories,
or to discontinuous space and time. '

There is, however, in the above discussion an assump-
tion that does not seem to be logically necessary, the
assumption of invariant world lines. We may quite
logically give up this assumption and suppose that the
state of the system is speci6ed relative to any observer
in terms of canonically conjugate dynamical variables,
qi and pi for the first particle, q& and p& for the second
particle, and that these variables transform to the cor-
responding variables relative to any other observer,
displaced in time, position, and velocity, by the trans-
formations of a group given in canonical form. (See
Fig. 3.) While qi(t) may be regarded as giving a world
line for the 6rst particle relative to a series of observers
displaced only in time, there is no reason why this
should be exactly the same line as that given by qi'(t')
for a relatively moving series of observers.

This paper will be devoted to developing a relativistic
theory of particles interacting at a distance by giving
up the assumption of invariant world lines.

II. KINEMATICS AND DYNAMICS

We shall adopt the general point of view of quantum
mechanics, and a notation brie Ay symmarized as
follows.

FIG. 1. Nonrelativistic theory.
~ P. G. Bergmann, As Introdttctioa to the Theory of Retatioity

(Prentice-Hall, Inc., New York, 1942), p. 85.
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variable t, and 8 the Hamiltonian function H.' Ke
shall extend this point of view to relativity theory
by treating in this displacements of the observer in
position, orientation, and velocity, as well as in time.
Thus position in space and time, as well as orientation
and velocity, will be regarded as properties of observers,
who form a ten-parameter family, with the structure
of the lnhomogeneous I orentz gI'oup. The dynamical
variables are not regarded as directly related to space
position, and there is no need to introduce many times.

III. THE INHOMOGENEOUS LORENTZ GROUP

We may de6ne the rate of displacement along a series
of observers with change of parameter s by the com-
ponent rates of displacement in position, Bx/Bs, By/Bs,
Bs/Bs along the x, y, and s directions, in orientation,
Bl/Bs, Bm/Bs, Bn/Bs, about the x, y, and s axes, in
velocity BN/Bs, Bii/Bs, Bw/Bs, in the x, y, and s direc-
tions, and in time R/Bs, relative to each observer. We
then have rates of change like (2.3) 'in a Heisenberg set
of representations or (2.4) in a Schrodinger set, with

Bt 8N 88 8Ã Bl OPl Bs 8$ Bg 8s
S=H—+U—+V—+W —L—M —N—X—Y—Z—,

8$ Bs 8$ Bs 8$ 8$ 8$ 8$ 8$ 8$
(3.1)

where the signs have been taken so that, H can be identi-
6ed with the energy, X, Y, and Z, with the components
of linear momentum, and L, M, and N, with the com-
ponents of angular momentum of the whole system.

Here the ten matrices, H, U, V, %, L, M, N, X, V,
and Z, will be functions of the basic dynamical variables
and in general of the observer, bu& if the system is a
complete isolated system, satisfying the same physical
laws for each observer, they should be explicitly inde-

pendent of the observer and should be given by the
same matrices for all observers in a Schrodinger set of
representations.

Further, in order that we should return to the same
description of the system on completing a closed circuit,
of observers, it is necessary and su%.cient that the
Poisson brackets of these matrices may take the forms,
corresponding to the structure of. the inhomogeneous
I.orentz group,

(L, M)=N (L, M)= —M (L, U)=0 (L, V)=W
(M, N)=L (M, U)= —W (M, V)=0

(N, U) =V (N, V) = —U
(U, V) = —N/c'

(L, W)= —V
(M, W)=U
(N, W)=0
(U, W) =M/c'
(V, W) = —L/c', (3.2)

(L, X)=0
(M, X)=—Z
(N, X)=Y
(U, X)=H/c'
{V,X)=0

(W, X)=0

{L,Y)=Z
(M, Y)=0
(N, Y)= —X
(U, Y)=0
(V, Y)=H/c'
(W, Y) =0

(L, Z)= —Y (L,
(M, Z)=X (M,
(N, Z)=0 (N,
{U, Z)=0 (U,
(V, Z)=0 (V,
(W, Z) =H/c' (W,

H)=0
H) =0
H) =0
H) =X
H)= Y
H) =Z, (3.3)

