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The term g2(r) proportional to the square of the density in the expansion of the radial distribution function
g(r) of an imperfect gas in powers of the density is calculated exactly in the case of a gas consisting of hard
spheres. The result is checked by means of Bolt@mann's value of the 4tb virial coeS.cient of such a gas. The
integral equation for g(r), obtained on applying the superposition approximation introduced by Kirkwood
and by Born and Green, can also be solved by an expansion in powers of the density. For the case of hard
spheres the approximate g2'(r) found in this way is compared with the exact g~(r). As a further application
of our result on g~(r) a certain integral is discussed, which is of interest in the treatment of interference
eGects in neutron scattering problems.

I. INTRODUCTION

S has been shown by jL'von, Kirkwood, de Boer~
and others, ' the radial distribution function of a

compressed gas may be expanded in powers of the
density

g(r) =exp( —V(r)/kT} (1+pgr(r)+ p'gs(r)+ }.(I.1)

The distance between molecules has been denoted by
r, the intermolecular potential by V(r) and by p the
number of molecules per unit volume. The function
g(r) is normalized to the value 1 for large distances. As
is known, gr(r), gs(r), can be expressed by cluster
integrals in which the position of two particles is kept
6xed. In classical statistical mechanics, and on the
assumption of additivity of intermolecular forces, one

*Part of this work was done at the Institute for Advanced
Study, Princeton, New Jersey. The authors are indebted to the
Institute for grants which made their stay possible, and to ONR
for making available computational help.

tAssocib du Fonds National de la Recherche Scientiiique
(Belgium).' For a purvey we refer to J. de Boer, "Reports on Progress in
Physics, "Phys. Soc. (London) 12, p. 305 (1949).

g( )= f( )f( )«

tp(r») = ~~f(r»)f(rs4)f(rs&)drs«t, (LS)

I

4(r») =
) f(r»)f(rsa)f(rst)f(rst)«s«4

X(r») = f(r»)f(r»)f(rtt)f(rst)f(rs. )«s«t (& 7)

~ J. de Boer and A. Michels, Physica 6, 9'l (1939).

gs(r») Hgr(rts) }+ I'(r»)+2k(r&s)+ sx(r») (1 3)

where r;s is the distance jr;—rs~ between particles s
and k, where the function f(r) is related. to the inter-
molecular potent'ial by

f(r) =exp f —V(r)/kT} 1—
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He found'

-', sr(2 ——,'r+-', r') for r &&2
gs(r) =

0 for r~&2

The function g, (r) was also calculated. by numerical
integration by de Boer and Michels' for the case of a
Lennard-Jones potential.

For the simple case of hard spheres again we give in
this work the calculation of the ps-term gs(r), in the
expansion (I.1). Our result enables us to test, at least
for small densities, the valiriity of the so-called "super-
position approximation" proposed by Kirkwood in the
theory of liquids. ' This test includes as a special case the
recent work of Hart, Wallis, and Pode4 as well as that of
Rushbrooke and Scoins' who compared the exact value
of the 4th virial. coefficient in the case of hard spheres
with tlM VRluc obtained f1oIQ thc supcI'posltlon RssuIDp-
tion.

The superposition assumption, when applied as pro-
posed by Born and Green, ' leads for the g(r)-function
to the approximate integral equation

k2'a lng(res)/Br, = —8 V(rss)/Brg

—~„[~I'( )/~ jg( )g( )d, (I.1o)

Kirkwood was the first to evaluate gq(r) in the simple
case of hard spheres without attractive forces, for
which, if the diameter of the spheres is taken as unit
of length,

~ for 0~&r&1 —1 for 0&&r&i1'(r)=, f(r)= (I g)
0 for r~&1 0 for r~&1

As a second application of the exact expression of
gs(r), we use it to determine for small densities the
value of the following integral

E= I {1—g(r))dr,

which is of interest in the discussion of interference
effects in neutron scattering problems and has been dis-
cussed from quite a different standpoint in the region
of large densities.

