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F16G. 2. Decay of oscillations for a “‘square’ distribution
of field inhomogeneities.

=y2h?)nt? but by (=Xt according to the well-known
solution of the Gaussian random walk problem.

Field inhomogeneities produce an extra phase shift ¢(f)=-ét.
In order to obtain the whole signal we have to integrate over all
values of 8. An extra decay of the oscillations follows, described
by the Fourier transform F(f) of the distribution function ¥(8)
of & over the sample. The envelope amplitude of the signal is the
product,

A=exp(—t/T)F(}).

Discrimination between the two effects is possible for special
forms of F(z).

There are two cases of particular interest:

1. We assume that F(f) is a uniformly decreasing function of
time. For example, this is the case when ¥(8) is a bell-shaped
function or a damped oscillation function. Then the signal aspect
is that given in Fig. 1 and it is not possible to obtain from its decay
curve a measure of T’ if F(#) is an unknown function. But if F(¢)
is a periodic function of time, it is possible to draw information
about F(¢) from the position of successive zeros. This is the case
when ¢(8) is a pulse-like function, and the study of signal decay
is a convenient way to measure T's.

For instance, when ¢(8)=1/A if |§|<A and ¥(8)=0 for
|8] >4, then

F(f) =sinAt/A¢,
and the signal is represented on Fig. 2. Measurement of the first
zero time ¢ gives the value of A from Af=m. Then the amplitude

ratio at successive maxima, which is only determined by T and A,
provides a measure of T5. We obtain
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F1G, 3. Preresonance signal for T’z >T.
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II. It is clear that F(f) = Jo™¢(8) cosvydtds is an even function.
On the other hand, F(¢) must be a periodic function of time ¢ with
a period T (half-period of the modulating field). From these two
properties it follows that

F(To—'t)=F(t).

In the presence of very large inhomogeneities, F(¢) drops rapidly
to zero in a time 7<&T'; and increases again at time before the
next resonance according to the even properties of F(#).

Then:

(A) Xf T2<T\, the factor exp[(To—17)/T:] is practically zero
and there is no observable signal before resonance (Fig. 1 and
Fig. 2).

(B) Butif T2>T,, then exp[(To—7)/T:]is an 1mportant factor
and we can observe a signal before resonance, as seen in Fig. 3.
The ratio of the signal amplitudes, ¢; after resonance and e; before
resonance, is

2} ex (To-— t) F(Ty—1)
(2] P Tz exp(t/ Tg)F (I) ’
and if #—0 (observations of signal near resonance) we get
T2= Tu log(ez/ex).

A limit to this method is set by random magnetic field fluctua-
tions produced by the magnet power supplies. These fluctuations
produce phase shifts strictly identical to those produced by
molecular fields. These phase shifts introduce extra decays which
are not generally even functions of time and are not eliminated
like 8 by the previous method. In our apparatus this limit occurs
for T2>0.1 sec.

Use of a permanent magnet would probably allow the meas-
urement of times 7:>0.1 sec, but it is probable that the in-
homogeneous magnetic field will set a new limit here.
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High Energy Nucleon-Deuteron Scattering*

P. B. DarrcH AND J. B. FRENCH
- University of Rochester, Rochester, New York
(Received December 31, 1951)

E consider the relationship between high energy nucleon-
deuteron scattering and elementary nucleon-nucleon scat-
tering. We find that one may, for the case of central potentials of
arbitrary exchange character, write the nucleon-deuteron differ-
ential cross section in terms of the elementary cross sections.
Except for a term which is important only in the backward
direction, the reduction is simple and enables one to examine
easily the arbitrariness caused by the fact that nucleon-nucleon
scattering measurements do not give singlet and triplet cross
sections separately nor the phases.
The quartet and doublet Born approximation matrix elements
are given by!

M= (37r/m)(Uq+Lq+Dq), M= (31r/‘m)(Ud+Ld+Dd), (1)

and
do/dw=3%|Ugt Lo+ Dy|2+3%| Ust Lat Dy ?, 2
where

U=n/3n) [ [ x* S EVU(1, 3)e0 X p($)xdXaS,
L=t/3m) [ [ e S X (1= T VE(2, 3)
XXy (S)xdXdS, (3)

D=(m/3x) [ [ x**(S)e = XTuy (1, 3)
X ™0 X o(S) xdXdS.
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Here the index 3 refers to the incident nucleon; 1,2 are par-
ticles in the deuteron with 2 and 3 referring to like nucleons;
x is a 3-particle quartet or doublet spin wave function; ¢(S) is
the deuteron space wave function with S=r;—r,; X is the coordi-
nate of the incident nucleon with respect to the deuteron center
of mass; ko, k are the nucleon incident and final momenta
(k2=ko?=8mE,/9, where E, is the incident lab energy); T is the
total exchange operator; V'V and V' are unlike and like particle
potentials; and m=nucleon mass.

