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The spontaneous magnetization of a two-dimensional Ising model is calculated exactly. The result also
gives the long-range order in the lattice.

' 'T is the purpose of the present paper to calculate the
- ~ spontaneous magnetization (i.e., the intensity of
magnetization at zero external field) of a two-dimen-
sional Ising model of a ferromagnet. Van der Waerden'
and Ashkin and Lamb' had obtained a series. expansion
of the spontaneous magnetization that converges very
rapidly at low temperatures. Near the critical tem-
perature, however, their series expansion cannot be
used. We shall here obtain a closed expression for the
spontaneous magnetization by the matrix method
which was introduced into the problem of the statistics
of a two-dimensional Ising model by Montroll' and
Kramers and Wannier. 4 Onsager gave in 1944 a com-
plete solution' of the matrix problem. His method was

subsequently greatly simplified by Kaufman, ' and the
result has been used to calculate the short-range order
in the crystal lattice. 7

The Onsager-Kaufman solution of the matrix problem
will be used in the present paper to calculate the spon-
taneous magnetization. In Sec. I we define the specific
magnetization I and express it as an off diagonal
element in the matrix problem. Sy introducing an arti-
ficial limiting process its calculation is reduced to an
eigenvalue problem in Sec. II. This is solved in the next
three sections and the final result given in Sec. VI. The
relation between I and the usual long-range order is
discussed in Sec. I.

It will be seen that the final expression for the spon-
taneous magnetization is surprisingly simple, although
the intermediate steps are very complicated. Attempts
to find a simpler way to arrive at the same result have,
however, failed.

I. SPONTANEOUS MAGNETIZATION

Using Kaufman's notation' we have for the two-
dimensional square lattice the following expression for
the partition function:

Z= (2 sinh2H)"~' trace(V2Vi)",

where

and

Vi ——exp{H* P C,},
1

(2)

V2 ——exp{H Q s„s,+i}.
1

If a weak magnetic field is introduced the partition
function becomes

where
Z~ = (2 sinh2H)"" trace(V3VQVi)

V~ ——exp{Xg s„}.
1

For a large crystal only the eigenvector of V= V3V2Vi

with the largest eigenvalue is important. We shall be
interested in the limiting form of this eigenvector as
X—&0.

It has been shown by Onsager' that below the critical
temperature, i.e., for

~&%2—1,

the largest eigenvalue of V2V1 is doubly degenerate.
This is evidently also true of the symmetiized matrix
Vi&V2Vi'. Let P+ and f be the even and odd eigen-
vectors corresponding to the largest eigenvalue ).

V V,V,~p, =xp„V,~V,V,:p =xp .

The even eigenvector remains unchanged when the
spins of all atoms are reversed while the odd eigenvector
changes sign. Introducing the operator

U= C1Cg C.,

B*and II are given by

e '~= tanhH*=expt —(1/kT) {Vtg Vtt}$.—(4)

The following abbreviation will be useful:

that reverses the spins of all atoms we have' B.L. van der Waerden, Z. Physik 118, 473 (1941).' J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).
3 E. Montroll, J. Chem. Phys. 9, 706 (1941).
4 H. A. Kramers and G. H. Wanner, Phys. Rev. 60, 252, 26

(1941).' L. Onsager, Phys. Rev. 65, 117 (1944).
B. Kaufman, Phys. Rev. 76, 1232 (1949).

~ B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).

&4+= |t+ U4-= —4'- (9)
3

With the introduction of the magnetic field X the
degeneracy is removed. Since we are only interested in
the limit as K—&0, we may perform a perturbation cal-
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culation and consider the largest eigenvalue of

Vg&VVg-&= Vg&VSV2Vg&

=V&~V2Vg'*+RVg&(g s,)V,Vg&. {10)
j.

The last term is a matrix that anticommutes with U. It
has, therefore, no diagonal matrix element with respect
to either f+ or P . It is, besides, a real symmetrical
matrix. Ordinary perturbation theory shows immedi-
ately that the eigenvector of (10) with the largest
eigenvalue approaches, as 3C—N

4-=(16~)8++0 ), -(11)
if the phases of f~ and P are so chosen that they are
real and thats

Intuitively one would infer that the summation gs,
1n {14)can be replaced by ssy so that

I=f 'Vg&sag-&&+. (15)

This can also be shown in detail by introducing the
orthogonal operator L that is equivalent to the cyclic
permutation of the e spins:

LIT~L = ll~+yq LEFT = 0'y.

