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components. This varies, Of course, with the position
(s) along the "line of Ere" as well as with the photon
energy of the scattered radiation.

Figure 3 gives a picture of the results of this calcu-
lation. For purposes of comparison, the mean square
radial displacement of the first scattered beam is also
given (dashed lines).

At high energies the first scattered beam gets farther
from the line p=0 than the total scattered beam. This
is because the photons of energy E which have been
scattered two or more times have done much more of

their penetrating while they had an energy still greater
than E. At these higher energies, the photons tended
to stay close to the original "line of fire. "

On the other hand, at low E and high s the total
scattered beam tends to be farther from p=0. This is
because the low energy photons do not travel far. If
they appear very far from the original line they must
have accomplished most of their radial displacement
at an energy or energies greater than E but less than
the source energy. This requires more than one scat-
tering.
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Experiments have been made on a sample of Fe304 cut from a single crystal in such a way that its ferro-
magnetic domain pattern includes an individual domain wall whose motion can be studied. This sample has
a permeability which is high (about 5000) at low frequencies and drops o8 rapidly above 1000 cycles. A
hysteresis loop and data on wall velocity vs applied 6eld were also taken. The data are discussed in terms
of recent developments in the theory of the ferromagnetic domain wall. It appears that this theory explains
our data satisfactorily, and that in using it to explain our data we determine some of the fundamental mag-
netic constants of Fe304. We are also able to gain some insight into domain wall motion in ferrites generally
in this way.

I. INTRODUCTION

ANDAU and Lifshitz' first discussed the relation
~ between the velocity of a ferromagnetic domain

wall and the field which causes it to move. They ne-
glected eddy current ef'fects. Williams and Shockley'
have produced in silicon iron a domain boundary whose
motion can be detected and studied. Eddy current
eQ'ects are overwhelmingly important in determining
the motion of a wall in this alloy, as they and Kittel'
have shown, but these authors' have suggested that
even in silicon iron the relaxation behavior of the spin
system as discussed by Landau and Lifshitz may have
an eQ'ect. The object of the present paper is t'o study
the motion of a domain wall in Fe304 where the eddy
current eGects are small enough so that the spin relaxa-
tion can be studied in a fairly direct manner. Our
results will be shown to contain internal checks, and
they will be compared with ferromagnetic resonance
data. Furthermore it will be seen that our results are
explainable in terms of recent theoretical developments
and the Landau-Lifshitz results, and they therefore
provide conQrmation for these theories. It is therefore
possible to produce a theory of the permeability of
samples of certain shapes.

L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153
(1935).

~ H. J. Williams and W. Shockley, Phys. Rev. 75, 178 (1949).' Williams, Shockley, and Kittel, Phys. Rev. 80, 1090 (1950).

The sample used has a shape analogous to that of the
rectangles used by Williams and Shockley, ' being a
polygonal ring with each leg along a direction of easy
magnetization. Since the L1111direction is the direction
of easy magnetization in Fe304, the ring was diamond-
shaped with its face in the (110) plane, as shown
schematically by the solid lines in Fig. I. Each leg is
0.051 cm across and 0.102 cm thick as shown in Fig. j..

The erst samples studied were cut from natural
crystals of Fe304, and they were unsuccessful. They
required fields of the order of 30 oersteds to saturate,
presumably because of such impediments to wall
motion as cracks, imperfections, and impurities. It is
in fact doubtful that they had the appropriate domain
pattern at all. The successful Anal experiment was
made possible by the growth of synthetic Fe304
crystals4 of high purity and mechanical perfection in
the Laboratory for Insulation Research at the Massa-
chusetts Institute of Technology. One such crystal was
made available for these experiments by Professor von
Hippel of that Laboratory.

II. EXPERIMENTAL RESULTS

A hysteresis loop, data on wall velocity vs applied
field, and data on permeability es frequency were ob-

4 These crystals were grown under a contract sponsored jointly
by the ONR, the Army Signal Corps, and the Air Force. See
Progress Report V, Laboratory for Insulation Research, Massa-
chusetts Institute of Technology, 1949, p. 58.
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tained first, and observations were made on the domain
pattern in the sample later. We will start the descrip-
tion of results with our observations of the domain
pattern, however. The complete pattern has not been
observed, as the sample was broken in the process of
preparing it for these observations. Observations of the
pattern on the sample, fitted back together after the
break, however, show the essential features expected
from the experience of Williams and Shockley. ' This
pattern, which consists of a movable wall all around the
ring parallel to the (110) face of the sample and four
stationary walls across the corners, is shown by the
dotted lines in Fig. 1. A picture showing the inter-
section of the movable wall with the surface of the
sample along one leg is shown in Fig. 2. The extra walls
visible in Fig. 2 we attribute to the presence of the
break in the sample. We have also observed some of
the stationary walls across the corners of the sample.
This picture was taken using the technique of Williams
and Shockley. ' The other data will be interpreted on
the assumption that this pattern is correct, although
the fracture of the sample has made it impossible to
observe all its details.