IL CALCULATION OF gs(rl

For the calculation of ss defined by (I.S) it turns out
to be convenient 6rst to calculate

dss(ru) t' df(res) ru' rss
f(rss) f(rss)drsdrs

f' df(rss) rss'res
gs(rss)d rs.

drl3 rl2r13

In the case of hard spheres, df/dr is the 8-function
8(r—1), and, when applying (I.9) and noting that ss

VRnlShes for r~& 3) wC f1nd

srs[ —r'/1260+ r4/20 —r'/6 —r'/4

( )=' +(9/3) —9/4+(27/7o)(1/ )j f

"0 fol r~& 3. (II.1)

The func'tion P(r) defined in (I.6) is calculated in the
same simple way, with the result

'srs[rs/1260 —r4/20+ r'/6+r'/4 —(97/60) r

the solution of which from now on we will call g'(r), P(r)=&
in distinction from the exact g(r). The function g'(r)
can also be expanded in powers of the density

+16/9 —(9/35)(1/r) j for 1&r & 2, (II.2)

-0 for r&2.

g'(r) =exp{ I'(r)/7—T) {1+&g '(r)+ As'(r)+
(I.11)

As will be shown in Sec. IV, gs (r) is identical with the
corresponding gs(r)-function of the exact expansion
(I.1), whereas gs'(r) is different from gs(r). The calcu-
lation of gs'(r) and its comparison with the exact gs(r)
will provide the test of the superposition approxima-
tion mentioned above. A short accourit of the results
was published elsewhere. '

' J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
4 Hart, %allis, and Pode, J. Chem. Phys. 19, 139 (1951).' G. S. Rushbrooke and H. I. Scoins, Nature 167, 366 (1951);

Phil. Mag. 42, 582 (1951).
6 M. Born and H. S. Green, Proc. Roy. Soc. (London) A188, 10

(1946).
7 B.R. A. ¹ijboer et L. Van Hove, Proc. Koninkl. ¹derlandse

Akad. %etenschappen SS4, 256 (1951).The relation for the com-
pressibility integral LEq. (III.3) in the present paper( was quoted
incorrectly here.

Now as to x(r) given by (I.7), we may remark first that
x(r) =0 for r~&2. Further, in the region v3&~r(~2, the
factor f(rs4) in (I.7) is —1 and hence in this region x(r)
reduces to —{gq(r))s. The evaluation of x(r) in the
remaining region 1~&r~&43, proves to be much more
complicated. We couM perform it by applying the fol.-

lowing somewhat indirect procedure, making use of the
theory of Fourier transforms.

Let us introduce

F(h) = f(r) exp(2srsh r)dr= —Is Vg(2srh), (II.3)

where Jg is the Bessel function of order —,', and

G(h) = f(rs )f(rss) exp{2 'sh [r ——,'(rs+rs)])drs.

8 Placzek, Nijboer and Van Hove, Phys. Rev. 82, 392 (1951).
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%e make use of cylindrical coordinates s, p, p with the
axis passing through the points 1 and 2, and the origin
midway between these points. VVe denote accordingly by
h, and h~ the components of h respectively parallel and
perpendicular to the axis. The integration with respect
to q gives

& 1—-',r12

Integrating by parts and using the relation

(d/dx) J,(ax) =x-'J, (nx) —aJ2(nx),

we obtain

I= ,'n -J2(nx) Jg(Px)Jg(yx)x —'dx
0

G(h) =4s. cos(2s.h,s)ds

t (1 —(-,'rn+z)s}&
+-,'P)t Jg(ax) Jg(Px) Jg(yx)x 'Cx

Jp(2s.h, p) pd p

(II.4)

~ 00

+kv
aJ p

Jg(ax)Jg(Px) J2(yx) x 'Cx.

=2h, 'j
0

cos(2s.h.s) f 1—(-,'r»+s)') '

XA f 2~hp[1 —(-', r„+s)']'}ds.

