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Point Transformations in Quantum Mechanics
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An isomorphism is shown to exist between the group of point transformations in classical mechanics and
a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is
used to indicate that the quantum analogs of physically signi6cant classical expressions can be constructed
uniquely in any coordinate system. There is no ambiguity in the ordering of noncommuting quantum
operators, and the method of constructing the quantum analogs is covariant under general coordinate
transformations. The method is actually only applicable to systems having Lagrangians which are at most
quadratic in the velocities, but this includes all systems which are presently of interest in physics. The
method is applied to two intrinsically nonlinear examples, one of which is the gravitational field, The correct
Hamiltonian operator for a quantized version of Einstein's gravitational theory is constructed.

&. INTRODUCTION

"/RESENT day methods of formulating quantum
mechanics are based more or less completely on

analogy with classical mechanics. There are certain
well-known rules for passing from the classical theory
to the quantum theory. One replaces ordinary numbers
by operators and Poisson brackets by commutator
brackets. In principle, however, an ambiguity always
presents itself when one is faced with the task of con-
structing the quantum analog of a classica]. expression
which involves the product of two factors whose poisson
bracket does not vanish. One does not know, o priori,
how the corresponding quantum factors should be
ordel ed.

Fortunately, the systems occurring in nature are for
the most part simple enough in their mathematical
description so that one has no trouble in deciding what
the correct order should be. Nevertheless the aforemen-
tioned ambiguity represents a real deficiency in the
present theory, because (1) the simplicity of natural
systems is only apparent and is due to the fact that for
such systems there usua11y exist what may be called
"natural" coordinates in which the dynamical equations
take particularly simple forms, and (2) the trans-
formation theory of dynamics, which plays such an
important role in the quantum theory, owes its validity
to the invariance of classical Hamiltonian systems under
a much wider group of transformations than one has
heretofore been able to incorporate sensibly into the
quantum scheme, owing to said ambiguity.

It is known that a true correspondence between the
classical and quantum theories exists with respect to a
certain subgroup of the group of all canonical trans-
formations, namely the subgroup of all linear inhomo-
geneous canonical transformations. If one restricts
oneself to this subgroup, then an isomorphism can be
set up between classical quantities and their quantum
analogs, when these quantities are at most quadratic
in the canonical variables. A similar isomorphism does
not exist, however, for other classical quantities, even
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undcx' this I'cstllctcd subgI'oup. Thc qucstloIl thclcfolc
arises: Is it possible, for a given dynamical system, to
choose the canonical variables in such a way that the
important physical quantities, energy, momentum, etc.,
become quadratic in these variables' Unfortunately,
the answer to this question is no in many cases of im-
portance, e.g., interacting 6clds.

Even in the case of interacting systems, however, no
ambiguity in formulating the quantum theory has
arisen in practice, because one has always supposed that
a clear distinction could bc made between the various
systems in interaction, and. one has usually imagined
that it makes sense to talk about "free systems" and to
treat the interactions as perturbations. For the "free
systems" the answer to the above question is in the
afhrmative and a set of "natural" dynamical variables
does exist. But, as we have already remarked, the
existence of "natural" variables is more apparent than
real, and may be more a reflection of the way our minds
work than of the way nature works.

MoI'c pertinent to the plcscnt dlscusslon ls thc fRct
that the linear inhomogeneous subgroup of canonical
transformations is never used, as such, in practice.
Indeed, the restriction to this subgroup is highly arti-
hcial. A type of canonical transformation which has
much more physical content and which is much more
frequently used in solving actual problems is a general
transformation of the coordinate variables, i.e., a
so-called point transformation.

In using point transformations in quantum theory,
one usually 6rst "quantizes" a given system in a set of
"natural" coordinates (e.g. , rectilinear coordinates) and
then carries out the coordinate changes afterwards.
However, if we adopt seriously the philosophy of
general relativity, then we should say that one coor-
dinate system is as good as another, and we need not
hRvc felt obllgcd to carry out thc .quantlzRtlon ln R

"natural" coordinate system. Our rules of quantization,
as mell as our quantum-mechanical equations, should bc

' For a full discussion of this point, see L Van Hove, "Sur le
problkme des Relations entre les Transformations Unitaires de la
Mbcanique Quantique et les Transformations Canoniques de la
Mhcanique Classique. " (To be published. )



covariant under general point transformations, These
requirements become all the more necessary when it is
pointed out that there do exist systems in nature for
which there are no "natural" coordinates; e.g., a par-
ticle constrained to move on a curved surface; the
gravitational 6eld in the general theory of relativity
(see Sec. 6 below); any intrinsically nonlinear system.