In U we transform variables by X=—329—1

$0—3{, S=30—{. Then

U=m/37) [ [ x*e*(1{~10) explik-(io+30 V0 ()
Xexp[—iko- (f0+30) Jo(|{—30])xdodl. (4)

For the nonspace exchange part of VU, a translation of { leads

to a separated integral. For the space exchange part we approxi-

mate? x*(|{+30))x(1{—3%0]) by [x(¢)|? and once again get
separation. The result is

U=(m/3m)SH8K) [ x* exp[—i(Fh— ko) 01V V(p)

Xexpli(3ko— k) - 0Ixde, (5)
where S(Ak) is the deuteron form factor! and k= k— ko. Since V'V
is independent of particle 2, we eliminate the spin functions of 2
by expanding x in terms of the singlet and triplet spin states for
particles 1,3. The integral then appears as a matrix element
for n— p scattering. Specifically we have

Uy=(4/3)SHAK)®f(e, ), ©)
Ua=3SH Ak {® f(e, ¥)+30f(e, )1,

where @ f(e, ¥), Vf(e, ¢) are the triplet and singlet #— p scattering
amplitudes (do™?=%|®f|241|Mf|?) for a lab energy ¢ and cm
scattering angle ¢. The quantities € and ¢ are given in terms of
E, and 6 (the nucleon deuteron c.m. scattering angle) by

e=E(25—17 cos0) /18, cosy=(—"T425 cos8)/(25—7 cosh). (7)

An exactly similar treatment gives L in terms of like particle
scattering. Except at backward angles, U and L dominate the
scattering and therefore nucleon deuteron scattering is correlated
in energy and angle by (7). The energy ratio increases with angle
from unity at 0° to 1.8 at 180°. y differs little from .

D, however, involves the three particles in an essential fashion
and cannot be reduced in the same way. It may be simply evalu-
ated if one uses the Serber n—p potential and leads then to
Dy=—2Dy=—(m/3m)I;, where I is given by Chew.! On the
other hand, by using the deuteron Fourier transform

pp)=@m [ p(S)ei?-Sas,

we may write D in terms of the n— p triplet scattering as

Dy=—2Di=—4/3) ol | k+3kel) [ ©f(&,¢) & (p)dp, (8)

where @ f(¢/, ¢’) is as defined previously the triplet #— p scattering
amplitude for Ko going to K;, where ¢ and ' are determined by
the equations

2K?= 2K02=P2+ (%k-f—ko) 2, K- Ko= P (%k"l" ko)
The nucleon-deuteron cross section now appears in the form
do/dw(Eo, ) =3 (4/3)SHAK) (P f+@g)+ Dy |2
+3SHAK) (OfH+30+Og+-30g) +Dal?, (10)

where the f’s and g’s are unlike and like particle scattering ampli-
tudes for ¢, ¢ as given by (7).

We note that since the n—p and p—p measurements do not
determine the singlet and triplet amplitudes separately nor the
relative phases, the scattering measurements allow a great deal
of arbitrariness in calculating nucleon-deuteron scattering. For
example, with 240-Mev protons at 20° one can easily vary the
calculated p—d cross section by a factor 20 by choosing various
decompositions of the nucleon-nucleon cross sections. It seems

(©)
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F1G. 1. Comparison of theoretical and experimental proton-deuteron

elastic scattering cross section. Dashed and solid curves ar: for » —p and

n—p amplitudes interfering constructively (Wg=-41) and destructively

(Wg=—1), respectively. Sources of experimental data are listed in
reference 3.

reasonable, however, to determine the f’s on the basis of the

Serber #— ¢ interaction. Then we have that the signs are the
same and

|0 f|2=92| @ f|2=[49?/(3+22) Jdo™?/dw, (n=0.686). (11)

Within the framework of central forces the only simple choice
which can lead to an angular and energy independent p— p cross
section is

®g=0, [u>g12=4d,,p,p/gw,

with arbitrary phase of (Dg,

With these determinations of the amplitudes and with relative
phase of (Vg as &1, we plot in Fig. 1 the calculated p—d cross
sections for proton energies of 95, 146, and 240 Mev. We have
taken the p— p cross section to be 5 mb/sterad and have used an
empirical formula for the n—p differential cross section. D was
evaluated by numerically integrating (8): this gives a result
little different from that given by Chew’s I5. Shown also in the
figure are the available data.? The two calculated curves enclose
the data except in the backward direction. The source of disagree-
ment here is not clear. The backward scattering is a function
mainly of low energy #»— p scattering and low momentum Fourier
components of the deuteron. For example, at 95 Mev the main
contribution is from e between 20 and 150 Mev and p less than