(X, Y)=0 (X, Z)=0 (X, H)=0
(Y, Z) =0 (Y, H) =0

(Z, H)=0. (3 4)

The first set of equations, (3.2), gives the Poisson
brackets of the six functions, U, V, W, L, M, and N, in
terms of themselves only, giving the structure of the
homogeneous Lorentz group for changes of orientation
and velocity between observers at the same point of
space-time. U, V, W, I., M, and N themselves form a
six-vector for this group, and the conditions that any
other six functions of the basic variables form a six-
vector are equations obtained from (3.2) by replacing
the right-hand side and one variable on the left-hand
side of each with the new set.

The second set of equations, (3.3), gives the Poisson
brackets of the six functions U, V, W, I, M, and N, with
the four functions H, X, V, and Z; shows that the
latter form a four-vector for the homogeneous Lorentz

' P. A, M. Dirac, Quantum Meclzanics (Oxford University Press,
London, 1930), Chap. VI.

group; and gives the changes in the former in space-
time displacements of the observer. Any other set of

- four functions of the basic variables form a four-vector
if they satisfy similar equations.

Lastly, Eqs. (3.4), stating that H, X, Y, and Z
commute with each other, complete the conditions that
the functions H, U, V, W, L, M, N, X, Y, and Z of
the basic variables give a dynamical theory admitting
the inhomogeneous Lorentz group. '

IV. THE DYNAMICAL EQUATIONS

In choosing basic dynamical variables and kine-
matical relations between them to represent a single

' Similar theory dealing vnth a single particle or a system not
necessarily composed of particles is to be found in E. signer,
Annals of Matlzematics 40, 145 (1939);C. Mgller, Communications
Dublin Institute for Advanced Studies 3 (1949), and M. H. L.
Pryce, Proc. Roy. Soc. (London} A195, 621 (1948}.
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X=ZX„, Y=ZY„, Z=rZ„,
L= ZL) M= ZM„, N= ZN„,

(4 2)

so that invariance over space displacements and rota-
tions is trivial, choose a Hamiltonian function H which
commutes with X, Y, Z, L, M, and N, and prove relati-
vistic invariance, which is equivalent to constructing
functions U, V, and W- to give infinitesimal velocity
displacements, such that the whole set X, Y, Z, L, M,
N, H, U, V, and W satisfy (3.2), (3.3), and (3.4).

%'e shall depart from this scheme and instead make
trivial the homogeneous Lorentz transformations, space
rotations, and changes of velocity for a fixed space-time
position. This seems to be more elegant mathematically
and to lead to simpler results, and has the further ad-
vantage that it will extend directly to the usual form
of the general theory of relativity, where just the
homogeneous Lorentz group of transformations at each
space-time position is taken trivial.

Thus we assume to start with

L=ZL„, M=rM„, N=ZN„,
U= ZU„V= &V„W=&W„

(4.3)

which, it is trivial, satisfy (3.2). We need in addition
functions H, X, Y, and Z, satisfying (3.3) and (3.4).
The conditions (3.4) require that they shall mutually
commute. The conditions (3.3) require that they are
four functions of the basic variables L„, M„, N„, U„, V„,
%„, H„, X„, Y„, and Z„r=1, , n, forming a four-

'L. H. Thomas, Revs. Modern Phys. 17, 182 (1945); P. M.
Dirac, Revs. Modern Phys. 21, 392 (1949).

particle, we may be guided by the consideration that
for a single particle by itself we should be able to con-
struct matrices satisfying the relations (3.2), (3.3), and
(3.4). This can be done giving them in terms of more
special variables, of variables equivalent to this set, or
of more general variables. We shall adopt the second
possibility and simply take a particle to be described
by basic dynamical variables satisfying the relations
(3.2), (3.3), and (3.4).

