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The dynamics of a system of particles acting on one another at a distance can be relativistically invariant
if the assumption of invariant world-lines is given up. This is shown by constructing a particular dynamics
in which invariance over the homogeneous Lorentz group is trivial, but space as well as time displacement
requires the solution of equations of motion or of a Schroedinger equation. This particular dynamics reduces
in the nonrelativistic limit to the most general dynamics of a system of interacting particles admitting the

Newtonian group.

I. INTRODUCTION: DIFFICULTIES WITH
WORLD LINES

HE Newtonian equations of motion of two inter-
acting particles are, in one dimension of space,

mid= — 6V/6x1, Moo= — 3V/l3x2,
where
V="V (xo—x1). (1.1)

These keep the same form if we change to a frame of
reference in uniform relative motion by the equation

1.2)

and in such an inertial frame of reference the accelera-
tions of the particles depend only on their relative
position. This assumes a common time ¢, but does not
identify points of space at one time with points of space
at any other time (see Fig. 1).

In relativity theory we replace ' =x—u! by

o = (x—ut)// (1—12/c,
I'=(—ux/P)/v/ 1=/,

¢ being the speed of light. A relation between x and ¢,
transformed from frame to frame by these formulas,

x=x—ul,

(1.3)
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Fic. 1. Nonrelativistic theory.

specifies a world-line for the motion of a particle (see
Fig. 2), but when we try to generalize the equations of
motion we immediately run into difficulty. In (1.1),
#1(f) and d(t) depend on x3(t)—x:1(¢), and this is in-
variant for the transformation (1.2); but with (1.3),
le=1t1 does not lead to fy'=¢,’ unless x2==x;. There is,
indeed, no reason why any property of the motion of
particle 1 at a definite location on its world-line should
depend on any one location of the second particle
rather than on any other which can be made simul-
taneous with the location of the first particle by the
transformation (1.3).

The current methods of avoiding this difficulty are to
deal only with collisions, or with the interactions
between particles and fields, for which we can take
x2=1x1; or to use retarded interactions, x1— xs=c({;—I2)
leading to )’ —x2’=c(ty’—12). When these methods are
applied in detail, consistent finite results are not ob-
tained, and one seems to be led to noncausal theories,
or to discontinuous space and time.!

There is, however, in the above discussion an assump-
tion that does not seem to be logically necessary, the
assumption of invariant world lines. We may quite
logically give up this assumption and suppose that the
state of the system is specified relative to any observer
in terms of canonically conjugate dynamical variables,
g1 and p; for the first particle, ¢; and ps for the second
particle, and that these variables transform to the cor-
responding variables relative to any other observer,
displaced in time, position, and velocity, by the trans-
formations of a group given in canonical form. (See
Fig. 3.) While ¢,(¢) may be regarded as giving a world
line for the first particle relative to a series of observers
displaced only in time, there is no reason why this
should be exactly the same line as that given by ¢i/(¢")
for a relatively moving series of observers.

This paper will be devoted to developing a relativistic
theory of particles interacting at a distance by giving
up the assumption of invariant world lines.

II. KINEMATICS AND DYNAMICS

We shall adopt the general point of view of quantum
mechanics, and a notation briefly symmarized as
follows.

1P. G. Bergmann, An Introduction to the Theory of Relativity
(Prentice-Hall, Inc., New York, 1942), p. 85.
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F1G. 2. Relativistic theory with invariant world lines.

Relative to any one observer the world is described
in terms of basic dynamical variables a, b, ---, that
can be represented by Hermitian matrices, various
representations being obtained from one another by
unitary transformations. A real function of the basic
variables is in general a Hermitian matrix depending on
the matrices representing the dynamical variables in a
manner covariant over the unitary transformations. In
particular Aa+4-ub where N and p are numbers, and
L(ab-+ba), are functions of a and b in this sense, and
so is their Poisson bracket

(a, b)= (ab—ba)/uk, 2.1)

while the trace (f) of any matrix f is invariant. Any
property of the system may be described by such a
function of the basic variables. A statistical state of the
system is also described by a function P(a, b, ---) of
the dynamical variables, of unit trace, but it must be
analyzable into a sum with positive coefficients over
pure states, or a limit of such a sum, the statistical
matrix describing a pure state being the open product
of a column ¢ and the complex conjugate row ¢*

(2.2)

The kinematics of the system is given by one set of
representations of the basic variables, or by relations
between them sufficient to determine their representa-
tions up to a unitary transformation. Expected values
of properties for a state of the system are given by the
trace of the product of the matrices describing the
property and the state.