In view of the incompleteness of the observations of
the domain pattern, it seems desirable to comment on
two alternative patterns which may seem plausible.
First, if several parallel movable walls had been present,
the hysteresis loop (see below) would have been some-
what diferent from that observed. Second, it may seem
possible that the movable wall was in the (112) plane,
which is perpendicular to the (110) plane indicated
above. This would produce a pattern more closely
analogous geometrically to that observed by Williams
and Shockley, ' but aside from the fact that observations
definitely indicate that this is not the pattern, the wall
has twice the area and therefore approximately twice
the energy if it is in the (112) plane. The difference in
our results which would be produced by changing the
assumed pattern from one of these to another is not
large and would not change any of our qualitative con-
clusions in any case.

Some experimentation with surface treatments was
necessary before it was possible to observe the domain
patterns of Fig. 2 on these artificially prepared surfaces.
It was found quite easy to observe the pattern when
the surface was clean and free down to the undisturbed
material. The best procedure found for achieving this
condition was to rub the ground surfaces of the original
sample smooth with the finest emery cloth obtainable,
and then to etch the sample by boiling it in 30 percent
H~SO4 for ~~ to 1 hour under a reQux condenser.

The hysteresis loop of the sample, observed on the
Cion recording Quxmeter, ~ is shown by the solid line
in Fig. 3. It will be seen from Fig. 3 that the loop
deviates from the square shape achieved in the silicon
iron sample of Williams and Shockley. ' It is felt that
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FIG. 2. Domain pattern on 112 plane which was outer face of a
leg of the sample. The movable wall is indicated by white arrows.
The other walls did not extend as far along the leg, and are there-
fore identified with the break in the sample. The edge of the
sample runs from the top of the picture toward the left.

this is due to the fact that there were chips out of the
sample so that the wall could not remain plane as it
approached the sample faces, and a much larger field
was therefore required to make it move in this region.
Sy manipulating the field in the course of taking a loop
such as that in Fig. 3, one finds that the actual loop has
a bulge where the straight vertical portion begins and
then contracts as shown by the dotted lines, so that the
coercive force is actually only approximately 0.1
oersted. This eGect has also been observed by Williams'
in silicon'iron rectangles. Maximum perm@abilities read
oG the loop of Fig. 3 are approximately 25,000.

~ P. P. Cion, Phys. Rev. 67, 200 {1945). 6 Private communication.
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Pulse techniques were used to obtain data on the
relation between domain wall velocity and applied held.
The sample wRS wound with R primary Rnd R secondary
winding, and the experiment was conducted as follows,
A square pulse of positive voltage was applied to the
primary winding in series with a resistor so that the
rise time of this primary pulse was short compared to
its length. This pulse was long enough so that the steady
held it produced lasted for longer than the time required
for the wall to move from one side of the sample to the
other. The signal induced in the secondary winding was
observed during this pulse on Rn oscilloscope whose
sweep was synchronized with the pulser. A second.

pulse of negative voltage was applied to the. primary
during each duty cycle in order to bring the mall back
to its original position. At low Gelds, a short high spike
was introduced just at the start of the pulse in order to
get the wall iver the hump in the hysteresis loop shown

by the dotted lines in Fig. 3. This initial spike had no
eGect on the subsequent motion.

The applied 6eld due. to the primary pulse II„»
is deduced from the current in the primary winding and
the solenoid formula II »=4xM. To obtain the rela-
tion between wall velocity and induced voltage per
secondary turn we have

Volts/turn= (dC/Ck) X10 '
=gsM. (hs/ht)w„, uX10 ', (1)

where As/lD ls equal to domMn wall velocity 'v, and w~g, g(

is the width of the wall between the boundaries of the
sample in the direction perpendicular to the mag-
netization. The wall is at right angles to the direction
of the velocity of course.

The calculation of wall velocity from the observed
signal and Eq. (1) is of course based on the domain
pattern. The results are shown in Fig. 4, where wall

velocity is plotted vs applied magnetic held. It will be

seen that we may write v 1900(P,»—P,) where B,
is approximately equal to the coercive force of 0.1
oersted as read from the hysteresis loop. It is clear that
(B,» H,—) is the 6eld which is effective in producing
wall motion. From the oscilloscope trace of wall velocity
es time it is clear that H, varies as the wall moves, so
that the value of II, read from Fig. 4 is an average. The
variations are essentially independent of applied held,
however, as one would expect if they are caused in this
way. Figure 5 is an example of one of the traces with
the average velocity indicated by a straight line. One
notices a fairly gradual decrease in velocity to zero, as
one would expect from the hysteresis loop.