Evidently L commutes with Vq, Vm, and U. Therefore

, LP+ is also an even eigenvector of V~V~ with eigenvalue
X. Hence .

L4'+= &4'+.

L and f+ are real. Therefore a is real. Since further
L"=1,we have a= 1, and

y, 'Y,~(P s„)Y,V,~y =0.
1

Similarly
4+=4+. (16)

The average magnetization per atom is, from the
general definition of the matrix method,

m trace(VSV2V~)" Q s„
1

me trace(V3V2V&)"

trace(V, ~V,V,V~') "(V~l Q s„V~
—')

1 1

- trace(V~lVSV, V,&)~

1 e
0+'Vi'(2 s.)V~ '*&-=-4+'V~'(Z s )V2V~'4-

X

(13)

which are obviously equal. Hence at zero magnetic 6eld
the spontaneous magnetization is

e
I=-4-'V~'(2 s.)Vi '4+

'8 1.

which is always positive by (13) and (12).
g %'e use the notation 2'~A transposed.

a
=—P . 'Vg (Q s,)Vg

—
p

e 1

As X~O this becomes by (11)

I=—(4+'+4-')V~'(2 s.)V~ '(4++4-)
2e 1

But Vq'*(Q s„)Vq ' anticommutes with U, and there-
fore has no diagonal matrix element with respect to
either P+ or f . Besides, by the use of (8), one shows
easily that

n

~ Y. (Z,)V. ~,= ~ Y. ~,)V*V.V„
1 X

Now
s —J (&—&)sif„—(&—&)

Substituting this into (14) and using (16)we obtain (15).
The spontaneous magnetization I per atom is exactly

the usual long-range order parameter s which may be
dehned as the average of the absolute value of the total
spin of the lat tice divided by the number of atoms. That
I is equal to s is easily seen-from the fact that the intro-
duction of a vanishingly weak positive magnetic field

merely cuts out all states of the lattice for which the
total spin is negative.

One may ask, as Zernike' did, what is the average
value of the total spin of the lattice if it is known that
at a given lattice point the spin is +1. We can show

that the answer is M' in the following way: The total
spin is either +M or XI. If a give—n lattice point has
a spin +1, it assumes the former value more frequently
than the latter in the ratio of -,'(1+I):-',(1—I). Hence
the average total spin is

Xl(1+1)//2 Xl(1 I)/2= m .— —

The long-distance order can also be investigated as
the limit of the short-distance order which has been
studied by Kaufman and Onsager. Onsager" has done
this and obtained the correlation of the spins of two
atoms in one rom at an in6nite distance from each
other. It can be shown that the long-distance order can
be obtained from this, and the result agrees with the
Gndnlgs of this paper.

II. REDUCTION TO EIGENVALUE PROBLEM

To calculate the spontaneous magnetization as given

by (15) we notice that it is the off-diagonal ele-

' F. Zernike, Physiea 7, 565 (1938)."L.Qnsager, unpublished; see also Nuovo rimento 6, Suppl.
p. 261 (1949). The author wishes to thank Bruria Kaufman for
showing him her notes on Onsager's work.
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1
0

~=g 0 2-n/2 (18)

Similarly
.0.

4+= S '(T+)r.

Now since T is real it follows that S(T ) is unitary.
Hence taking the complex conjugate transposed of Eq.
(17) we obtain

ment of the matrix Vq&s~Vq-& between the vectors f+
and f . Onsager and Kaufmanr have shown how to
calculate diagonal elements by reducing the 2 X2"
matrix problem to one of 2e)(2e. Their method,
however, does not apply to OG-diagonal elements. To
resolve this difhculty we shall in the present section
introduce an artificial limiting process and reduce the
problem to an eigenvalue problem of an e)(n matrix.