A continuous series of observers, referred to by the
parameters s, describe the world in terms of basic
dynamical variables a(s), b(s), -+, defined by each
observer relative to himself, for example, in the non-

A= pp®.
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relativistic case, Cartesian coordinates, momenta, and
spins, of the various particles in that observer’s frame
of reference. We shall suppose that for all the observers
the system has the same kinematics. The representa-
tions used by the observers can be chosen so that to the
same statistical state they give the same matrix. For
such a Heisenberg set of representations the matrices
representing the dynamical variables, a(s), will in
general be different for each observer, and the change
from one observer to a neighboring observer of any
function of the basic variables not explicitly depending
on the observer can be put in canonical form

df/ds= 1, S), (2.3)

where S is also a matrix function. These equations go
over to the classical equations of motion by replacing
the quantum Poisson bracket by a classical Poisson
bracket. Again the representations can be chosen so
that the basic variables are given by the same matrices
whatever the observer. For such a Schrédinger set of
representations, the matrices P(s) representing a sta-
tistical state must in general be different, and the change
from one observer to a neighboring observer can be
put in the form

aP(s)/ds= (S, P), (2.4)

where S must be the previous matrix of (2.3) trans-
formed to the new set of representations. For a column
describing a pure state we have, perhaps after adjusting
the phases of the representations,

d¢/ds=Sp/ih,

the Schrédinger equation.

The above point of view is familiar enough if our
observers’ descriptions are the usual descriptions in non-
relativistic theory at different times, s being the time

(2.5)
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FiG, 3, Relativistic theory with world lines not invariant,
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variable ¢, and S the Hamiltonian function H.2 We
shall extend this point of view to relativity theory

by treating in this displacements of the observer in -

position, orientation, and velocity, as well as in time.
Thus position in space and time, as well as orientation
and velocity, will be regarded as properties of observers,
who form a ten-parameter family, with the structure
of the inhomogeneous Lorentz group. The dynamical
variables are not regarded as directly related to space
position, and there is no need to introduce many times.

at u

s as

dv Jw
FV—+W
N

where the signs have been taken so that H can be identi-
fied with the energy, X, Y, and Z, with the components
of linear momentum, and L, M, and N, with the com-
ponents of angular momentum of the whole system.
Here the ten matrices, H, U, V, W, L, M, N, X, Y,
and Z, will be functions of the basic dynamical variables
and in general of the observer, but if the system is a
complete isolated system, satisfying the same physical
laws for each observer, they should be explicitly inde-

as as
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III. THE INHOMOGENEOUS LORENTZ GROUP

We may define the rate of displacement along a series
of observers with change of parameter s by the com-
ponent rates of displacement in position, dx/3ds, dy/ds,
dz/9s along the x, y, and z directions, in orientation,
dl/ds, dm/3ds, dn/ds, about the x, ¥, and z axes, in
velocity du/ds, dv/ds, dw/ds, in the x, v, and z direc-
tions, and in time d¢/ds, relative to each observer. We
then have rates of change like (2.3) in a Heisenberg set
of representations or (2.4) in a Schrédinger set, with

3.1)

pendent of the observer and should be given by the
same matrices for all observers in a Schrédinger set of
representations.