The data on initial permeability p(= p' —jp") es
frequency at room temperature is given in Fig. 6. This
data was obtained from bridge measurements~ of the
inductance of a coil wound. on the sample. The data
shows simple relaxation behavior as the frequency
increases from low values where the wall follows the
applied held to high values where it no longer can do so.
The relaxation frequency is about 3000 cycles. The
value of p' at low frequencies is comparable with the
value read from the hysteresis loop at II=0, as we
should expect. The instability of the wall, however,
makes' the value dificult to read from the hysteresis
loop, so that this comparison cannot be made accurately,

The relaxation shown in Fig. 6 must be a domain
wall relaxation since the permeabilities involved cannot
be accounted for without invoking wall motion.

HL THEORY

We will now correlate our data with recent theories
of domain wall motion which start from the equation
of motion of a unit area of the domain wall. We may
use our data in this way to determine the constants of
motion (mass, viscous resistance, and stiffness) of a
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FIG. 4. Domain wall velocity verses applied 6eld.

' W. D. Voelker, Bell Labs. Record 20, 133 I', 1942).
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unit area of wall. This point of view has been developed
recently by Kittel, . Becker, Rado, '0 and Doring. "

We consider unit area of a 180' domain wall between
two regions of saturated magnetic material. Such a
system has an equation of motion for small amplitudes
of the applied magnetic field H which may be written

6000

5000

4000

3000

p', p Vs FREQUENCY

ms+Ps+ ns= 2M,H, (2)
2000

where s is the displacement of the domain wall along
its normal, m is its mass per unit area, I' is a parameter
measuring viscous resistance, and n is a stiffness param-
eter measuring viscous resistance, and n is a stiffness
parameter, which has meaning only for small fields
such as those used in initial permeability measurements.
When fields larger than the coercive force are applied as
in the experiment on wall velocity vs applied field, this
term disappears and the effective field inside the
material is less than the applied field by an amount
equal to the coercive force; this is shown by I ig. 4.
These results are quite reasonable when one remembers
the spikes which pull back on the wall in the experi-
ments of Williams and Shockley' for small wall motions
and snap off entirely if the wall moves a large distance.

Let us consider the initial permeability data. W'e
have for the relation between s and p,

I"=48/4H= ~C/A„;ihH= 8~M,zw„,n/A, »~,H, (3)

where w„ii is the width of the domain wall between
the boundaries of the sample in a direction perpendicular
to the magnetization and A„;iis the cross-sectional area
of the coil around the sample. The general solutions of
Eq. (2) for a sinusoidal applied field are too familiar to
be reproduced here, but we note that Eq. (2) can be
further simplified since we observe a relaxation mech-
anism (see Fig. 6). The values of n, t', and m will be
calculated later; suSce it to say here that the order of
magnitude of m is such that the first term on the left
in Eq. (2) is negligible, and we may write

Ps+ ns= 2M,H,

IOOO

IOO 1000 10000
FREQUENCY IN CYCLES PER SECOND

FIG. 6. p' and p" versus frequency.
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which we may solve to give, if H =Hoe &" ';

2M,HO

'+ "2t'2/n2 I+~2t'2/n2
e207$

As the remarks above indicate, under the conditions
of the experiment in wall velocity, Eq. (2) takes the
form

t'z= 2M, (H,pp
—H,). (6)

This relation obviously fits the data of Fig. 4.
We shall use Eqs. (5) and (6) later to derive values

for n and t'.
We next carry the theoretical analysis one step

further. The constants m, t', and n characterize a ferro-
magnetic domain wall. We now use the analysis origi-
nated by Landau and Lifshitz' for uniaxial crystals, and
later developed by Kittel, "to derive t' and m in terms
of the constants which characterize the ferromagnetic
material in general.

In order to derive I' in this way, we calculate the
power dissipated by a unit area of wall moving with
velocity v in an applied field Ho from the equation of
motion of the magnetization in a small volume. We
then set this expression equal to 2HOM, v in order to
find a relation between v and Ho, and t' is derived by
comparing this relation with (6). The equation of
motion is

dM/dt=r[MXH] —(X /M)( MX[MXH]). P)
The power dissipated per unit volume is H dM/dt,
wlllch is

H dM/dt XH, ', — (8)

FIG. 5. Oscilloscope trace of secondary signal voltage versus
time. The average velocity is shown by the horizontal straight
line.