From Kaufman's' Eq. (60) we have, except for a
multiplicative phase factor:

4-=S '(T-).,
where

We have from (21) and (22)

7 r' =Lim(2 cosa) "exp( —ia Q C„)~ioo

=Lim(2 cosa) "S(M).
a~ioo

Substitution back into (20) gives

I=Lim(2 cosa) —"traceV&&s~V,
—lS(T+ 'MT ). (25)~ioo

B.
This can easily be calculated if we know the eigen-

values and eigenvectors of the 2m-dimensional rota-
tion T+ 'MT . The rotations T+ and M have deter-
minants equal to 1 while T has a determinant equal
to —1. Thus T+ 'MT is an improper rotation and
must have eigenvalues 1, —1, e+'" e+'08 ~ ~ e+"
Let (be an orthogonal matrix that transforms T~ 'MT
into the canonical form

(T+—'MT (—'

'1

P '=r'S(T ).
The reality condition of f has been used. Eq. (15)
therefore assumes the form

I= r'S(T )Vl&s,V,-&S-'(T+)r. (19)

cos02 sin02
—sln02 CO S02

cos0g s11103

sin03 cos03

= W. (26)

As we have just mentioned, if the expression were of
the form

r'S(T ) S-'(T )r,
it would have been easy to reduce because S(T ) ~ ~ ~

)&S '(T ) induces a rotation in the 2e dimensional
space formed by the F's."%e could, however, in the
present case still utilize this reduction by first writing

I=traceV~'a~Vs 'S '(T+)rr'S(T ). (20)
Now

rr'= (1/2")(1+Cl)(l+ C2) (1+C„), (21)

W is evidently orthogonal. We shall compute, first,
instead of (25), the more general expression

traceI', S(T+ 'MT ), (27)

where F; is as defined in Kaufman's paper. " By (26)

traceF;S(T+ 'MT )=traceF;S(( ')S(W)S(()
= traceS(() I'/S(( ') S(W). (28)

Now

does not induce a rotation. But we notice that

1+C~=Lim(cosa) '(cosa —iC~ sina)
a-+i oo

=Lim(cosa) ' exp( —iaC~),

where t; are the matrix elements of (. Moreover, the
explicit form of S(W) is known:

S(W)=iP, (P,Q2)(P,Q,) (P„Q„)exp(-,' g epPpQp).
(22) 2

cos28 sln2ts
—sin2c co s2u

0

cos2$ sln2c
—sln28 cos28

so that

~ioo

and exp( —iaC~) does induce a rotation. Write

(23)

(28) therefore reduces to

traceI';S(T+ 'MT )

=i trace(g f;1 )P~(DP Q ) exp(-,' P epPpQp)
2

=~i'g;trace+ P Q exp(-,'8 P Q )
2

exp( iaP C„)—F exp(iaP C„)=PMp I'p. (24)
1 1

"The I 's are defined in Kaufman's paper (see reference 6).
There is a mistake of sign in her Eq. (11) which should readI',=——CXCX XisCX IXIX —=9,.

n

=~( 1)"-'2"f—;Q sin(0. /2).
2

Returning to (25) we notice that

Vi~sxVl ~= Py coshII —zQy slnhII*.

(29)
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(25), (29), and (30) give

I= (g X )i($ii coshH* —i/i~ sinhH*),
2

(31)

—2
0

n

(39)

where

and

X =Lim( —cosa) ' sin(0 /2),
a—+goo

g s=Lim(cosa) 'f' s.

(32)

(33)

eQ2'/2

0

e &84'/2

0

e Qsn, '/2

(40)

eight'/2 0

In this subsection we shall derive a formula for 'h

as the eigenvalue of an e)(e matrix.
The matrices T+ and T are real, so that we can write

T+—'MT =-', G exp( —2ia)+-', G* exp(2ia), (34)

where *means complex conjugate, and G is indePeedeet
of c and is given by

0
—z 1

0

1 i T.
—z 1

(35)

Now in Eq. (34) the eigenvalues of the left-hand side
are 1, —1, e+'", e+'", ~ ~ ~ e+" . As a~i~, the second
term of the right-hand side becomes negligible, and we
see that

e Q3'/2

eQ2n-I'/2

(41)