This expression reduces to elementary functions when
we apply the formula due to Sonine and Dougall (see
reference 9, p. 37),

Known properties of the Fourier transformation give

y(rq2) =
~

F(h){G(h))'dh.
j J2(ax)J&(Px)J&(yx)x 'dx = (4s.a') 'Py(2A —sin2A),

(II.S)
where

Introducing (II.3) and (II.4) into (II.S) and noticing
that

2 cos(2s-h. s) cos(2s.h,s')
= cos f 2sh, (s+s') )+cos{2sh,(s—s') }

and that' («t Is~"
I

&~1)

(h, '+h, .') J1{2x(h,'+h, ')~) cost 27rh, (s+s') }dh,

= hp
—'f 1—(a&s')'}Vg{2shp[1 —(sos')']'},

we find (r = r y2) pr-
y(r) = —4s. ds{1—(-,'r+s)'}l

0

I—sr1

X I ds'f1 —(-',r+s')') &

Jp

X J~{2xh,[1—(-,'r+s)']'*)

XJ&{2s-hp[1—(-,'r+z')']') [f1—(s+s')') &

XJ {2 h, [1—(.+")']'}+{1—(s—s') }-:

XJif 2s-h, [1—(s—z')']l)]h 'dh; (II.6)

Thus we are led to the calculation of an integral having
the form

I= it Ji(nx) Jg(Px)Ji(yx)x—'dx.
0

' See W. Magnus und F. Oberhettinger, Formeln Nnd Sdtze fur
die speziellen FNnktionen der methematischen Physi k (Julius
Springer, Berlin, 1943), p. 119.

for n'&(p —y)'rP

arc cosf(2Py) '(P'+y' —n'))
A=~ f» (p v)'«—'& (p+ v)'

for (p+p)'( 'n

Hence according to (II.6) the calculation of y(r) is now
reduced to the evaluation of a double integral. This
turns out to be a straightforward though very lengthy
process. The result is finally given by

x(r) = —{g&(r))'+ s.f —(3/280) r'+ (41/420) r') (3—r') '
+s {—(23/15) r+ (36/35) (1/r) )
Xarc cosfr[3(4 —r')] ')
+x{(3/560)r' (1/15)r4—+~~r'+ (2/15)r
—(9/35) (1/r) ) arc cos f (r'+r —3)
X [3(4 r')] '*)+s f—(3/560)r' (1/15)r'—
+,'r' (2/15) r+ (9/35) (—1/r—))
Xare cos f ( r'+r+3) —[3(4 r')] l}— —

for 1~&r~&V3,
(II.7)

x(r) = —(gq(r) } for V3 ~& r ~& 2,

x(r) =0 for r&~2.
It is seen that x(r) as well as p(r) and P(r) can be
expressed in terms of elementary functions.

III. NUMERICAL RESULTS AND CHECKS

The expressions occurring in (II.1), (II.2), and (II.7)
have been computed numerically in the relevant
interval 1 ~& r ~& 3 for the values of r indicated in the first
column of Table I. Then from (I.3) the function g2(r)
could be computed; the result is given in the second
column of Table I. g2(r) is represented graphically in
Fig. 1, a plot of g, (r) may be found in de Boer's article. '
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TAsLE I. Numerical values, of the term proportional to p~ in
the expansion of the radial distribution function of a gas of hard
spheres in powers of the density p. g2(r) represents this term when
calculated exactly, g2'(r) when the superposition approximation of
Kirkwood and g2"(r) when another approximation mentioned in
IV is used.