It is the purpose of this paper to show (1) that it is
possible to formulate a set of mell-defined rules for
passing from the classical to the quantum theory in a
variety of cases which appears to be wide enough to
include all systems occuring in nature, (2) that these
rules are covariant under the canonical subgroup of all
point transformations of a certain very general type,
(3) that there exists an isomorphism between this sub-

group and a corresponding subgroup of the group of all
unitary transformations in Hilbert space, and, 6naBy,
(4) that there exists a unique correspondence between
the classical expressions for the important physically
observable quantities, and their quantum analogs,
which persists under these subgroups of transforma-
tions. In connection with this last assertion it must be
pointed out that the quantum. analog of a classical
expression may contain, in addition to a term which has
the same appearance as the classical expression, also a
term which vanishes as fs—+0. All that one must require
is that the form of this nonclassical term as well as that
of the classical term, remain invariant under point
transformations.

i ),= ix')(x'i ),d(o'. (2.1)

dao' denotes the volume element of the manifold, and
the integration is to be carried out over the entire range
of coordinate values. The quantity (x'~ ), is the wave
function of the system, and may be denoted in more

2. REPRESENTATION THEORY IN GENERAL
COORDINATES

We begin by considering an arbitrary set of general
coordinates x' (i=1 e) and conjugate momenta p;
which may be used to describe the dynamical behavior
of some system. In the quantum theory these coor-
dinates and momenta are Hermitian operators. We shall
work in the Schrodinger representation in which the
algebra generated by the x's and p's refers to a Axed

instant of time, while the actual temporal behavior of
the system is described by a time dependent state
vector

~ )~. We shaH suppose that each of the operators
x' possesses a continuum of eigenvalues ranging from
—~ to ~. We shaB further suppose that the x's are
coordinates in an Q-dimensional Riemannian IYlanlfold

possessing a metric tensor g;;. We shaB see later that the
metric tensor, which is a function of the x's alone, is
determined in each case by the dynamical system itself.

The state vector ( )~ may be expanded in terms of the
eigenvectors ] x') of the x's in the foHowing fashion,

customary form by

P(x', 1)=—(x'i )(. (2.2)

~
|P(x', 1)

~

'dry' is the probability that the coordinates of
the system will be found in the volume dec' in the
neighborhood of the point x at the time t. This inter-
pretation of |P(x', t) as a "probability amplitude"
depends upon a normalization condition for the eigen-
vectors

~

x') which may be expressed in the form

(x'~*")= S(x', x"). {2.3)

8(x', x") is the "generalized delta-function" for the
manifold and is defined by the conditions

8(x', x")=0 for x'Wx", (2.4)
and

f(x')h(x', x")dx'= f(x") (2.5)

8
(x"-x"') P(x', x")= -S,'S(x', x"),

t9x ~

(2.7)

S(x', x")= — y(x', x")—
Bx Bx

~(x', x"). (2.g)

The contracted ChristoKel symbol appearing in (2.8)
may be evaluated at either x' or x".

The adoption of the above so-called "coordinate
representation, " in which the eigenvectors of the x's
are chosen as basis vectors, depends on the existence of
the commutation relations

[x', x&)=0 for alii, j. (2 9)

The matrix elements of the operators x' in the coor-
dinate representation are given by

(x'i x'i x")=x"b(x' x")=x"'b(x' x") (2.10)

The corresponding matrix elements of the operators p;
are obtained from the commutation relations

[x', p;]=i7S,'

In matrix form, (2.11) becomes,

(2.11)

(2.12)

~V S,'S(x', *")= f (x'i x'i x"')(x"'i p;i x")

—(x'~ P, [x"')(x"'~x'~ x")j da)"' (2.13)

for all "reasonably well-behaved" functions f(x').
The representation of the invariant volume element

da&' in the form da&'= g'(x')dx', where g(x') is the deter-
minant of the metric tensor at the point x', enables one
to put the generahzed delta-function into the following
analytic form involving the ordinary delta-function

b(x', x")=g l(x')b(x' —x")=g l(x")5(x'—x"). (2.6)

Using this form, one may readily derive the following
two important identities
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where F; is an arbitrary function of the coordinates
which may be evaluated at either x' or x".

The solution (2.14) must also satisfy relations (2.12).
This imposes certain conditions on the functions F;.
Introducing the functions

F;=F;+iI't

we have

f
I&x'I p'Ix"')(x"'I p Ix")

—(x'
I p; I

x"')&x'"
I p; I

x")I
d(o"'

8
= g '(*') —Ii ~(*'—*"')+F( ')~(*'—'")

Bx '

t9

X -i7 S(x'"-x")yF;(x")S(x"'-x")
gx/fI j.

8—-iV S(x'—x"')+F,(x')S(x'-x'")
Bx ~

8
X ih —h(x'" x")+F,(x"—)b(x'" x") dx"'—

gx//I j

t9 8
F,(x') F;(x') S—(x', x"),

Bx ~ Bx
(2.15)

which implies that the I'; are of the form

t9

F;(x') = F(x')—
Bx

where F(x') is some function independent of the index i

Since the Christo6el symbol ~. is also of this form,JZ.
being in fact equal to —,'8(log g)/Bx", we may write

8 cjF(x')
(x'I p; I

x")= il'i 8(x—', x")+ h(x', x") (2.17)
l9x Bx

where F= II —ik logg&.