D+ 'p+ '(p D e-+'p-='D n)=t-4,

iD+—'p, (p-D y+ip D g)=tq

(42)

(43)

B 140, this shows that

y+D,@=zy+ D+

With the aid of this, q could be eliminated and the
eigenvalue problem is 6nally reduced. to

The quantities 8' are de6ned in Kaufman's paper.
Explicit expressions for them will be given later in
Eq. (60). The four matrices D, D+, p, and p+ are all

unitary. Writing the eigenvector of 6 as and. 'l.
by the use of (37) one obtains the following eigenvalue
problem

Lim2e2~e"'~= l )t)~ ioo

where l2, l~, ~ ~ l„are the nonvanishing eigenvalues of G.
A relation between the I,'s and the )'s is found by
squaring (32):

where
(D+p- 'Dp+') 4i= l(p p+)4 i,

=D+

D=D D (44.s )

=Lim(cosa) ' sin'(tt /2) =Lim4e'~ sin'(8 /2)
Q~&00

(36)

D —i+ 0 y
y- y- '

D 0

where

—zD+ '. . y+ . . 0 zD

(37)

62 ~4. . . ~2n

We therefore want to find the eigenvalues of the
2n)&2e matrix G defined by (35). Now explicit matrix
elements of T+ and T have been exhibited by Kauf-
man. ' Using these matrix elements and rearranging the
rows and columns of all 2e&(2m matrices so that the
order of the F's is changed into Pi, P2. ~ ~ P„, Qi,
Q2 Q, we arrive at the following expression for G:

which is the first column of ( ' is. an eigenvector of
T+ 'MT . with the eigenvalue +1:

(T,-iMT )l-,=f,. (45)

It is easily shown that if a column matrix $& could be
found such that

Gb ——0,

G4*=2&i,

(46a)

(46b)

D.
The calculation of )is will be reduced in this sub-

section to the eigenvector problem of an ege matrix.
From the definition of ( in (26) we see that the

column matrix

4

D =e-&

$2n

8. . . ~4n

e =exp(vari/I), (38)
then in virtue of (34)

f' =-'(e—")+e"(*) (47)

does satisfy (45). It is to be emphasized that the $&
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defined by (46) is itidepettdent of tI so that as tI~~
(47) shows that l'I becomes proportional to )I, and the
first column of the matrix ~(g, tt(( is exactly $1.

We now tackle Eqs. (46). Equations (37) and (46a)
lead to

p-p
0 'D.

This results in
f'I'i I= 1.

b'$1= o,

4'b'= 2

(57)

(59)

The normalization of gl is determined by sub-
stitution of (47) into

p 1

(48)4=
0 ~D. To summarize the results of this section: The spon-

taneous magnetization I is given by (31), in which
the Vs are related through Eq. (36) to the eigenvalues
i of Eq. (44), and in which $11and $22 are the first and
the (I+1)th element of.the column matrix b calculated
through (48) from the column matrix y which in turn
is determined by (54) and (56). $1 is to be normalized
according 'to (59).

which is both necessary and sufhcient for the fulfillment
of (46a). Solving (48) for (I and substituting into (46b)
one obtains

D+- p+- (y D p + p= D p= )y*
=2D p y (49)

(58) is automaticaiiy satisfied by virtue of (48), (51),
showing that there exists an eg 1 column matrix y such and the fact that D and p are symmetrical matrices.
that

D

—D+ 'y+(p-D-'p-+p D-'p )y*
=29 p

We shall show that

P—D—P—=P— D& P—

z-Pl ANE

Fxo. 1. Cuts in s-plane.

