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N 1931 the writer published visual measurements on the 3IIn-
~ - and 3IIP-satellite lines. Much later, in 1950, the writer plotted
up' the sharp maxima noted on the 3fP-density plots' and dis-
covered that there were six distinct satellites on these plates, ' In
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the hope of 6nding similar sharp maxima for the lan-satellites,
these plates of my 1931. thesis' were very kindly photometered by
Professor Jesse Greenstein of the California Institute of Tech-
riology at the suggestion of Dr. Robert F. Bacher. The results are
shown in Fig. 1.Each 3/Sa-envelope line is the arithmetical average
of three runs made on the top, middle, and bottom of each 3fa-
spectral line. The fact to be noted is the complete absence of sharp
satellite maxima; this is caused by Auger broadening of the
satellites, while in the case of the MP-satellites the Auger effect
has been shown to be impossible. 3

Each Ma-line envelope was 6tted with a classical Mui-line so
that 3Ea2, subtracted off, had very closely the relative intensity
~g/0. 1=0.05 (sec Table I). The area at the left (short wavelength}
side of each- Mu-line has been assigned to energy of double ioniza-
tion-satellites (denoted as 5 in the Pt Mu-envelope). The classical
line formula is y =a/[1+ (x/)I) 'j, where o is the maximum ordinate
and b the half-width at half maximum. The area under the curve
is ~ab, and hence the relative intensity of two such lines is
albi/a2b2. The relative energy of multiple to single ionization is
5/7ralbI. In Table I are given the pertinent line data: plate No. ,
element, atomic No. , Z, a2b2/albi, 5/xalbi. In Fig. 2 is plotted
5/malbI es Z; it wi11 be noted there are two znaxima of relative
energy at Z=81 and near Z=90. The Auger crossovers I found4'

at Z=88 and 91 for the energy of the radiationless transition.

i&zz—+Mv and the ionization energy plots for the Ezv v shells

(Mv&zv, v~ÃvzzEzv, v). Coster and Bril' 6nd the upper cross-
over for v/R, Xv with v/E, Jfzzz —+3IIv at Z= 93 or 94. Thus quite
con6dcntly onc zzlay assign thc two lntcnslty maxima ln Flg. 2 to
the crossovers of the v/R values for 3fzzz—&JI/Iv and the values of
v/E for the ionization energy of E» and Xv. (The intensity maxi-
mum should occur at 4 or 5 atomic numbers below the particular
crossover. ")This is another bit of evidence in favor of the theory
of Coster and Kronig. 6

The use of microphotometer records to represent intensity may
seem questionable, but it would seem to be not so naive. The
function y=a/j1+(g/b) ) accurately represents the intensity
plots of simple x-ray spectral lines. In this work, this function
closely fits these average microphotometer curves (see Fig. 1).
Moreover, the plot of Fig. 2 has exactly the same range of ordinate
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FIG. '1, Microphotometric records of plates of reference 1 Gtted with
"classical" May-lines, delineating satellite area S and the Ma~-line which
is subtracted off. Original ordinate and abscissa scale; one unit =$ inch.
Vertical dashes on short wavelength side of lines (left) are visual measure-
ments of reference 1.
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FIG. 2. Relative energy of double to single ionization plotted against atomic
number, showing two maxima for the double Auger crossover,
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values as shown in the plot of p. 194, reference 4, secured from
density plots. These microphotometer plots are thus essentially
lines in absorption.
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Here again one recognizes to the left, the operator which tends to
0 when tl~ —~. Although the operator is here applied after the
integral term, which also depends on ti, it may be shown that the
limit can be taken on the two factors independently. ' Then,

g+ 'g eiKtUe iKtdt

ei(K+V) tUe—i(K+V) tgdt+. . .

With f(E+V)Q=Qf(E}, this transforms easily to
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hatt'+=i J e't~+~~'PQ Uge '~'dt+

By inserting (9}into (3) and writing VQ= t, we have finally,

r t+=t f V:&~+'&'~tt, V]e-'~'dt+" .

(9)

(10)

T= V+. (3)

We now intend to expand the operator T in powers of U. Needless
to say, the matrix elements Tb, of T cannot be so expanded,
since the wave functions @, and pb contain as a factor quantized
states of the bound system with the potential U. It turns out,
however, that Eq. (2) separates out successfully the features in

Tb, which prevent the expansion.
A simple expression for the operator + is obtained from the

remark that P is the wave function that evolves, under the action
of the full Hamiltonian II=E+U+V, from an initial state
e 'H'"tt at a remote time tl in the past. That is

y (t) = l.im e iH(t —tl)e—iHpt (4)
tl ~—eo

where Hp=E+U. It will be understood that if (4) has to be
applied. to a state @, of exactly defined energy, the following
sequence has to be observed: 6rst apply (4) to a wave packet
state @ and take the limit to tl—+—~, then let p tend to the
desired state. In the following the "lim" sign will often be omitted.