For e particles, then, we take m sets of variables,

H„, U„, V„, W„L„,M„N„X„Y„Z„r= 1, , 0, (4.1)

each set satisfying the conditions (3.2), (3.3), and (3.4),
and with zero Poisson brackets for variables from dif-
ferent particles.

In general, a relativistic theory could be given by any
ten functions L, M, N, U, V, W, X, Y, Z, and H of the
basic variables, satisfying (3.2), (3.3), and (3.4), but
this would be far too general for our purpose.

If we examine customary constructions, we see that
they usually introduce invariance over space displace-
ments and rotations implicitly, the construction making
this trivial; the eAect of time displacement is the main
one to be described, by a Hamiltonian or otherwise, and
invariance for velocity displacement requires proof.
Thus we may take

vector for the transformations of the homogeneous
Lorentz group. Any four-vector function of the basic
variables with mutually commuting components will

give us a relativistically invariant dynamics.

V. CONSTRUCTION OF A SPECIAL DYNAMICS

Assume
X= —',(yZX„+ZX„p),
Y=k( ~Y.+&Y.~),
Z =-,'(pZZ, +ZZ, p),
H=2( &H.+&H.~),

(5.1)

where p, is a single function of the basic variables, a
scalar for the homogeneous Lorentz group; then X, Y,
Z, and H will be Hermitian and will form a four-vector
satisfying Eqs. (3.3). In order that the expressions (5.1)
should commute, it is sufhcient that p should commute
with the ratios of ZX„, ZY„, ZZ„, and ZH„.

ZX„@AY,=ZY„@AX„etc. (5.2)

Thus p, may be any scalar function of expressions that
have this property, in particular of X„, Y„, Z„, and H„,
r=1, ~ ~ ~, e, and of expressions constructed by the fol-
lowing method. Take any determinant D with five
rows and columns, with rows chosen out of the 6m+1
rows

ZX„, ZY„, ZZ„, ZH„) 0,
(ZX„, Q), (ZY„, Q) (ZZ„, Q), (ZH„, Q), Q,

'
(5.3)

where Q is one of L„M„N,, U„V„orW„r= 1, , N

For all these Poisson brackets when evaluated contain
only X„, Y„, Z„, and H„, r= 1, ~, n, which commute
with each other. Thus, for example,

(ZX„, D)ZY„—(ZY„, D)ZX„,

where D is one of these determinants, is a determinant
with corresponding rows and columns from

Zx„, ZY„, ZZ„, ZH„,
(&X. Q) (&Y. Q) (&Z. Q) (&H. Q)

0,
(ZX„, Q) ZY„—(ZY„Q)ZX„

and, since all these terms commute, is seen by com-
bining the columns to vanish, and this is just the con-
dition required. In this way we obtain, in all, 10m —4
allowed combinations of the original 10m variables,
which is as many as we should expect.

%e may arrange these more symmetrically as the
components of four-vectors.

(a) X„, Y„, Z„, and H„, r=1, , n. (5.4)

The length of this four-vector may be regarded as the
rest-mass of the particle.

(b) L„H„/c'+ W„Y„—Y„Z„, M„H„/c'+ U„Z„—W,X„,
N,H„/c'+V, X,—U,Y„, and L„X„+M„Y„+N,Z„,

r= 1, , e. (5.5)
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U„ZX,+V,ZY,+W„ZZ„
to H„ZH, /c' —X,ZX, —Y„ZY,—Z,ZZ, . (5.6)

The factors of terms of these four-vectors do not
commute, but the changes made in them by taking the
factors in the opposite order are proportional to Xr, Y„,
Zr, and H„. The four-vectors have zero scalar product
with ZX„ZY„ZZ„and ZH, .

Thus to give our dynamics we take for p any scalar
function of the four-vectors (5.4), (5.5), and (5.6),
which means any function of their lengths and scalar
products, and the expressions (5.1) will commute so
that (3.2), (3.3), and (3.4) will all be satisfied.