8 C. Kittel, Phys. Rev. 79, 214 (1950};Proceedings of Grenoble
Conference (1950).' R. Becker, Proceedings of Grenoble Conference (1950).' Rado, Wright, and Emerson, Phys. Rev. 80, 273 (1950).

"W. Doring, Z. Naturforsch. 3a) 374 (1948).

where 8=HD+H„HO is the applied field and H, is a
field associated with the motion of the wall as Becker
has shown. It exists only in the wall and is perpen-
dicular to the wall. The value of this field is determined
from the precessional angular velocity of the spins in
the moving wall by means of the Larmor relation. It is

H, = (v/Y)(88/B—s), (9)

where p is the gyromagnetic ratio and 8 is the rotational

'2 C. Kittel, Phys. Rev. 80) 918 (1950).
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t" dM
H ds=2HOM. v= (Xu'/y'A&) ~ Lg(e)]'*de, (13)

where we have used Eq. (10) to transform from inte-
gration over s to integration over 8 as well as to evaluate
Eq. (9). We may now write

x" Ig(e)]~de

(14)

This is the desired relation between v and Ho which is
to be compared with Eq. (6). In this way we find

p= (&/~'~') Lr(e)]'de

We derive tn from the energy of motion of the wall,
which we equate to ~~me'. This was first done by
Becker.' He pointed out that this energy was equal to
(1/Sir) J'H, md V, and by means of Eq. (9) he was able
to write

t."(88) '
nz=(1/4irj')

~ I
—

I
ds. (16)

If we use Eqs. (10), (11), and (12) this becomes

~=(1/4~~'a&)& Lg(e)]&de.
0

It will be noted that the above analyses neglect the
CGect of eddy currents. As Williams, Shockley, and
Kittel' have shown, these will contribute part of the
measured value of the ratio of e to Bo and of the
damping constant P which also affects the data of

'3 C. Kittel, Revs. Modern Phys. 21, 541 (1950);see Eq. (3.3.9).

angle of the spins in a 180' wall. In the theory of the
domain wall" it is shown that

88/es= Lg(e)/~]' (10)

where A is a measure of the exchange energy per unit
volume due to gradients in the direction of the mag-
netization as given by Eq. (11).

Exchange energy/unit vol. =A L(V'ai) '
+ (V'n2)'+ (Vni)']. (1i)

Here 0.~, 0;2, 0,3 are the direction cosines of the mag-
netization. g(e) is the anisotropy energy density

g(e) =Xi(iii u2 +ix2~aa +am col )&

expressed in terms of 0. E~ is the fIrst-order anistropy
constant.

If we use Eqs. (9) and (10) in Eq. (8) and. integrate
over s to get the power dissipated for unit area of wall,
we have

Fig. 6. The equations of Williams, Shockley, and Kittel
will be used in the next section to correct the data for
tiddy current CGects.

IV. DISCUSSION

If we evaluate the various factors in Eq. (15), we can
use it to evaluate ) from the data given in Iig. 4.
Since the wall is in a (110) plane, we have

g(e) =4EiLcos'(8+35'16')+sin'2(8+35'16')], (18)

where 8=0 on one side of the wall and m on the other.
Theo,

Lg(e)]'de= 1.»I& I'. (19)

Pz= (P.+P,)z= 2M;(H.„,—H,), (22)

'4 L. Noel, Cahiers Physique 25a, 1 (1944).
I %. Kopp, thesis, Zurich (1919)."L.Noel, Ann. phys. 3, 137 (1948).
'~ C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951); see

Eq. (5).
'8 P. gneiss and R. Forrer, Ann. phys. , series 10, 12, 279 (1929).
'~ L. R. Bickford, Jr., Phys. Rev. 78, 449 (1950).

In performing this integration, care must be taken to
usc the posltlvc value of thc square root over thc whole
interval. The evaluation of A requires some discussion.
It may be done from the Curie constant and the Curie
temperature as described by Keel."This method gives
A=5.62)&10 7 if we use the data of Kopp" to evaluate
the Curie constant. This evaluation of the Curie
constant is unsatisfactory, however, since (as Noel"
has later shown it should) the reciprocal of the sus-
ceptibility above the Curie temperature follows a
curved line. A more satisfactory evaluation can be
made from a fundamental relation recently derived by
Herring and Kittel'~ between A and the Bloch constant:

