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(AF=O, &1, 6m=0, &1) are given in Table IX. A
prime added to the transition designation as CE indi-
cates a transition for which Am= 0. The oscillating 6eld
inducing such transitions must be parallel to the
external field.

In intermediate fields the transition frequencies can
be obtained by differencing the values of Tables VI
and VII. The results of such a procedure are plotted
in Figs. 3, 4, 5, and 6. Lines which are dotted along

either their upper or lower halves indicate transitions
forbidden in either the strong or weak 6eld limit. The
quantum numbers associated with each transition can
be obtained by correlating the quantum numbers with
the transition designation with the aid of Tables III
and IV.

The author wishes to thank Mr. Vaughn Culler for
his assistance in calculating the values in Tables VI
and VII.
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To obtain some understanding of the role played by various configurations in configuration interaction,
the Hylleraas six-term expression for the ground-state wave function of He I has been expanded in series
of orthogonal functions. To determine the degree of dependence of the coeKcients of the expansion on the
specific function used for the ground state, the Hylleraas three-term expression was also expanded. Two sets
of orthogonal functions were used. One set consisted of orthogonalized symmetrized product type wave
functions where the functions for the individual electrons were found from a Hartree self-consistent field
without exchange. The second set consisted of orthogonalized variationally determined analytic wave
functions. The results emphasize the large number of configurations which would have to be considered if
the Hylleraas wave function were to be represented with high accuracy. After is' the largest contributors
among the configurations considered were 2p' and 2s'.

' 'T has long been recognized' that the method of the
~ - self-consistent Geld involves three principal approxi-
mations: (a) the neglect of relativity effects, (b) the
neglect of exchange effects, and (c) the neglect of the
nonseparability of the wave functions. Relativity effects
should be small for the lighter atoms. Exchange effects
have been extensively investigated, principally by
Hartree using Fock's equations. The inclusion of ex-
change improves the wave functions considerably and
usually improves the energies somewhat. However,
something is left to be desired. For example in 0, 0+,
and 0++ the average diGerence between the observed
and the calculated energies for the three lowest states
are found to be 0.188, 0.088, ar1d 0.114 respectively in
units of the ionization energy of hydrogen when self-
consistent field wave functions without exchange are
used with Slater's integrals. ' If wave functions with
exchange are employed, the values obtained are 0.198,
0.086, and 0.080 with no improvement in the ratio of
the multiplet separations. ' To obtain further improve-
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'D. R. Hartree and W. Hartree, Proc. Roy. Soc. {London)
A150, 9 (1935).' D. R. Hartree and M. M. Black, Proc. Roy. Soc. (London)
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ment one may attempt to remove the approximation
involved in the neglect of the nonseparability of the
wave functions. This has usually been done by con-
sidering the e6ects of superposition of configurations. A
number of calculations of this sort have been made. 4

In general some improvement in multiplet separations
has been obtained when superposition was included but
in the two most thorough treatments of such effects by
self-consistent field methods, the work of Hartree' on
0, 0+, and 0++ and the work of Jucys' on C, the results
were disappointing. Hartree, by the superposition of
1s'2p'+' on 1s'2s'2p', obtained for the average difference
between the observed and calculated energies for the
same lowest states of 0, 0+, and 0++ mentioned above
0.180, 0.108, and 0.090 respectively using wave functions
with exchange to determine the eGects of the con-
figuration interaction. The ratio of the multiplet sepa-
rations was considerably improved for 0 and somewhat
improved for 0+ and 0++. Jucys, by superposing
1s'2s'2p' 1s'2p', 1s'2s'2p3p, and 1s'2s2p'3s for CI
reduced the average diGerence between the observed

4 C. %. Ufford, Phys. Rev. 44, 732 (1933).R, E. Trees, Phys.
Rev. 83, 756 (1951).A. A. Schweizer, Phys. Rev. 80, 1080 (1950).
E. Trefftz, Z. Astrophys. 26, 240 (1949) and 28, 67 (1950).H. H.
Marvin, Phys. Rev. 47, 521 (1935).A. Many, Phys. Rev. 70, 511
(1946). F. Rohrlich, Phys. Rev. 74, 1372 (1948). J. N. P. Hume
and M. F. Crawford, Phys. Rev. 84, 486 (1951).

~ A. Jucys (sometimes transliterated A. Yutsis), J. Exp. Theor.
Phys. , U.S.S.R. 19, 565 {1949).
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TABLE I. CoefFicients for the expansions of Hylleraas functions
for'the ground state of He I in terms of symmetrized product
type functions.