VI. THE NONRELATIVISTIC APPROXIMATION'

mrsc4=Hrs c'(X,'+—Y,'+Z, ') (6.1)

m, is a scalar and commutes with all the other variables.
The nonrelativistic limit for the basic variables is ob-
tained by keeping all except H„r= 1, ~ ~ ~, m, 6nite as
c tends to infinity, but putting

1
H, —m,c'—+ (X '+Y '+Z„'),

2m
(6.2)

following (6.1).
In the limit, U„, V„, and W„commute, and (U„X,)

=(V„,Y„)=(W„, Z„)=m„so we can write

Ur mrXrl Vr mry. , W,= mrZrl (6 3)

where x„, yr, and zr are canonically conjugate to Xr, Yr,
and Z).

(x„,X,)=1, (y„, Y,)=1, (z„, Z,)=1. (6.4)

The factors of the terms of the four-vector (b) commute.
The components of the four-vector (b) commute with

X„,Y„, Z„, and Her The four-vector (b) has zero scalar
product with the four-vector (a), and it may be regarded
as the product of the rest-mass of the particle and its
spin angular momentum.

(c) Differences for different values of r of the ratios of

U„ZH,+M„ZZ, —N„ZY„V„ZH,+N„ZX,—L,ZZ. ,
W„ZH, +L„ZY,—M„ZZ„

The remaining Poisson brackets of x„y„z„X„,Y„, Z„,
X„p,„v„and m„vanish.

Thus x„, y„, z„, X„,Yr, Z„X„,p,„, s „, and m„have just
the right Poisson brackets to be interpreted as the
Cartesian coordinates, components of linear momentum,
spin angular momentum, and mass of a nonrelativistic
particle, with kinetic energy H„—m„c', and angular
momentum components L„, M„, and N„while Eqs.
(2.4) and (3.1) will give its displacement as an isolated
particle in space, time, orientation, or velocity, cor-
rectly.

If we further write

)i= 1+V/Zm„c',

we find in the nonrelativis&ic limit,

L= ZL„=Z Im„(y,Z„—z„Y„)+)i„},
M = ZM„= Z I m, (z„X,—x„Z„)+)i„},
N= ZN„=Ztm, (x,Y„—y,X,)+v,},
U =ZU„= Zm„x„,
V= &V,=Zm„y„,
W= ZW„= ~m„z„,

and
X=ZX„, Y= ZY„, Z= ZZ„,

with finally

(6.7)

(6.8)

(6.9)

(6.10)

1
(X s+Y,s+Z s)+ V (6 11)

2m.

where V has to be constructed out of the limiting prin-
cipal parts of scalar products of the four-vectors (5.4),
(5.5), and (5.6).

These four-vectors take the forms

(a) X„, Y„, Z„, m„c'+(X„'+Y„'+Zs)/2m„,

(b) X„, )i„, v„X,X,+Y„)i„+Z,v„

and (c) differences for two different values of r of

x„, y„z„x„(ZX,/Zm, )+y„(ZY,/Zm, )+z„(ZZ./Zm, ).

The limiting principal parts reduce to scalar products
of (a) differences for different values of r of the three-
vectors

We then find that if we write

Lr= Xr+mr(yrZr zrYr)q'
Mr= )ir+mr(ZrXr XrZr) l

N r vr+ mr (xrYr yrXr) r

(6.5)

X„/m„, Y„/m„, Z„/m„

(b) the three-vectors
~r) Pry &r&

and (c) differences of the three-vectors

(6.12)

(6.13)

)„, p,„, and v„have Poisson brackets as for components
of angular momentum, Xrp yr) Zr. (6.14)

()t„, )i„)= v„, ()r„, v„)=)t„(v„,X„)=)r„. (6.6)
~The equations given by C. G. Darwin, Phil. Mag. 39, 537

(1920), and G. Breit, Phys. Rev. 34, 553 (1929); 51, 248 (1937);
53, 153 (1938), may be regarded as approximations to order ss/c'.

Thus in nonrblativistic limit we have the usual
theory with a potential energy any scalar function of
the relative positions, relative velocities, spin angular
Inqmenta, and masses of the particles.