Owing to the fact that the p's are Hermitian operators,
the function F is not entirely arbitrary. The Hermitian
condition may be expressed in the form

&x'I p'I x"&= &*"
I
O'I*')* (2 1g)

which leads, in virtue of the identity (2.8), to the con-
dition

F =F+i jt logg&. (2.19)

of which the most general solution is (see (2.7))

8
(x'I p;lx")= ivt— b(x', x")+F;b(x', x"), (2.14)

Bx ~

F must therefore have the form

F=R—x, i7i logg&, (2.20)

where R is a real function of the coordinates.
The function R may always be removed from the

scene by a trivial unitary transformation. One intro-
duces a new set of basic eigenvectors Ix')t, which are
connected with the old eigenvectors by the relation

I
x')t = expI iR—(x')/I't ]I

x'). (2.21)

If we confine ourselves to coordinate space repre-
sentations, the operators x', p; may be regarded as
being able to act directly on the wave function f(x', t)
itself, by means of the de6nitions

&x'I*'I & =xV(x', t), &x'l p'I &~= p'4(x' t)

The x's and p's then have the following coordinate space
representations, '

a
p;= iI't ,'iI't ——(x'). (2.24)

l9x J Z

In subsequent sections we shall drop the primes used
to designate particular eigenvalues of the coordinate
operators. The use of primes will be reserved to desig-
nate general point transformations.

3. POINT TRANSFORMATIONS

In classical mechanics, for every transformation of
the generalized coordinates of the form'

x"=x"(x), i= 1, (3.1)

there exists a corresponding transformation of the con-
jugate momenta, of the form

p =(Bxt/Bx")p, , (3.2)

which preserves the canonical nature of the x's and p's.
Equations (3.1) and (3.2) together de6ne what is called
a point transformation of the x's and p's.

Point transformations may also be defined in quantum
mechanics, in an unambiguous manner. Since the coor-
dinates x' all commute with one another there is clearly
no ambiguity in writing down the quantum analog of
Eq. (3.1). There is likewise actually no ambiguity in

'The fact that the representation of the momentum operators
in curvilinear coordinates differs from that in rectilinear coordinates
in Rat space, by the presence of the contracted Christoffel symbol,
has already been noted. See, for example, W. Pauli, Wellen-
mechanik, Handbuch der Physik, Band 24, I, p. 120 (1933).' The Jacobian of the transformation is assumed to be nonvan-
ishing.

That is, the two bases dier only by a phase trans-
formation. We shall suppose this transformation already
to have been carried out. The matrix elements of the p,
then reduce to

8
(x'I P, I

x")= ik —8(x', x")——,'ijl 8(x', x"). (2.22)
Bx" j $



p''= 2[ax'/»", p 1+ (3 3)

That Eq. (3.3) gives the correct quantum trans-
formation law for the momentum operators may be
shown by making explicit use of expressions (2.24). We
hRve

t9$~ | 8X2

p4 pl+ pf)
8$ 2 Bx

where

formulating the quantum analog of Eq. (3.2). For the
only problem here is that of correctly symmetrizing the
right-hand side of (3.2) so as to make it Hermitian. One
may easily convince oneself that all methods of sym-
metrization lead to the same result, namely, '

5=-', [X'(x), p,],. (3.10)

S is the generator of the infinitesimal point trans-
formation.

The subgroup of unitary transformations in quantum
mechanics which corresponds isomorphically to the
group of all. point transformations in classical mechanics
is given by the set of all unitary operators exp(r5/iA),
where 5 has the form (3.10) and where v is an arbitrary
parameter. Each set of functions A' de6nes a one-

parameter subgroup of the point-transformation group.

4. DYNAMICAL SYSTEMS IN GENERAL COORDINATES

In this section we shall consider the set of all dy-
namical systems which, in the classical theory, have a
Lagrangian function of the form

+
8$ kg Bx~ Bx

(3.5) I= G2,,x-'x'+A, &' V,— (4.1)

which shows that the i:nverse transformation has the
same form as (3.3).

The unitary representations of the point-transforma-
tion group may be obtained by determining the
infinitesimal generators of the group. An in6nitesimal

point transformation may be expressed in the form

x"=*+~~'(x) (3.7)

P''=P.—l~[(a/ax")~'(x), P~]+, (3 g)

where ~ is an infinitesimal constant and A' is a function
of the x's. More generally, every function f of the x's

and p's transforms under (3.7, 8) according to

f'=f+(e/+) Lf, 5] (3 9)

For example, one might expand Bx&'/Bx" in a power series in
the x's. The operator p could then be inserted between the x's
in any symmetrical fashion in each term of the series, The result
of commuting p symmetrica11y to the left and to the right through
the x's is to produce two terms of order 5 which cancel each
other, leaving simply the expression (3.3).