(see reference 1, p. 365)

r

kT(8p/BP)r=1+4v p {g(r)—1}r'dr .(III.3)

1.00
1.08
1.16
1.24
1.32
1.40
1.48
1.56
1.64
1.72
1.80
1.88
1.96
2.04
2.12
2.20
2.28
2.36
2.44
2.52
2.60
2.68
2.76
2.84
2.92
3.00

1.258702
0.823710
0.453089
0.143406—0.108740—0.307092—0.455149—0.556369—0.613934—0.630774—0.608749—0.552826—0.463399—0.350613—0.254150—0.178107—0.119833—0.076678—0.046047—0.025451—0.012563—0.005265—0.001704—0.000344—0.000022—0.000000

0.987940
0.575533
0.234207—0.042523—0.260480—0.425349—0.542248—0.615922—0.650636—0.650097—0.617356—0.554682—0.463475—0.350613—0.254150—0.178107—0.119833—0.076678—0.046047—0.025451—0.012563—0.005265—0.001704—0.000344—0.000022—0.000000

1.096623
0.723392
0.394808
0.112278—0.123544—0.313051—0.456999—0.556722—0.613956—0.630776—0,608749—0.552826—0.463399—0.350613—0.254150—0.178107-0.119833—0.076678—0.046047—0.025451—0.012563—0.005265—0.001704—0.000344—0.000022—0.000000

B = —-'b' —v g2(r)r'dr.8 (III.4)

Numerical integration of the function g2(r) gave again
the result (III.2) for B4.

IV. THE SUPERPOSITION APPROXIMATION

As has. been mentioned in the introduction, the
superposition assumption of Kirkwood when applied
in the form as discussed by Born and Green leads to the
integral Eq. (I.10) for the approximate radial distribu-
tion g'(r). If we now substitute

g'(r) = v(r) exp{—U(r)/kT},

then v(r) obeys the integral equation

Expanding both members of this relation into powers
of p and equating the coeKcients of equal powers, we
are led to the following equality holding for hard
spheres

The result obtained for g2(r) may be checked in two
ways by means of the known value of the fourth virial
coeKcient 84 for a gas of hard spheres. First, as a con-
sequence of the virial theorem we have generally (see
e.g. , reference 1, p. 327)

B4= —27r(3AT) '
~t exp{—U(r)/kT}

0

X [dU(r)/dr jg2(r)r'dr.

In the case of hard spheres this becomes

»(r12) pv(r12) 8 U(ri3)
& ~13 & ~23

kT

U(ri3) U(r~3)
Xexp — ———— dr3. (IV.1)

kT kT

In accordance with the expansion (I.11) we try to solve
this equation by the expansion

v(r) =1+pgi (r)+p'gi (r)+. "
Introducing this expansion into (IV.1) and equating

B4——aav. b(r —1)g2(r)r'dr= —,v.-g, (1). (III.1) 10

On substituting r=1 into our result for g2(r) we find
an expression for 84 which is analytically identical with
the one obtained by Boltzmann. "Its numerical value is

84——0.2869b',
a(r)

(III.2)

where according to the customary notation 4b is the
volume of each particle.

An additional check which includes the values of
g2(r) for all r can be based upon the well-known relation,
due to Ornstein and Zernike, that connects the relative
compressibility with the radial distribution function

10 15 20
1

25 30
' L. Bolt@mann, Verslag. Gewone Vergadering Afd. Natuurk.

¹derlandse Akad. Wetensch. 7, 484 (1899), see also H. Happel,
Ann. Physik 21, 342 (1906);R. Majumdar, Bull. Calcutta Math.
Soc. 21, 107 (1929), .

FtG. 1. The coeKcient g2(r) of the term proportional to p' in
the expansion of the radial distribution function for a gas of hard
spheres into powers of the density p.
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the coefficient of p on both sides we find, making use
of the fact that g t'(r)~0 as r~nn

03

Comparison of (IV.2) with (I.2) shows that

(IV.2)
.2

gt'(r) =gi(r), (IV.3)

so that the approximate g'(r) is exact to first order in p.
In a similar way it is found that

gs'(r) = s{gt(r))'+~(r)+24(r)+sx'(r), (IV.4)

so gs (r) is identical with the exact gs(r) given by (I.3)
except that x(r) must be replaced by z'(r) where