Further, in order that we should return to the same
description of the system on completing a closed circuit
of observers, it is necessary and sufficient that the
Poisson brackets of these matrices may take the forms,
corresponding to the structure of the inhomogeneous
Lorentz group,

L, M)=N @L,M=-M L U)=0 (L V)=W L, W)=-V
(U, V)==N/¢¢ (U, W)=M/c?
(V, W)=-L/¢, 3.2)
(L, X)=0 L Y)=2 (L,Z)=—Y (L H)=0
M, X)==-Z (M, Y)=0 M,Z)=X (M, H)=0
(N,X)=Y (N,Y)=—-X (N,Z)=0 (N, H)=0
(U, X)=H/¢* (U, Y)=0 (U, Z)=0 (U, H)=X
(V; X)=0 (V’ Y)=H/(;2 (V7 Z)=O (V) H)=Y
(W, X)=0 (W, Y)=0 (W,Z)=H/¢ (W, H)=Z, 3.3)
X, V)=0 (X,2)=0 (X,H)=0
(Y,Z)=0 (Y, H)=0
(, H)=0. (3.4)

The first set of equations, (3.2), gives the Poisson
brackets of the six functions, U, V, W, L, M, and N, in
terms of themselves only, giving the structure of the
homogeneous Lorentz group for changes of orientation
and velocity between observers at the same point of
space-time. U, V, W, L, M, and N themselves form a
six-vector for this group, and the conditions that any
other six functions of the basic variables form a six-
vector are equations obtained from (3.2) by replacing
the right-hand side and one variable on the left-hand
side of each with the new set. .

The second set of equations, (3.3), gives the Poisson
brackets of the six functions U, V, W, L, M, and N, with
the four functions H, X, Y, and Z; shows that the
latter form a four-vector for the homogeneous Lorentz

2 P. A. M. Dirac, Quantum Mechanics (Oxford University Press,
London, 1930), Chap. VL

group; and gives the changes in the former in space-
time displacements of the observer. Any other set of
four functions of the basic variables form a four-vector
if they satisfy similar equations.

Lastly, Eqgs. (3.4), stating that H, X, Y, and Z
commute with each other, complete the conditions that
the functions H, U, V, W, L, M, N, X, Y, and Z of
the basic variables give a dynamical theory admitting
the inhomogeneous Lorentz group.3

IV. THE DYNAMICAL EQUATIONS

In choosing basic dynamical variables and kine-
matical relations between them to represent a single

3 Similar theory dealing with a single particle or a system not
necessarily -composed of particles is to be found in E. Wigner,
Annals of Mathematics 40, 145 (1939) ; C. Mgller, Communications
Dublin Institute for Advanced Studies 3 (1949), and M. H. L.
Pryce, Proc. Roy. Soc. (London) A195, 621 (1948).
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particle, we may be guided by the consideration that
for a single particle by itself we should be able to con-
struct matrices satisfying the relations (3.2), (3.3), and
(3.4). This can be done giving them in terms of more
special variables, of variables equivalent to this set, or
of more general variables. We shall adopt the second
possibility and simply take a particle to be described
by basic dynamical variables satisfying the relations
(3.2), (3.3), and (3.4).

For » particles, then, we take # sets of variables,

HTJ UT} VT) WT) LT: MT: NT; XT: Yh ZT: r= 1) TN, (41)

each set satisfying the conditions (3.2), (3.3), and (3.4),
and with zero Poisson brackets for variables from dif-
ferent particles.

In general, a relativistic theory could be given by any
ten functions L, M, N, U, V, W, X Y, Z, and H of the
basic variables, satisfying (3.2), (3.3), and (3.4), but
this would be far too general for our purpose.

If we examine customary constructions, we see that
they usually introduce invariance over space displace-
ments and rotations implicitly, the construction making
this trivial; the effect of time displacement is the main
one to be described, by a Hamiltonian or otherwise, and
invariance for velocity displacement requires proof.
Thus we may take

X=3X, Y=3Y, Z=3Z,

L=3L, M=3M, N=3N,, (4.2)

so that invariance over space displacements and rota-
tions is trivial, choose a Hamiltonian function H which
commutes with X, Y, Z, L, M, and N, and prove relati-
vistic invariance, which is equivalent to constructing
functions U, V, and W to give infinitesimal velocity
displacements, such that the whole set X, Y, Z, L, M,
N, H, U, V, and W satisfy (3.2), (3.3), and (3.4).