Equation (3.5) is, however, just the usual transforma-
tion law for the contracted Christoffel symbol. Ex-
pressions (2.24) are therefore covariant under point
transformations,

That there exists an isomorphism between the group
of poillt tlRnsfoI'nlatlons ln clRsslcal mechanics Rnd R

corresponding subgroup of the group of all unitary
transformations in quantum mechanics is thus quite
evident. The group property ensures that each point
transformation has an inverse. It is instructive to display
explicitly the inverse of Eq. (3.3). We write

—2[ax'&'/ax', p ]+
=l[a '/a*' [a*"/a*",p],]+
=—,'[[ax'&/»', ax'/ax'&]+, p„]~

+,'[ ax" /ax-&', [pI, ax'&'/ax']]

=-,'[a,j', pI,]+,'~A[ax'/ax", a'x'&/»"ax']= p, , (3.6)

where 6,;, A;, and V are functions of the x's and where
the matrix IIG,, II is symmetric and nonsingular. We
assert that this set includes all systems in nature which

satisfy Bose-Einstein statlstlcs, i.c.
&

for which Poisson
brackets, involving coordinates and momenta singly as
well as multiply, correspond to commutator brackets in

the quantum theory. The case of I'ermi-Dirac systems
will be discussed brieQy in Sec. 7.

There exist, to be sure, Bose-Einstein systems which

have Lagrangians of the form (4.1) but for which the
matrix IIG;, II is singular. The singularity of the matrix,
however, simply implies that the momenta are not all

independent, and the lagrangian for such a system can
always be replaced by a Lagrangian for which IIG

nonsingular, together with a set of supplementary con-
ditions expressing the relations between the momenta.
The existence of such supplementary conditions does
not alter the discussion which follows.

Under general coordinate transformations the quan-
tities V, A;, and G;, transform like a scalar, a covariant
vector, and a covariant tensor respectively. V and A;
have respectively the nature of a scalar and a vector
potential. 6;; can likewise be regarded as a tensor
potential. However, it is a true potential only if it
cannot be "transformed away, " i.e., if there exists no
coordinate system in which it is everywhere constant.
We shall tentatively identify 6;; with the metric tensor
of the manifold of the x's—or rather with some con-

stRnt nlultlplc of lt
~v=~Cv (4.2)

We shall subsequently discuss in fuller detail the
reasons for this identification.

The Hamiltonian function corresponding to the
Lagrangian (4.1) has the form

&=(1/2I )g""(O' A')(P~ A;)+V — (4—3)

where g'~' is the contravariant inverse of the metric
tensor and the momenta are given by

(4 4)
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The question we now have to answer is how to put
expression (4.3) into quantum form in a covariant and
unambiguous manner. Actually there is no ambiguity in
the symmetrization of the terms linear in the p's, so the
question reduces simply to that of 6nding the quantum
analog of g'&p~p;.

Let us 6rst investigate the transformation law of the
wave function lh (x, h), because, when all is said and done,
it is the Schrodinger equation

If we now write the quantum analog of the Hamil-
tonian function in the form

H=(1/21)(P' ~*)g"(Pl ~J)+&'Q+~ (4 1o)

the Schrodinger equation takes the covariant form

2728$/Bt =Hf

(@'/—2~)r"4 "+(sf/h)(~V"+ ~2'.4)
NB//8h= HP, (4.5) +[(1/2P)A'A, +Vflh. (4.11)

which must transform covariantly. If the quantized
system has no nonclassical degrees of freedom, such as
spin, then the interpretation of ~P~

' as a probability
per unit volume of the x-manifold implies that f is a
simple scalar quantity. If, however, P is composed of a
multiplet of components describing spin angular
momentum, then the spin transformations of f are not
independent of coordinate transformations and lh is no
longer a scalar. s %e shall here consider only the scalar
case, as the generalization to the other cases will be
obvious at the end of the discussion. '

The quantum analog of the expression g'&P,P, is now
readily determined by considering the well-known
special case in which the x-manifold is Rat and the
coordinates are rectilinear and normalized. The ex-
pression then takes the for'rn p,p, and the corresponding
quantum operator is simply —h2282/Bx'Bx'. Using the
convenient shorthand notation in which indices fol-
lowing a comma indicate ordinary differentiation with
respect to the corresponding coordinates, we may write

The generalization of expression (4.6) to the case of
curvilinear coordinates is

The quantity 52Q may be regarded as a kind of quantum-
mechanical potential which goes to zero as 5~0. It is
the quantity which must be added to the covariant
classical Hamiltonian in order to produce the covariant
quantum Hamiltonian. From the covariance of Eq.
(4.11) it is evident that the form of expression (4.10)
remains invariant under all point transformations {3.1).
Furthermore, we have been led to this quantum ex-
pression in an unambiguous manner. v