010 1'5
I

20

FIG. 2. DiGerence of the exact function g2(r) for hard spheres
and the approximate functions g2'(r) (superposition approxima-

Bg'(rts)/ jrt ———2~~f(r») f(rss) f(rs4)[Bf(rt4)/Ort jdrsdr4, tion) and gs"(r).

or also

dx'(ris)

df]2

f rts' ris dgi(ris)= —2 f(ris) f(rss) drs (IU.5).
r12r13 dr 13

.0 for r ~&2.
for 1&r&~2, (IV.6)

Numerical values for the approximate function gs'(r)
in the case of hard spheres are given in the third column
of Table I. The difference gs(r) —gs'(r) is plotted as a
function of r in Fig. 2 (full curve). It is seen that for
r=1 the Kirkwood approximation gs'(r) deviates con-
siderably (by more than 20 percent) from the exact
gs(r); for larger values of r the deviation decreases
quickly and for r~& 2 gs'(r) is equal to gs(r).

It is now very easy to calculate an approximate
value for the 4th virial coe%cient 84 on the assumption
of superposition. Formula (III:.1), derived from the
virial theorem, gives

84'= 0.2252b', (IV.7)

a value that was found recently in a different way by
Hart, %'allis and Pode' as well as by Rushbrooke and
Scoins. ' However, 84' may also be calculated from

, (III.4), that is from the relation of Ornstein and

"This result can of course also be easily obtained directly from
the integral equation (IV.1), after it has been reduced to the
particularly simple form valid for hard spheres. Starting from that
one could also easily calculate higher terms in the expansion of
g'(r) in powers of the density.

Thus it is seen that on the assumption of superposition
gs(r) is given incorrectly. An analogous result was
derived by Rushbrooke and Scoins for the 4th virial
coefficient. ' For the special case of hard spheres x'(r)
can be evaluated easily with the help of (I.9). One finds"

4rs[ —r'/630+r4/10 —(19/72) r' —r'/2

+ (12/5)r —22/9j(18/35) (1/r) ]

Zernike. Then one obtains

84'= 0.3424b'. (IV.8)

We notice that the superposition approximation
destroys the consistency between the equation of state
as derived from g(r) through the virial theorem and the
equation of state resulting from the compressibility
integral. This consistency requires some special ana-
lytical property of the exact g(r), which is not compatible
with the superposition assumption. In view of this
fact one may think it questionable whether one is
entitled to attach a~y physical meaning to analytical
peculiarities exhibited by the approximate g(r)-function
obtained under the superposition assumption. In par-
ticular conclusions drawn from Kirkwood's integral
equation about a kind of condensation phenomenon for
a Quid consisting of hard spheres should be accepted
oniy with caution ""

It may be worth while to remark here that a better
and simpler approximation for gs(r) is obtained in the
case of hard spheres when in formula (I.7) for x(r»)
the factor f(rs4) in the integrand is replaced by —1,
so that x(r, s) becomes —{gt(rts))'. Then gs(r») be-
comes simply [see Eq. (1.3)]

gs"(rts) = ~(r»)+2&(rts). (IV.9)

The numerical values of gs"(r) are given in the
fourth column of Table I; the difference gs(r) —gs"(r)
is plotted as a dotted line in Fig. 2. The values for the
4th virial coefficient derived in this approximation from
the virial theorem and from the relative compressibility
integral are now respectively

84"=0.2500b' and 84"=0.2969b3.

This simple approximation is therefore much more satis-
factory than that of Kirkwood, at least for the term

gs(r) dealt with here. However, until now we have not

"Kirkwood, Maun, and Alder, J. Chem. Phys. 18, 1040 (1950).
"See also R. J. Riddell, thesis (Ann Arbor-1951).
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20—

15—

we find from (III.1) and (IV.7)

g&'&'(1) = 1+1.851y+1.976'' (IV.13)

Table II compares, for various values of p, the quan-
tities g&'&(1) and g&'&'(1) with g'(1) as obtained numeri-

cally by Kirkwood, Maun, and Alder. "We see that not
only is

(IV.14)

but also, for the higher densities

~ 5
i5 1.0 15

I

20 25

been able to extend it into a more general scheme
superior to the superposition assumption.