Fll'st fl'OIII (38)

IIL LIMIT FOR INFINITE CRYSTAL

The procedure just outlined simpliies greatly when
we approach the hmit of an infinite crystal. To show
this let us first introduce the variable

»=»'~ (~=2~/e, v=1, 2, n). (59a)

The relationship between 8' and co is given by Kauf-
man's Eq. (52). In terms of » this can be reduced. to

tanh2H~(» —cothH cothH*) (»—tanhH cothH*)
e2»5'

(»—cothH tanhH*) (»—tanhH tanhH*)
(6o)

0 10
1

0

From this we obtain e'~' and we shall write it as

(51 )
0(») =ett'

= (1/AB) &[(»—A) (»—B)/(» —A-') (»—B-')]l {61)

where

But from Kaufman's definition of 8',
A =cothH cothH*= [(1+x)/x(1 —x)j,
B=tanhII cothH*= [(1—x)/x(1+x) j. (62)

(52)

exp(i82„') —1, T(To. (53)

Hence by (40) D 'y 'D '=y ' and using D 4=1
one immediately proves (51). (49) and (50) now sim-

pli6es to

For T(To, A)B)1. 0(») is analytic everywhere
except at the points»=A, B, 1/A, or 1/B where it
has branch points. The square root in (61) is defined
to be that branch of the function that takes the value
—1 at »= 1, in accordance with (53). (See Fig. 1.)

Consider Eq. (44). For a very large crystal

(54)

(55) and we have

Dp+ 'p D 'p y*=p 'y,

Dp+p —D—p—y =p—y-
(D+p 'Dy')4i=ibi

Elimination of y* and simplification leads finally to

{D '+y+ 'D 'p-')(p- 'y)=o.
By the definition of D, Eq. (44a), the matrix elements
of D are

Equations (54) and (56) together determine y, which
111 till'll gives pt till'Ollgh (48).

2
(D) Q ~2tt2t~ 2tt-

e j.—~" '" '
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Hence D operating on any vector p gives

2 m 7rZ

(Dy), =g(D)„,y. = ——P y, 1—exp—(2s—2r —1)
~ s=l n

This integral equation will be solved in the next two
sections.

There still remains, according to the results of the
last section, the problem of solving (54) and (56). By

(64) virtue of (68), (56) reduces to the same form as (63)
with /=0. Thus p y is proportional to that eigen-
vector pi ——C of (69) belonging to the eigenvalue 1=0:

where s is the variable defined in (59a). For s= 1, 2, ~ n
the values assumed by s2, are the e mth roots of unity.
As it—+~ the summation in (64) therefore becomes an
integral around the unit circle:

~ d. C(.) ~ O(z)~
2c(t) ——

I
—

I
1+ I

=0. (70)
~i "&. z 1—(s/t) E 0(t))

where

1 ds P(z)
(Dy), .= —2 I

& c 2iri s 1—(s/s, )

s=e xp(2 iir/sI) and s,=exp(2s. ir/n).

(65)

For the convenience of normalization we shall write

(71)

Then by virtue of (48), Eq. (59) reduces to

or
The contour C is the unit circle. At the point s=s, the
principle value of the integral is to be taken. This is
necessary because of the factor e in the expression (64)
which prevents the denominator from assuming the
value zero. Alternately, we might make a detour around
the point s„and make up the difference by adding a
term to (65):

1 I dS

I
C(s) I'—=1.

2~x&, s

G'

I

(72)

1 t. ds P(s)
(D0) i= ——

~'
— +4 (t).

vari & c z 1—(s/t)
(66)

FJG. 2. Contours in z-plane.

1 t. ds y(s)
(D4)i= ——.i' —4(t)

vari Ij o~~ s 1 (s/t)
(66a)

We have here used the more convenient notation t for s„.
With this definition it is evident that the point t does
not have to be on the unit circle. If, however, t is inside
the unit circle, it is more convenient to use the fol-
lowing equivalent of (66):

The first and (m+1)th elements of $i are, according to
(48) and (71):

1 n

p1 i g g
—2s@

S 8=&

(73)

Ih = t for m = integer «1,
Ds = —t for m= integer «0,

D'= 1.

(67)

(68)

Now return to Eq. (63). Since p' is a diagonal matrix
with diagonal element 0(s) given by (61), it is evident
that (63) reduces to

1 t ds tt i(s) ( 0(s))
2&i(t) ——. —

I
1+

si ~,. s 1—(s/t) E O(t))

where C" is as shown in Fig. 2.
The definitions (66) and (66a) for D are valid when

D operates on any function P(s) that is analytic in a
region that contains the circumference of the unit circle
in its interior. It is important to notice that this region
does not have to be singly connected.