{5.1)

together with a corresponding transformation of all
operators. The new Hamiltonian operator will have the
same form as (4.10), except that all operators will be
written in bold face type to indicate that we are working
in the Heisenberg representation. The time dependence
of the Heisenberg operators is given by the canonical
equation

df/dh= (1/sk)[f, Hj. {52)

5. THE HEISENBERG REPRESENTATION AND
THE EQUATIONS OF MOTION,

The passage to the time-independent state vector of
the Heisenberg representation is effected by the unitary
transformation

~ )s——exp(2Hh/O)
~ )„

$2g rip, . (4.7)
In particular we have

where the dot - denotes covariant differentiation.
The simplest method of symmetrizing the expression

g'&'p;p; in the quantum theory is to write it in the form
P;g'2P;. We are thus led to investigate the quantity
P,g"p,P+fisg'& P.o. Using the 'explicit expression (2.24)
for the momentum operators, and remembering that P

' is a scalar in calculating its covariant derivatives, we
6nd

dx'/«= (1/2h )[C",p )+ (1/l )&',—

which may be solved for the y's to give

y;=-', h2[g;;, dx&/dtj~+A;.

(5 3)

(5.4)

[f, dx'/dt j= (sh/p) g'&f, ; (5 5)

If f is a function of the x's alone, then Eq. (5.3) tells us
that

&'g"& *2 PC"P—A = 2h &'Q—4 (4.8)
Using Eqs. (5.2), (5.4), and (5.5) one may readily show
that the time derivative of f is given by

k k l 1 k

'j lk 2ki ljki, ;
(4 9)

~ In the case of isotopic spin, on the other hand, the components
of P are each scalar quantities, for isotopic spin rotations bear no
connection with coordinate transformations.

6 The extension to the nonzero integral-spin cases is well known
in the theory of tensors. For the theory of spinors in general
coordinates see W. Pauli, Ann. Physik (to be published).

df/dt= ', [f;,dx'/dh]~- (5.6)

V There does remain a slight ambiguity in the fact that we
could add to expression (4.10) a term of the form rr(112/~)R, where
g is the contracted curvature tensor of the x-manifold and a is an
arbitrary number. However, at would then be an extra dimension-
less "constant of nature" for which there seems to be no present
need. More interesting, perhaps, is the possibility of introducing
constants having the dimensions of length by adding invariant
terms proportional to J'~, R'~R;;, etc.
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The time dependence of the momentum operators is
a little more complicated. One finds

dp, /ch=x2p(dx&/dt)gyp„dx'/dt+ ,'[A-;, „dx&/d't'j+

which the element of length is given by r'(d0'+ sin'ed+'),
r being the radius of the sphere, The momentum
operators conjugate to the coordinates 8 and q have the
forms

where

—(l'i'Q+ V), ,+|i'W (5.7) (6.1)

(6.2)

&'=(1/4~)Lg""(g", ~g,"„), +lg', ~g™,g;., ,]. (5.g)

Finally, taking the time derivative of Eq. (5.3), using
Eqs. (5.6) . and (5.7), and juggling factors a bit, one
obtains the following equations of motion for the x's:

d'x' dx& i dx" 1 dx&
pi

dt2 dt ~k dt 2~ "dt +

The "quantum-mechanical potential" Q is given by

Q= —(8yr') '(csc'tt+ 1), (6.3)

where p may now be identified with the mass of the
particle. The operator equations of motion become

d'8 1 dP dP hi
———(sin28)—+ cot8 csc8= 0, (6.4)

dt' 2 dt dt 4p'r4

where

d'P dP d8 d8 dP 3Ii'
+—(cot8)—+—(cot8)—+

dt' dt dt dt dk p'r4
cot8 csc'8=0. (6.5)

and

Z'= g'~,-(1/4~) g'"L(g""g"..-g, ),.
(5.10)

+g".i(g'"gg~, ~), +(g'™g",gLE, g), .~j (5 11)

6. EXAMPLES OF INTRINSICALLY NONLINEAR
SYSTEMS

Perhaps the simplest example of a system for which
there exist no "natural" coordinates and for which the
methods of the preceding sections are therefore man-
datory if a quantum theory of the system is desired, is
that of a particle which is constrained to move on the
surface of a sphere but which is otherwise free.