A= [5,/n]~LA/13. 3C**], (20)

where k is Boltzmann's constant, C is Bloch's constant
as used in the relation M, =MD(1 CT*), 5, is the--
atomic spin, and 0 is the atomic volume. (So/0) is equal
to the saturation magnetization at O'K divided by the
Bohr magneton. From (20) we find A = 1.53X 10 ' and
this is the value we shall use. The Bloch constant used
in this evaluation (C=4X 10 ') was obtained by fitting
the Bloch T' law to the saturation magnetization meas-
urements of Weiss and Forrer. '8 Because of the square
root in (13), the value of li we obtain will not depend
critically on the value used for A. Using M, =460 cgs
units at room temperature, y=i.76&(10' and E~=
—1.1X10' ergs/cc as given by Bickford, ie we find
for Fe304 from Eq. (14),

ii/Ho= '/7 X 10 "/lI. (21)

The data in Fig. 4 give i/HO=1900. Before using
this in (21) to calculate X, however, we must correct
for eddy current losses. Equation (6) msy be written
in thc form



PER ROM AGNET I: C DOMAI N WAI. L I N Fe fL04 669

~= 3.5X10'. (24)

It is appropriate to compare this with the value deter-
mined from the ferromagnetic resonance line width
observed by Bickford. " His line width at half-power
points for magnetic absorption is approximately 1500
oersted. The relation between line width and X has been
given elsewhere. "Sample shape enters into this relation,
but not in a critical way, and we therefore ignore it
except as it aGects H, . The relation is

2DHy3E, /H„,= )I„ (25)

where the line width is 258. From Bickford's data and
Eq. (25) we find X=1.9X10'. Thus our value predicts
a line about —,

' as wide as Bickford's.
The difference between our value for P and Bickford's

may be due at least partly to field inhomogeneities in
the samples used by Bickford. Such inhomogeneities
have been observed to aAect ferromagnetic resonance
line widths in ferrite samples, "" and Bickford's
samples were large enough to indicate that such eGects
are expected.

All the factors in Eq. (17) have now been evaluated,
and when we make the numerical calculation we find
m=9;5X10 "g/cm'. This value is so small that the
first term in Eq. (2) does not affect our experiments
signi6cantly.

From P= P,+P„asgiven by Eq. (23), and from Fig.
6 using Eqs. (3) and (5) we can determine n for our
sample. We note that p' has dropped to —,

' its value at
low frequency when coP/a= 1. Figure 6 shows that this
occurs at 3000 cycles. In this way we find

n= 9100. (26)

20 Yager, Gait, Merritt, and Wood, Phys. Rev. 80, 744 (1950);
see Eq. (A-6). The ) of the present paper is euqal to ya3f, in the
notation of this reference.

"Yager, Merritt, and Guillaud, Phys. Rev. 81, 477 (1950).

where p, measures the contribution due to eddy currents
and p„measures the effect described by Eq. (21). From
Fig. 4 we now have P,+P„=2&V,/1900=0.484. From
the low field approximation for eddy current eKects
given by Williams, Shockley, and Kittel (see reference
3, Eq. (11)) we find P,=0.078. Hence, experimentally,

P=0.484, P„=0.406, (23)

for Fe304. From Eqs. (21) and (22) 7.7 X 10 "/X
=2M, /P„, and we find

We can also check our value of P by determining it
from the data of Fig. 6. If we make a reasonable es-
timate of A„;ifrom the cross-sectional area of a leg of
the sample and the thickness of the windings, we may
use Eqs. (3) and (5) to find a. We may then derive P
from the fact that &oP/n=1 at re=2m. X3000. This leads
to P=0.5, which checks the value given in Eq. (23)
satisfactorily. The accuracy of the check is not as good
as we should like, however, as it was impossible actually
to measure A „;i.It is hoped that this can be done when
larger samples are available for these experiments.

It should be emphasized that P is a fundamental
property of the material whereas u is a constant charac-
teristic only of a particular sample. As Eq. (2) shows,
u measures the rate at which magnetostatic energy is
built up as the position of the wall changes, and in
our sample it has a uniquely low value. If it were
increased, as it would be if the sample shape were such
that the wall could not move so easily without building
up a magnetic field, the permeability at low frequency
would drop, the relaxation frequency for IM would
increase, and the wall motion might begin to show
resonant behavior. Bickford" has given a permeability
for Fe304 at room temperature of about 45 in a sample
where the domain pattern is not controlled, but in
which we may think of the effective u as being enough
higher than ours to reduce ii' from our value (4900) to
his.

It may be noted here that single crystal samples of
the shape and orientation used in these experiments may
be of use in devices involving saturable reactors such
as memory devices and magnetic amplifiers.
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