We shall depart from this scheme and instead make
trivial the homogeneous Lorentz transformations, space
rotations, and changes of velocity for a fixed space-time
position. This seems to be more elegant mathematically
and to lead to simpler results, and has the further ad-
vantage that it will extend directly to the usual form
of the general theory of relativity, where just the
homogeneous Lorentz group of transformations at each
space-time position is taken trivial.*

Thus we assume to start with

L=3L, M=3M, N=3N,
U=3U, V=3V, W=3IW,

which, it is trivial, satisfy (3.2). We need in addition
functions H, X, Y, and Z, satisfying (3.3) and (3.4).
The conditions (3.4) require that they shall mutually
commute. The conditions (3.3) require that they are
four functions of the basic variables L,, M,, N,, U,, V,,
W, H,, X,, Y,, and Z,, r=1, +--, n, forming a four-

(4.3)

tL. H. Thomas, Revs. Modern Phys. 17, 182 (1945); P. M.
Dirac, Revs. Modern Phys. 21, 392 (1949).
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vector for the transformations of the homogeneous
Lorentz group. Any four-vector function of the basic
variables with mutually commuting components will

give us a relativistically invariant dynamics.

V. CONSTRUCTION OF A SPECIAL DYNAMICS

Assume
X = %(MEXF!‘ ZXou) ’
V=3(uZY,+2Y,u),
2=%(uZZ,+2Z.1),
H=3}(uZH,+ZH,u),

(5.1)

where u is a single function of the basic variables, a
scalar for the homogeneous Lorentz group; then X, Y,
Z, and H will be Hermitian and will form a four-vector
satisfying Eqgs. (3.3). In order that the expressions (5.1)
should commute, it is sufficient that u should commute
with the ratios of £X,, 2£Y,, 2Z,, and ZH,.

X p2Y,=2Y, uZX,, etc. (5.2)

Thus p may be any scalar function of expressions that
have this property, in particular of X,, Y,, Z,, and H,,
r=1, --+, n, and of expressions constructed by the fol-
lowing method. Take any determinant D with five
rows and columns, with rows chosen out of the 6n4-1
rows
32X, >Y,, 37, >H,, O,
(2X,,Q), (Y, Q) (22, Q), CH,Q), Q, (53)

where Q is one of L,, M,, N,, U, V,, or W,, r=1, - - - .
For all these Poisson brackets when evaluated contain
only X,, Y,, Z,, and H,, =1, - -+, », which commute
with each other. Thus, for example,

(¢X,, D)2Y,— (2Y,, D)zX,,

where D is one of these determinants, is a determinant
with corresponding rows and columns from

X, Y, >Z,, =H,,
(EXr, Q)7 (ZYT, Q)? (227‘7 Q)) (EHT’ Q)}

0,
(X, Q)ZY,— (ZY,, Q)=X,,

and, since all these terms commute, is seen by com-
bining the columns to vanish, and this is just the con-
dition required. In this way we obtain, in all, 10n—4
allowed combinations of the original 10z variables,
which is as many as we should expect.

We may arrange these more symmetrically as the
components of four-vectors.

(a) X, Y,, Z,, and H,, (5.4)

The length of this four-vector may be regarded as the
rest-mass of the particle.

(b) LrHr/ 52+ WrYr_YrZr, MrHr/ 62+ UrZr_WrXr;
NTHT/Ca-l_ VrXr_ UrYr, and LrXr+ MrYr+ NTZT)
r=1,---,n. (5.5)

r=1,+- n.
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The factors of the terms of the four-vector (b) commute.
The components of the four-vector (b) commute with
X+, Y, Z+, and H,. The four-vector (b) has zero scalar
product with the four-vector (a), and it may be regarded
as the product of the rest-mass of the particle and its
spin angular momentum.

(c) Differences for different values of 7 of the ratios of

U,ZHA+M,2Z,—N,2Y,, V.ZH+N,ZX,—L,2Z,,
W.ZH+L,2Y,— M,ZZ,,

and
U,Z2X+V,2Y+ W, 2ZZ,,

to H,ZH,/—X,5X,— Y,2YVs—Z3Z,. (5.6)

The factors of terms of these four-vectors do not
commute, but the changes made in them by taking the
factors in the opposite order are proportional to X,, Y,,
Z,, and H,. The four-vectors have zero scalar product
with ZX,, 2Y,, 2Z,, and ZH,.