It will immediately be objected that this system does
not satisfy one of the conditions which we imposed at
the outset, namely that it be describable in terms of
coordinates whose values range from —~ to ~. How-
ever, we may suppose that the particle, instead of being
constrained to move on the surface of a sphere, is con-
strained to move on a surface which has the topological
properties of an infinite plane but which, in a certain
region, is shaped like a portion of a sphere. It is this
portion that we will be interested in. (Alternatively,
we may say that the particle is indeed constrained to
move on the spherical surface, but that it is forbidden
to approach a certain point on that surface. ) This means
that if we construct a wave packet to represent the
particle, the theory of the preceding sections —in par-
ticular, the equations of motion (5.9)—will describe the
behavior of the wave packet only so long as its dimen-
sions remain small compared to those of the sphere.
When its dimensions are no longer small, the Schrodinger
equation (4.11) will still remain valid, but it will then
be necessary to impose cyclic conditions on the wave
function f.

We shall use customary spherical coordinates, in

As A~O, or as p—+~, these equations are seen to reduce
to the classical forms.

Another system of interest for which there exist no
"natural" coordinates is the gravitational field. In this
case, the "coordinates" are the gravitational potentials,
which are customarily chosen to be the components g„„
of the metric tensor of space-time. To say that there
exist no "natural" coordinates for the gravitational
field is to say that there exists no representation in which
the gravitational field equations become linear. For
example, we might use the contravariant density
(—g)~g"" instead of g„„.This would be a "coordinate"
or "point" transformation, but in terms of the new
"coordinates" the field equations wouM still be non-
linear.

Recently Pirani and Schild, ' using some methods
developed by Dirac, ' have constructed an explicit
Hamiltonian for the gravitational field. Their ultimate
purpose in doing this was to obtain an eventual quan-
tization of the gravitational field. However, one of the
terms in their Hamiltonian is quadratic in the momenta
conjugate to the g„„,and thus they are faced with the
factor-ordering ambiguity. One could attempt to obtain
a quantum Hamiltonian from their classical Hamiltonian
by using the simplest possible symmetrization pro-
cedure, but then one would not know whether or not an
equivalent quantum theory would have been obtained
if another set of gravitational "coordinates, " such as
.(—g)&gl'", had been used instead, with a similar sym-
metrization procedure. What is necessary, in order to
remove this uncertainty, is to calculate and include the
"quantum-mechanical potential" Ii'Q for the problem.

We shall need for this purpose only the quadratic
term of the Pirani-Schild Hamiltonian. This has the

8 F. A. E. Pirani and A. Schild, Phys. Rev. 79, 986 (1950).'P. A. Dirac, Can. J. Math. 2, 129 (1950); see also Mimeo-
graphed Notes, Canadian Mathematical Congress, Vancouver,
B. C., (Summer, 1949).
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+quad
l

s l~l ( g—) (g~ yg p&&+ g~&&g p&
2~

—g.pg, &&) vr pm &'du. (6.6)

Using the relations

(~/~g") (—g)'= 2(—g)'g"",

(~/~g")g'= l—(g "g'"+g "g"),

(8/Bg )P= l&—t")

(6.14)

(6.15)

(6.16)

The integral on the right is a triple integral, with
respect to three parameters I', I', N3. Without entering
into too much detail, we may say that the points x of
space-time are labeled by these parameters, together
with a fourth parameter t, which plays the same role as
the time in conventional Hamiltonian theory. A dot
denotes differentiation with respect to t. l is a vector
normal to the space-like surface 1=constant, and is
defined by 1,=t,{—t(x,)/8(u, t). Also, P=g Pl Jp Th.e
coordinates x' on any space-like surface are regarded,
in the present scheme, as dynamical variables on an
equal footing with the g„,. Since the parameters I', t are
completely arbitrary, the "velocities" x are arbitrary.
For each such arbitrary "velocity variable" there exists
what Dirac' calls a "first class p." Only a part of one
of the first class p's occuring in gravitational theory
appears in expression (6.6).

In the quantized theory the momenta vr l' will satisfy
the commutation relation

[g p(u), ~~'(u')]= 'ih(b ~-bp'+b 'bp~)b(u u') —(6."t.)

which gives

(~P)

(-tI)(vb)
5I 'l&P, —(6.18)

we may readily construct the Christoff'el symbols for
the 10-dimensional g„„-manifold. We have

[( C)(vb), ( t.)]
lf
2[G{api&cr), {Yp&+Gimp&&ari, &api G&ap&&'Yp&, &sr&]

[—I PG& p&& r&
—I I G&&&&&& r&+N G& p&&&i&]

+ 'I'( g-)'L-g" (g-g™+g'g' g'g-')

gpr(gRQgE&&+ gRbgEQ) gtxE (gppgr6+ g p&&grp)

(g "g—r'+g'gr')g' g "(g"-g'+g"g")

+(g" g '+g 'g )g'+g (g' g '+g'g )] (6.17)

The m's do not correspond to the momenta of systems
of a 6nite number of degrees of freedom. We must
replace them by P's given by P P= [b(0)] 's P in order
that we have commutation relations of the form

(~P)
6 (V&) (eL') =(35/2)t '(—g) '

(o'&) (Vb), &.r&

(6.20)