Up to now we have discussed only the term g&(r) in
the expansion (I.1) of the radial distribution function

g(r) into powers of the density. Evaluation of this
term for hard spheres both exactly and on application
of the superposition approximation made the defi-

ciencies of the latter appear clearly. Let us consider now
for a moment the radial distribution. function g(r)
itself. Only for small densities does the part of the
expansion up to the p'-term, which we will call go&(r)

gi'&(r) =exp{—V(r)/kT) {1+pgi(r)+p'g&(r)) (IV.10)

give an adequate approximation for the function g(r),
because for larger densities the neglected terms would

give an appreciable contribution. g&2& (r) has been plotted
for the case of hard spheres in Fig. 3 for two values of
the density: p=0.442 (full line) and p=0.275 (dotted
line). It is for these densities and a few higher ones that
Kirkwood, Maun, and Alder" recently calculated the
total g'(r)-function for hard spheres by numerical in-

tegration of the integral Eq. (I.10). It is interesting to
compare our graphs of go&(r) with the corresponding
ones given by these authors for g'(r); for these relatively
low densities the deviations are only small. To obtain
some insight in the behavior of the total g (r)-function
for the higher densities, one might reason as follows. '4

From (IV.10) in combination with (I.9), (III.1), and
(III.2) we have

g&"(1)= 1+1.851y+2.517'', (IV.11)

where p = 2 'p is the ratio of the density p to the density
for close packing of the hard spheres. If in analogy
with (IV.10) the function g&'&'(r) is defined by

g'"'(r) =exp{—V(r)/kT) {1+pgi(r)+ p'g2'(r)), (IV.12)

FIG. 3. Radial distribution function g(')(r) (expansion into
powers of the density p up to the term with p~) for hard spheres as
a function of r for values of p=0.442 (full line) and 0.275 (dotted
line).

From (IV.15) it follows that some of the virial coef-
6cients obtained in the superposition approximation
from the virial theorem are negative. It would seem
extremely likely, however, that for hard spheres all
virial coe%cients are positive, though, as far as we are
aware, this has not yet been proved in a rigorous way.
Accepting this conjecture, one would conclude from
(IV.14) that the pressure obtained in the superposition
approximation from the virial theorem is too low, and
for the higher densities, very much too low.

TABLE II. Values of the approximate radial distribution func-
tions g( )(r), g( )'(r), and g'(r) in the point r=1 for various den-
sities in the case of hard spheres.

0.1942
0.3125
0.476
0.578
0.654
0.676

1.455
1.825
2.45
2.91
3.29
3.40

af»'(&)

1.434
1.772
2.23
2.73
3.06
3.15

1.45
1.80
2.36
2.66
2.85
2.90

(oi.i)~,——1—pX'/2x {1—g(r)) dr.
0

(V.1)

Here the total cross section of an isolated particle is
taken as the unit of cross section and the radial dis-
tribution function g(r) which has the same meaning as
above, is obtained from the possibly angle dependent
pair distribution function g(r) by averaging over all
directions. The value of the integral was investigated
extensively for dense systems of particles in reference 8.

For the special case of hard spheres without attrac-
tive forces (we will take the diameter of the spheres as
unit of length as we did in the foregoing) it was shown

that in the region of high density the coefficient

V. THE INTEGRAL J;"{I g(rl)dr—
In a previous paper it was shown that, when inter-

ference is taken into account, the total cross section
for scattering of neutrons by a system of heavy nuclei
is given asymptotically in the region of small wavelength

by

' The following argument was kindly pointed out to us by
Dr. G. Placzek.