Thus to give our dynamics we take for u any scalar
function of the four-vectors (5.4), (5.5), and (5.6),
which means any function of their lengths and scalar
products, and the expressions (5.1) will commute so
that (3.2), (3.3), and (3.4) will all be satisfied.

VI. THE NONRELATIVISTIC APPROXIMATIONS
If mict=H2—A(X2+Y 24272, (6.1)

m, 1s a scalar and commutes with all the other variables.
The nonrelativistic limit for the basic variables is ob-
tained by keeping all except H,, r=1, - -+, n, finite as
¢ tends to infinity, but putting

1
H,—m,c2——>2~—-(X,2+Yr2+Z,2), 6.2)
My
following (6.1).
In the limit, U,, V,, and W, commute, and (U,, X,)

=(V,, Y,)=(W,, Z,)=m,., so we can write
U,=m,x,,

(6.3)

where x,, y,, and z, are canonically conjugate to X,, Y,,
and Z..

V.=my,, W,=m.z,

(XT7 XT) =1, (Yr, Y.)= 1 (Zr; Zr) =1. (64)
We then find that if we write
Lr = >\r+ my (YTZf - ZrYr) s
Mr= Mr+ mr(ZrXr_ XrZr), (65)

N.=v+m.(x.Y,—y.X,),

s, mr, and », have Poisson brackets as for components
of angular momentum,

Ay )=y (ry v)=N\r, (¥, NM)=pr.  (6.6)

5 The equations given by C. G. Darwin, Phil. Mag. 39, 537
(1920), and G. Breit, Phys. Rev. 34, 553 (1929); 51, 248 (1937);
53, 153 (1938), may be regarded as approximations to order v?/c2.
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The remaining Poisson brackets of x,, y», zr, X», Y, Z,,
Ary Wry ¥r, and m, vanish.

Thus x,, ¥r, Zr, Xr, Yy, Zry Nry pr, vr, and m, have just
the right Poisson brackets to be interpreted as the
Cartesian coordinates, components of linear momentum,
spin angular momentum, and mass of a nonrelativistic
particle, with kinetic energy H,—m,c?, and angular
momentum components L,, M,, and N,, while Egs.
(2.4) and (3.1) will give its displacement as an isolated
particle in space, time, orientation, or velocity, cor-
rectly.

If we further write

u=14V/Zin.c?, (6.7)
we find in the nonrelativistic limit,
L=3L,= E’{ m(yrZe—2.Y 1)+ N},
M =3M,=Z{m. (2, Xo— X, Zr)+ 11}, (6.8)
N=Z2N,=Z{m.(x,.Y,—y.X,)+ v},
U=2U,=Zmx,,
V=2V,=Zm,y, (6.9)
W=2ZW,=Zm,z,,
and
X=zX,, Y=2Y, Z=ZZ, (6.10)

with finally
1
H—-Zm,?=2—X2+Y4+Z2)+V, (6.11)

me

where V has to be constructed out of the limiting prin-
cipal parts of scalar products of the four-vectors (5.4),
(5.5), and (5.6).

These four-vectors take the forms

(d) X Yy, Z, M- (Xr2+Yr2+Zr2)/2mr,

®) Ay ey vy XMt Yourt+-Zov,,
and (c) differences for two different values of 7 of
Xry Yoy try Xe(ZKe/ 2y (ZY/ )+ 2 (32, Em).

The limiting principal parts reduce to scalar products
of (a) differences for different values of r of the three-
vectors .

X,/my Y,/m.y Z./m,, (6.12)
(b) the three-vectors
e, firy Vry (6.13)
and (¢) differences of the three-vectors
Xry Viry Zre (6.14)

Thus in nonrelativistic limit we have the usual
theory with a potential energy any scalar function of
the relative positions, relative velocities, spin angular
momenta, and masses of the particles,