In Eq. (1) P, was written for the space part of the wave func-
tion, i.e., P (t) = e iHtg . Hence P, is obtained from (4) simply by
setting t=0. Hence the operator + of Eq. (1) is

eiH tie
—iIIP tl

(in the limit t,~—~).
This can now be expanded in powers of U (although this may

seem at first questionable since U is multiplied by a large tl.}by
the customary formulas of perturbation theory. ~ For instance,
to the 6rst order in U;

i(K+v) tie iKtl+ hei(K+v) tl i KtUeiK(t tl)dt
tl

i(K+v) tU —i(K+v) (t—tl)dte —iKtl+. . . (Q}
tl

Now the first term e' K+V "e 'K" is the analog of (5) for the
problem without binding, that is the operator 0 of I.A. The last
term is also seen to contain Q. The middle term can be written

hei(K+v) le iK 1 dte'iK( 1 ) Ue K(
tl

and then transformed by tl —t=s into

ei(K+v) tie—iKt e+i KeUe—iKsd~

(7)

&HE expansion in powers of U' mentioned just above Eq. (33}
of the paper "Impulse Approximation'" by Chew and Wick

can be achieved by the following, perhaps not very rigorous,
procedure.

First de6ne a generalized Mgller operator + by the equation,

(1)

Because of the fact that the states p form a complete system,
, Eq. (1) defines + completely. One can then write Eq. (12) of I.A.
in the more symmetrical form,

Tb.=(@b, Vey )
or

The second-order term has also been evaluated and simplified. It
can be written, for instance,

Vf dt f d&ei(lr+v)spy ei(lr+v)
hatt p]e i j—e i —(ii)

The first-order term in Eq. (10) is not exactly the same as that
given in I.A. but the structure of the terms is extremely similar,
and it does not seem that any of the estimates previously made
have to be modi6ed.

These formulas also allow one to clarify the connection with
the time-symmetrical treatment, see I.A. , Eq. (31) and following
lines. One can of course define an operator + such that + tt, =p,
and a 2 =0 &V which is equivalent to T on the E+U energy
shell, i.e., Tb, = Tb, if E,=Eb. One 6nds

T =t —i dteiKtLQ ~ Uje i(K+v)'V+ ~ . (10')
+eo

The equivalence between T and T can then be veri6ed as follows.
First show that t—t = [tie, Z] where tie=0+0 t. This identity
shows that 0, unlike 0 and 0, is 6nite on the kinetic-energy
shell (because t=t thereon). Hence on the E+U energy shell,
t—t =

1
O', E+U]—$0, Uj =

t U, 0'j, which vanishes when U
goes to zero because 9' remains finite. Thus in taking the difference
between the expansions (10) and (10'), the zero-order terms nearly
cancel leaving only a first-order residuum, which may be shown
to be nearly canceled after some simple manipulations by the
6rst-order terms in the expansions, etc.

1 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952), quoted as I.A.
in the following.

2 The advantage of the time-dependent formulation lies just in the ease
with which such expansions can be made (Schwinger, Feynman, etc.). See
especially R. P. Feynman, Phys. Rev. 84, 108 (1951). G. F. Chew and
M. L. Goldberger, however, have kindly communicated to us a stationary
method which gives results essentially equivalent to ours.

3 The effect of the integral operator on a given finite wave packet is
easily examined in the momentum representation, where it can be seen
that the transformed wave function is again (even in the limit ti —+ —~) an
essentially finite wave packet for which the identification of e (++' ) ie
with 0 is legitimate.
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'NVESTIGATIONS of the pseudoscalar interaction of pseudo-
. ' scalar mesons with nucleons show that in addition to the
usual divergences associated with mass and charge, there is a
distinct @4 divergence which is associated with the scattering of
mesons by mesons. ' ~ We wish to point out that to understand
the origin of this effect, it is sufFicient to consider a simple vacuum
polarization calculation which takes account of the creation of
virtual nucleon-antinucleon pairs by a prescribed slowly varying
pseudoscalar meson Geld.