We quote a few interesting properties of the operator
D:

If C is analytic in a region containing the circumference
of the unit circle in its interior, C t would be analytic
in a similar region. Equation (51a) shows that

Thus (54) is fulfilled if

1
p

ds 4t(s)
c'(t) ——. — =c'(t).

iran ~g s 1 z/t—(75)

The question of the fulfillment of Eq. (54), which now
reduces to

DD e'=c,
is best discussed with the aid of the introduction of the
function C t(s) defined by

(74)
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The integral equation (70) is,easily solved by in-
spection:

C(s) =Fs[(A—s)(8—s)j i, (76)

where Ii is a normalization factor. Ii will turn out to
be real„so that according to (74)

C ~(s) =C (s).

It is easy to prove that (75) is satisfied. This completes
the verification that (73) does indeed give the correct
matrix elements of pi.

4K+ pi K

explicit expressions for A, 8, Ii, and H~ are introduced,
the expression for I4 further simpli6es to

f ~ l')4r' 1
I'=i II—I— (80)

& 2 4) 4.E(k)

IV. ELLIPTIC TRANSFORMATION

It remains to find the eigenvalues l from (69) and
substitute into (80). To do this we first introduce an
elliptic transformation" that was essentially the one
used in evaluating the integral in (76a):

s= —(cnu —4[1+k J& snu) (dnu —i[k+k'j& snu)/

(1+k sn'u), (81)

Us: U

4K

Pro. 3. Contour in
N-plane.

the modulus k being given by P8)."This is the same
transformation as was used by Onsager, ~ and Kaufman
and Onsagerv in their calculations. It serves to eliminate
the square root in the function :

To find F we substitute (76) into (72) and obtain 0~= e@'=cnu+4 snu. (82)

P2 ds

24rl ~ [(A —)(8—)(As —1)(B —1)]"
=1. (76a)

In the integrand the sign of the square root is to be so
taken that at 2=1 the integrand is positive. The
integral is a complete elliptic. integral and can be
reduced to the standard form by a projective trans-
formation. The result is

F '= k iiE—(k i),
xA —8

(A '—1)'—(8'—1)"*

k I=
A (8'—1)&+8(A'—1)&

(77)

and E is the complete elliptic integral of the erst kind. "
It is convenient to change the modulus and de6neIS

k=2k 4&/(1+k i)=4x'/(1 —x')'=sinh '2K P8)

F '= 2kE(k)/4r(A 8). —(79)

The values of pii and $42 are obtained. from (73) and
(76):

bi=F(AB) ', 62=0

Substitution of these into (31), with the use of (36),
leads to

It is easy to verify that

1 ds j.—0'
—Z

s du (1+k)& dnu —ki cnu
(83)

2y(u')+ t J(u', u)P(u)du=i&(u'),

%e shall need the following properties of the trans-
formation (81): (A) s is doubly periodic in u with
periods 4Z and 4~@'.

(8) s is everywhere analytic, except at u=iE'/2,
34E'/2 (mod. 4E, 4iE'), wher'e s= ~.

(C) In a unit cell in. the complex u-plane, to every
value of s there correspond exactly two values of I,
except for s=A, 8, 1/8 or 1/A for which there corre-
sponds only one value of u, namely, u =+iE', 2K+4K',
2E iK' or iE'—(mod. 4E, —4iE').

(D) If for a value of s there correspond in a unit cell
two values of I, then at those two values O~ assume
equal values but have diferent signs. Thus a unit cell
of the Iplane corresponds to both sheets of the Riemann
surface in the s plane of I"ig. 1 with respect to the
function O~(s).

The substitution, suggested by P6), into (69), of

~ ()= [(s-A)( -8)j:~
gives, with the use of (81), (82), and (83)

I4= LgI (l '/4)]F4A '8-' cosh4H~. X=I II III IV; (85)

We have here taken the fourth power of I to eliminate
the undetermined phase factor that was introduced
into the expression for I as early as Eq. (17).When the

~ E. Y. Whitaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, j.927), fourth edition.

"The modulus k is the same as that used in references 5 and 7.