Lg-p(.), P"( )]=l'I (b- bp'+b-'bp )

for each u. The Hamiltonian (6.6) then appears as the
Hamiltonian of a nondenumerably infinite set of
identical systems, each having 10-degrees of freedom
and a Hamiltonian of the form

O'Q= A'(85/8)i I.l '(—
g) I[8(0)]'du. (6.21)

The correct quantum-mechanical Hamiltonian is there-
fore written in the form

(68) and 6nally, the "quantum-mechanical potential" for
each system,

Se,„.p ———,'*'t,[b(0)]'(du)l '(—g)
—I

X(g gpp+g sgp gpg~p)P P— (6 9) /AT, 3 I [ PG{ P&&

If the "mass constant" p of each system is taken to be +0'(85/8)3 '( g)
I—[b(—0)]'-]du (6.22).

The "quantum-mechanical potential" is seen to be a
strongly divergent quantity in the present case. It must
nevertheless be retained in all quantum expressions in
order that the Hamiltonian operator be invariant under
changes in the variables used to describe the gravita-
tional field.

Those terms in the total Hamiltonian which do not
appear in (6.22) are (at most) linear in the &r's, and
their symmetrization does not give us any trouble.

I/t =2x I.[b(0)]'du, (6.10)

then the "contravariant" metric tensor of the g„„-mani-
fold is

G"""'=lI '( g) '(g- gpp+—g-Cp g-pg p) (6—»)

The "covariant" metric tensor is

G&-p& &»&
= 2P( —g)'(g"g"+g'g" —g'g"), (612)

satisfying
'F. CONCLUSION

G& p&& r&G'"&&"&=2(b~ b&&P+bp b~P)
The formalism of the preceding sections is unsym-

(613) metrical in the coordinates and momenta. Such an
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asymmetry does not exist in the transformation theory
of classical mechanics, where one deals only with
Poisson brackets in which coordinates and momenta are
on a completely equal and complementary footing.

Actually, a kind of symmetry can be retained in the
formalism of Sec. 2. In any given coordinate system
there do exist eigenvectors Ip') of the momentum
operators, satisfying

P'I P') =P 'l P'&. (7.i)

(P'I )=J"(P'I x')(x'I )~~'

=(2 &) '"f '(P') g'( ')

xexp( —ip x'"'/A)&x'I )dx'. (7.3)

The normalization condition

(P'lP")= "(P'I*')( 'lP"&~ '=f '(P')~(p' —P"), (74)

and the representation of the operators x'in momentum-
space in the form

&p'I x'I p"&=)t &p'I x')x"&x'I p"&d~'

ik
+— [iogf(p')7f '(P')~(p' —P"), (7 ~)

. 4 BP

allow one to identify fl(p')dp' as the volume element of
momentum-space. The function f(p') is completely
arbitrary.

The symmetry between coordinates and momenta
which is obtained via Eq. (7.2) is, however, quite arti-
ficial, for the concept of "plane wave, "as expressed by
this equation is not a covariant one. If a state vector
is an eigenvector of the momentum operator in one
coordinate system, it will not, in general, be a mo-
mentum eigenvector in another coordinate system.

When the formalism is applied to actual physical
systems then, of course, the symmetry between coor-
dinates and momenta disappears completely, for the
Hamiltonian will, in general, be quite unsymmetric in

The coordinate-space representation of these eigen-
vectors may be taken in the form

(x'I p') = (2s.k) '"f l(p')g —'(x') exp(zp, 'x"/Ii), (7.2)

and any coordinate-space wave function can then be
transformed into a momentum-space wave function
by the transformation

the two sets of conjugate variables. This type of asym-
metry exists in both the classical and quantum theories.
For this reason, it is quite natural in both theories to
speak of a state in which the position (i.e., configura-
tion) of a system has a fixed definite value regardless of
what momentum it may have, while it may be quite
unnatural to speak of a state in which the momentum
of the system has a fixed numerical value which is the
same regardless of what its configuration is.

Only for certain special systems is it possible to bring
about a complete symmetry between coordinate and
momentum operators; namely systems having Hamil-
tonians which are at most quadratic in all the canonical
variables taken together. These systems we have called
"free" systems in this paper, following the nomen-
clature of quantum field theory, in which, for example,
an unperturbed harmonic oscillator is regarded as a
"free" system.

For "free" systems, the subgroup of linear inhomo-
geneous canonical transformations have some meaning.
Coordinates and momenta can be mixed together or
interchanged, sometimes to advantage. A consideration
of these systems alone, however, provides a very in-
adequate description of nature, for the really important
aspect of nature is change, and change involves inter-
actions which destroy linearity and nullify the existence
of "natural" coordinates.