K= I {1—g(r)) dr (V.2)
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can approximately be represented by

E=0.643' &, (V 3)

where p again is the ratio of the density p to the density
for close packing of the spheres. Actually (V.3) does
represent an upper bound, but the deviations of the
true E from (V.3) may for high densities be expected
to be small. On the other hand our calculation of the
term g2(r) in the expansion (I.1) now enables us to

~4

2—

2
I

o4
I

~ 6
I

~ 8
t

10
TABLE III. Values of the integrals E=J0"f 1—g(r) )dr and

I=4.2'~6y'~'X for various values of y computed for the approxi-
mate radial distribution functions for hard spheres given by
Kirkwood et al. (reference 12}.

5
10
20
33

0.89
0.84
0.78
0.72

0.211
0.353
0.562
0.775

2.38
2.67
2.91
2.98

y(B.G.)

0.194
0.313
0.476
0.654

I(B.G.)

2.31
2.56
2.75
2.81

evaluate E in the region of small densities. Indeed, the
introduction of (I.1) into (V.2) gives

E= 1—v2y gi(r)dr 2y' —g2(r)dr . (V.4—)

Computation of the integrals, the first from (I.9) and
the second numerically from Table I, leads to

E= 1—0.6487+0 537'' — (V.5)

It may be noted that, if we had replaced the exact
g2(r) in (V.4) by g2'(r) (superposition approximation) or
by g&"(r), the coefficient of &' in (V.5) would have been
0.741 or 0.583, respectively.

It is rather remarkable that the integral E appears
to be now pretty well known for all densities, because
the two representations (V.3) and (V.5) valid for high
and for small densities respectively join very nicely in
the intermediate region. Both approximations namely
yield for &=0.5 the same value E=0.810 (which is of
course accidental) and the slopes of the two E(y)-curves
are not too diferent at this junction. This fact is illus-

trated in Fig. 4, where the function E(y) is plotted
using Eq. (V.5) for 0~&7~&0.5 and Eq. (V.3) for
0.5&y&1.

For comparison we have calculated values of E for
the approximate functions g'(r), mentioned already in

IV, which were obtained by Kirkwood, Maun, and Alder

by numerical integration of the integral equation (I.10)."
Actually in their work to every solution g'(r), charac-
terized by the value of a certain parameter X, belong

Fxo. 4. The integral E=J0"(1—g(r}}dr for hard spheres as a
function of the ratio 7 of density to density for close packing.
Values obtained from integration of the numerical solutions by
Kirkwood et al. (reference 12) of the integral equation (I.10) are
indicated by circles when the Born-Green, by crosses when the
Kirkwood version of the theory is adopted.

two different values' of the quantity p, depending on
whether the Born-Green or the slightly diGerent Kirk-
wood version of the theory is used. By a rough nu-
merical integration of their results for the g (r)-functions
we And the values of E, given in Table III." In this
table we have also given the respective values for
I=4 2"'p"'E, because it was this quantity that, at
least for high densities, was discussed extensively in an
earlier paper. The results for E are included in Fig. 4.
The circles correspond to the y-values according to Born
and Green, the crosses to those according to Kirkwood.
It is seen that in particular the circles (densities ac-
cording to Born and Green) appear to lie rather closely
on a curve joining smoothly the low and high density
parts of our E(y)- cruev. In the opinion of the authors,
however, the values of Ego not readily lend themselves

to a discussion of the validity of the superposition
approximation; without a more precise investigation of
accuracy the fact, that the E-values resulting from the
superposition assumption lie in the neighborhood of our
approximate E (p)-curve, would hardly seem significant.
As to the question of the validity (of the Born-Green
form) of the superposition assumption we must rather
refer to IV. In the light of the investigation in reference 8
one could only state that the values of I (and hence also
of E) resulting from the Kirkwood form of the super-
position assumption are definitely too high for the
higher densities.

In conclusion the authors wish to thank Dr. G.
Placzek of the Institute for Advanced Study, Princeton,
New Jersey, who suggested the present investigation,
for his stimulating interest.

'5 The values of E for the higher densities had also been com-
puted by Kirkwood some time ago (private communication).