I= [1—s(u)/s(u')] ' (86)

II= 1+0(s)/O(s') = 1+(cnu+i snu)/(cnu'+4 snu'),
(87)

s(u) (s(u') —A}(s(u') —8} l
III= (88)

s(u') {s(u)—A }{s(u)—8}
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1—k'
IV= ——

s (1+k)&dnu —k& cnu'

V. SOLUTION OF INTEGRAL EQUATION (84)

We proceed by investigating the analytic behavior of
J(u', u) with respect to the variable u.

(A) I, II, and IV are all doubly periodic with
periods 4E and 4iE'. But III is doubly periodic with
periods 4E and SiE'. lt changes sign at periods 4''.

III(u+4iK) = —III(u). (89)

(8) III is analytic everywhere except at s=A or
s=B, i.e., u=iE' or 2K+iK' (mod. 4E, 4iK') where
III has simple poles.

(C) II is analytic everywhere except at u= iK' or—
2E iK' (m—od. 4E, 4iE') where it has simple poles.

(D) IV is analytic everywhere except at

u =&iK'/2, +3iE'/2(mod 4E,.4i E'),

where it has simple poles.
(E) I is analytic everywhere except. at s(u) =s(u').

According to the last section in each cell there are, in
general, two values of u where this exception occurs.
At these two points I has simple poles.

However, there is ority one pole for J in each unit
cell (4E by 4iK') This is. so because of the following
considerations:

(F) At u=+iK', &iK'+2E (mod. 4E, 4iK'), IV
has simple zeros.

(G) At u=iE'/2, 3iX'/2 (mod. 4E, 4iE'), s(u) = ~,
so that I has simple zeros.

(H) At u= iE'/2, —3iE'/2 —(mod. 4E, 4iE'),
s(u) =0, so that III has simple zeros.

(I) According to property D, Sec. IV, in a unit cell
(4E by 4iE') at one of the solutions of s(u)=z(u'),
O~(u) = O~(u') so that II=2. At the other solution, II
has a zero.

Thus inside the rectangle in Fig; 3, J has only one
pole at u=u' which we assume to be inside of the rec-
tangle. In the neighborhood of this pole II=2, III= 1,
and I—IV=Ar '(u —u') '. Hence the residue of J at
u=u' is 2i/s.

The solution of (84) is given by

p =exp(ims. u/2E), m= &integer. (9o)

To show that this is indeed a solution we note that p
is periodic with period 4E. Hence calling

4K

J(u', u)y(u)du,
0

each other and that along the top reduces to 8 multiplied
by a factor, in virtue of (89).]This gives

where
& = —44 (u')/(1+q'")

q=exp( —sK'/E).

(92)

(93)

(84) is therefore satisfied with

4/(1+ q2m) —2(q~m 1 )/(q&m+ ]) (94)

For m=o this gives, as expected, the solution /=0
which was already found by inspection in Sec. IIIC.

Knowing all the nonvanishing eigenvalues we can
now calculate

2 ~ p1

quan)

~ (I q2

rr —= rt ] -I=rrl
2 4 m= —ca E1+q ) i E1+q )

m&0

This infinite product can be" expressed in terms of the
8 functions which are related to E. We get finally

2 4 4 1+x'
rr —=—LE(k)]'(1—k') l=—E' (1—6x'+x')'.

4 x' ~2 (1 x2) 2

(95)

VI. FINAL RESULTS

The spontaneous magnetization I is obtained from
(95) and (80) as

1+x'
I= (1—6x'+ x') &

(1—x')'
(96)

I.O

0.5-

I

0.5

FIG. 4. Spontaneous magnetization.

At low temperatures this gives the same expansion
in powers of x as obtained in previous works of Van der
Waerden' and Ashkin and Lamb

one obtains by performing a contour integration around
t e rectange o ig.h l fF'. 3: g = 1—2g4 —8@6—34g8—152gIo—7]4g» —~ ~ ~

2vri(2i/s)P(u')=dL1+exp( —2msE'/K) j. (91) This series is convergent all the way up to the critical

t The integration along the two vertical sides 'cancel '4 See reference 11, especially p. 472.
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point, where
*=*c=~&—1.

Near the critical point, I has a branch point:

I $4—(@2+2)(xo x)j—res.

In Fig. 4, I is plotted against the temperature.