We have asserted that all Bose-Einstein systems in
nature, even those in interaction, may nevertheless still
be characterized by the fact that their Hamiltonians are
at most quadratic in the momenta. This is not true of
Fermi-Dirac systems, whose Hamiltonians may involve
the momenta to powers higher than the second. Fermi-
Dirac Hamiltonians, however, are always characterized
as being expressible as functions of the e' products p;x':

H=H(P;x& , f ).
'

(7 6)

The f may be functions of the dynamical variables of
other systems which are in interaction with the Fermi-
Dirac system in question, but they are independent of
the p's and x's of the system itself. The p'sa, nd x's satisfy
anticommutation relations among themselves,

[x', x~'j~=0,

[P*, P 3+=o,

[x", p; j+=ikb,',

(7.7)

(7.8)

(7.9)

' In practice, the Hermitian adjoints of the coordinates will be
related to the momenta. by means of supplementary conditions of
the form P;=A;;x&*, where the 3;; are coefficients which may
involve the dynamical variables of other interacting systems.

but they commute with the dynamical variables of the
other interacting systems. In constructing the quantum
Hamiltonian (or operators corresponding to other
physical observables) for such systems, the p's must
always be placed to the left of the x's. The anticom-
mutation relation (7.9) requires that the x's and p's
must be non-Hermitian, or complex quantities. "
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There is nothing analogous to point transformations
for Fermi-Dirac systems, and, in fact, the dynamical
variables are themselves not physically observable.
Only products of p's and x's correspond to physical
quantities. Fermi-Dirac systems depend for their
existence on the fact that there are for them what
amounts to "natural" coordinates, because their Hamil-
tonians must always be functions of the bilinear forms

p,x'. The existence of these "natural" coordinates is,
in this case, independent of interactions with other sys-
tems.

As we have already remarked, point transformations
can be introduced in a very natural way into the
quantum theory of systems having Hamiltonians quad-
ratic in the momenta, and there is no ambiguity in the
proper ordering of noncommuting factors. If there were
systems in nature having Hamiltonians of a more com-
plicated type, then the situation would be quite dif-
ferent. To be sure, in the classical theory, one can make
a canonical transformation of a completely arbitrary
type, thus destroying the simplicity of a given Hamil-
tonian. The question that imposes itself is therefore the
following: Given a Hamiltonian function, %hat condi-
tions must it satisfy in order that it be transformable by
a canonical transformation into a Hamiltonian which
is quadratic in one of the sets of canonical variables?

The answer to the preceding question is not easy.
However, supposing 'we do arrive at a Hamiltonian of
the prescribed type, we must then decide what the
metric tensor of its coordinate manifold is. The choice
of a metric tensor is intimately related with the process
of measurement. In simple cases, such as that of a par-
ticle constrained to move on a surface, the choice is
obvious. In more complicated examples, such as the
gravitational Hamiltonian discussed above, there may
appear to be some uncertainty.

Suppose we have arbitrarily chosen the metric tensor,
and that it corresponds to a Rat manifold. In order that
there be no factor-ordering ambiguity, the tensor G,;

The generalization of this condition to curved manifolds
1s

g'"G;;.s=0. (7.11)

For a given metric there are an infinity of tensor G;;
satisfying (7.11). Conversely, for a given tensor G;;,
there are an inanity of metrics which will cause (7.11)
to be satisfied. Even if we impose the stronger condition

Gg.g=0 (7.12)

the metric will still be undetermined. It is only by
adopting the point of view that everything about a
given system should be described by its Hamiltonian,
that we are led to the identification (4.2)."It is to be
noted that the choice of the "mass constant" p, does not
affect the "quantum-mechanical potential" O'Q.

The author is indebted to Professor Pauli for reading
the manuscript and making helpful suggestions prior
to publication.

"A very special uncertainty exists in the case of Hamiltonians
reducible to the form

B= (-,'A'~'p; p;+B'p;+ C) (2'Dy)x x'+Eg,x~+F),
where ))A"() and ()Da~() are nonsingnlar matrices and the ex-
pressions inside the parentheses are positive-definite inhomo-
geneous quadratic forms. In this case the Hamiltonian is quadratic
in both the coordinates arid the momenta taken separately, and
there is no way of deciding, e priori, whether the coordinates, or
the momenta, are the variables which should be allowed to suffer
general point transformations. Once the decision is made, however,
such point, transformations will quickly destroy the special sym-
metry which the Hamiltonian above possesses. The quantum
Hamiltonian operator will be different depending on which trans-
formation group is selected. The "quantum-mechanical potential"
for x-transformations has the form

5'Q =—'jPn'(-'D x~x"+E x~+F) 'A'&(D. yx~+E-)
X (Dgtx'+E ') —8'nA '&'D;;,

where n is the number of degrees of freedom of the system. The
quantum-mechanical potential for p-transformations is given by
a similar expression involving the p's.

of (4.1) must, in a set of rectilinear coordinates, satisfy
the equation

G;;,;=0.