(12)
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three times its average value in the deuteron. It seems possible
that the backward peak would be reduced by the inclusion of
tensor forces.*

* Assisted in part by the AEC.
1G. F. Chew, Phys. Rev. 74 809 (1948); R. L. Gluckstern and H. A.
Bethe, Phys. Rev. 81, 761 (19 )

2 This approximation was checked by calculating the exact and approxi-
mate expressions using a Yukawa well and various energies and angles in
the range of interest. At 90 Mev the agreement was everywhere within
10 percent; for large angles with higher energies the agreement is rather
worse but since the exchange parts of U and L are dominant only for inter-
mediate angles the approximation is satisfactory. We wish to thank
Mr. T. A. Auerbach for making available to us his numerical evaluations
for the exact integrals.

3 M. O. Stern, University of California Radiation Laboratory Report
No. 1440 (1951) (95-Mev data); Cassels, Stafford, and Pickavance, Nature
168, 556 (1951) (146-Mev data); R. D. Schamberger, Phys. Rev. 83, 1276
(1951) '(240-Mev data).
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Some Polystyrene Solid Solutions
as Scintillation Counters™

Tromas CarLsoN AND W. S. Koskr

Department of Chemistry, Johns Hopkins University,
Baltimore, Maryland

(Received December 26, 1951)

HE scintillation efficiency and the spectral emission of a

number of polystyrene solid solutions have been investi-
gated. The method of preparing the solid solutions and the
experimental procedure used in obtaining the data is similar to
what has been reported previously.! A 5819 photomultiplier tube
was used for the counting experiments. Co® was used as a y-ray
source. A commercial x-ray machine was used as a source for the
emission-spectra studies. The solid solutions compared were
plastic disks containing 2 percent by weight of the phosphor in
styrene, which were then polymerized by a 50-50 benzoy! peroxide-
tricresyl phosphate catalyst. The results are summarized in
Fig. 1 which gives the relative counting rates as a function of
discriminator bias and in Table I where the peaks of the emission
bands are recorded. It is interesting to compare these results with
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Fia. Discriminator curves for some phosphor-plastic combinations:

A——terphenyl B—diphenylbutadiene; C—anthracene, D—stilbene; E—di-
pheny]dxacetylene, F—biphenyl; G——dxphenylacetylene' H—dnphenyleth—
ane; I—polystyrene (plain).
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TABLE 1. Wavelengths of emission bands of various 2 percent
phosphor-plastic systems excited by x-rays.

Material Wavelength (A)
stilbene 3760, 3600
diphenylbutadiene 4040
diphenylhexatriene 4200
diphenylacetylene 3720
diphenyldiacetylene 4610
anthracene 4475, 4235
diphenylethane ~3200
terphenyl 3620, 3480

those obtained with the single crystals of the corresponding
phosphors.? It will be noted that the relative order is not always
the same. A notable,exception is diphenylacetylene. In the
crystalline state this material compares favorably with stilbene
whereas in the solid solution its performance is much poorer. Since
the emission bands of the solid solution and of the crystal are
located in approximately the same spectral region, a poorer
counting rate cannot be ascribed to a shifting away from the
region of more favorable spectral response of the 5819 photo-
multiplier tube.

Polystyrene-diphenylhexatriene solid solutions gave poor per-
formances as counters. The large spectral shift toward the blue
(1000A), plus the fact that there was a considerable amount of
difficulty in realizing the polymerization of the solution, indicated
that there probably was a chemical reaction between phosphor
and catalyst or styrene with an interruption to the conjugation
of the polyene chain. The corresponding system with diphenyl-
octatetraene failed to polymerize satisfactorily even after pro-
longed heating so it is not included in these results.

We wish to acknowledge our indebtedness to Professor J. D. H.
Donnay and Professor R. Maddin for the use of their x-ray
machines.

* Thxs work was performed under the auspxces of the AEC.

1'W. S. Koski, Phys. Rev 82, 230 (19
2 W, S. Koski and C. O Thomas, J. Chem. Phys. 19, 1286 (1951).

Absence of Secondary Maxima in the Transition
Curve for Electronic Showers

R. Maze
Laboratoire Ecole Normale Supérieure, Paris, France
(Received November 13, 1951)

N a recent letter Tsai-Chii! tentatively explained the existence
of a secondary maximum of the Rossi curve obtained by a
counter arrangement very similar to that of Bothe and Thurin.?
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FI1G. 1. Rossi curves for lead.