This wolk was coInplctcd ln thc summer of 195j.
while the author was at the University of Illinois. He
wishes to take this opportunity to thank the sta6 of the
Department of Physics, University of Illinois for the
hospitality extended him during his stay. He also
wishes to thank Bruria Kaufman for many stimulating
discussions.
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High Energy Induced Fluorescence in Organic Liquid Solutions
(Energy Transport in Liquids). IIV t'
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Experimental results on the 6uorescence of a large number of efBcient solutions under both gamma-ray
and alpha-particle excitation are presented. These results are compared with the theory to be found in Part I,
and very good agreement is obtained in almost all cases. The physical efficiencies of some of these solutions
under gamma-ray excitation are found to be quite high when compared with an anthracene crystal. The
light output for the same amount of absorbed energy is considerably less for alpha-particle excitation than
for gamma-rays in all of the solutions. The experimental data are discussed &n conjunction with the theoretical
considerations, and the physical processes involved in the large Quorescence of the solutions are analyzed.

A. EXPERIMENTAL RESULTS

OME experimental and theoretical results on the
Quorescence of organic liquid solutions using

gamma-ray excitation have previously been reported. '—'
This paper presents results under alpha-particle excita-
tion in addition to further findings with gamgm-ray
bombardment. The light intensities of all the solutions
were measured as a function of the solute concentra-
tions, using mainly a RCA 1P28 photomultiplier with
both types of excitation. In most cases, in order to
minimize errors, the identical solutions were used for
both excitations in comparing their effects. The light
emission in the case of gamma-ray excitation is referred to
the emission of an anthracene crystal of the same mass
and in the same geometrical setting. Such relative Quo-
rescence values at the optimum concentration are
described here by the term relative physical efficiencies.
These CKciencies dier somewhat from the practical
efFlcicncics published previously, ' as a consequence of
the use of a nonreQecting container in the present
measurements to minimize effects caused by different
amounts of reQection at the walls of the container
because of the spectral diRercnces in the emission of the
solutions. The values listed in Table I still de-
pend to some extent on the spectral distribution
of the emitted light because of the non-uniform spectral
response of the photomultiplier. To determine the im-

*This work was supported by the Signal Corps Engineering
Laboratories, Fort Monmouth, ¹wJersey.

t This is part of a dissertation (M.F.1 in partial fnlfiHnmnt of the
requirements for the Pho degree at ¹wYork University.

H. Kallmann and M. Furst, Phys. Rev. 79, 857 (1950}.
2 H. Kallmann and M, Furst, Phys. Rev. 8I, 853 (1951).
3 H. Kallmann and M. First, Nucleonics 8, 32 (1951).

portance of such effects, measurements were made using
two photomultipliers with different spectral responses
(RCA 1P28 and 1P21), after the emission spectra of
many of the solutions were determined. ' A measure of
the importance of this spectral cGect is given in thc last
column of Table I, where the ratios of the intensities in
the two photomultipliers for the different solutions are
presented. The gamma-ray results for all the solutions
are referred to the same mass, which means approxi-
mately the same amount of absorbed gamma-ray energy
since the number of electrons per gram is essentially the
same for all these organic solutions (see below).

It is to be noted that some of the light emission
CQiciencies are quite high; this is particularly the case
for p-terphenyl which in phenylcyclohexane and xylene
has an CKciency about half as great as an anthracene
crystal. Since an anthracene crystal converts about 15
percent of the absorbed energy into light (measure-
ments on a naphthalene crystal show about 5 percent
conversion and anthracene is better by a factor of about
3),' this indicates that with the solutions as much at
about 7 percent of the absorbed gamma-energy may be
transformed into light. Another feature to be noted is
that fairly generally a solute showing a relatively high
efFiciency in one solvent exhibits a rather high light
emission in the other efficient solvents.

For alpha-particles the values are also referred, to a
standard measurement with an anthracene crystal or
a zinc sulfide powder. Here there is the dif6culty that
the anthracene crystal surface deteriorates rather
quickly under the alpha-particle bombardment (a 10-mC

'Broser, Kallmann, and Martius, Z. Naturfursch. 4a, 204
(1949).

'