Configu-
rations

Self-consistent field functions Analytic functions
Six-term %II Three-term +~ Three-term C~

Non-Or. Orthog. Non-Or. Orthog. Non-Or. Orthog.

1$2
1$2$
1$3$
2$2
2pR a

Sum of
squares
of coeffi-
cients

+0.9966—0.0020—0.0018—0.0263—0.0273

+0.9961—0.0023—0.0018—0.0263—0.0273

+0.9955—0.0004—0.0012

+0.9955 +0.9873 +0.9928—0.0005 +0.0556 +0.0553—0.0012

—0.0223 —0,0223

+0.9947 +0.9936 +0.9915 +0.9915 +0.9779 +0.9887

a Spin and angular part chosen with signs as follows: —6 &(txi82 —Pi~2)
)& j Y(1~ 111)Y(1, 112) Y(1 011)Y(1, 012) +Y(i, 111)Y(1, 112) J.

and calculated energies for the three terms of the
lowest configuration, 1s'2s'2p', from 0.556 to 0.482 using
self-consistent field wave functions without exchange,
but the ratio of the multiplet separations became some-
what poorer.

In view of these results it seemed wise to investigate
the effects of superposition by considering a relatively
simple case in some detail. Consequently it was decided
to expand certain of the Hylleraas wave functions for
the ground state of He I in terms of sets of functions
representing the various configurations. '

The six-term Hylleraas wave function gives the
energy of the ground state of He I to one part in 6600.
This accuracy was thought to be adequate for a pre-
liminary survey. It also seemed wise to expand the
Hylleraas three-term function at the same time in
order to gain some knowledge of the dependence of the
coefficients of the expansion on the specific function
used for the ground state. This function reproduces the
experimentally determined energy to one part in 2300.
The two functions used for the ground state were
therefore

and
+ir N6e z&'(1+a,u——+a2t'+ aas+ a4s'+ agu2)

%rr ——N3e z"(1+biu+b2t'),

' The possibility of treating configuration interaction in He I in
this way was suggested to one of us (L. C. G.) by Dr. G. Breit.

where s= pi+ p&, t= pi —p2, and u= pi2, and the p's are
expressed in atomic units. The values which were used
for the constants were: E6= 1.38189, Z6= 1.818,
ui= 0.353, a2 ——0.128, a3 ———0.101, a4 ——0.033, c5=
—0.032, and %3=1.32135,Z3=1.816, bi=0.30 b2=0. '13.

The more critical choice is that of what type of
functions to use in the expansion. Since more com-
plicated atoms can be treated with moderate success
only in the central field approximation, it seemed wise

to test the eGect of superposition in the present case

by using sets of functions whose individual members
were identifiable with particular solutions of the central
field problem. The best functions of this type for He I
are those for the self-consistent field without exchange

given by Wilson and Lindsay. ' Among the configura-
tions which they give, we have used the following
1s', 1s2s, 2s', and 2p'. To these we have added 1s3s.
Since the coefficients in the expansion depend on the
set of functions used, it was thought desirable to see
how the coefficients changed when a second set of
functions was used. For this purpose analytic functions
were chosen. For the 1s' configuration the function
expL —1.6875(pi+ p2) j was used, and for 1s2s the vari-
ationally determined function given by Morse, Young,
and Haurwitz.

The number of configurations which need to be con-
sidered in the present case is considerably reduced by
the fact that superposition of configurations can only
occur between configurations of the same parity. '
Among the configurations involving electrons with
smaller I-values we are thus limited to those of types:
nsms, nPmP, usmd, an'd udmd. Further, in pure Russell-
Saunders coupling, only terms with the same I. and S
interact. ' In He I the term intervals of the 1s2p

'I'
are of the order 1 cm ' whereas the separation of the 'P
and the 'P is of the order of 2050 cm '. The coupling
would therefore appear to be almost purely Russell-
Saunders in character. Since the ground state is cer-
tainly primarily 1s' 'S, the configuration nsmd can be
eliminated. In addition it is only necessary to consider
the 'S terms of the remaining configurations. From the
numerical wave functions given by Wilson and Lindsay,
symmetrized products were made up and these were
the functions ised in the expansion. Morse's variational
wave function for the 1s2s 'S state was already in the
symmetrized form.

The results of the present work are collected in
Table I. The meaning of the various columns is clear
except for the headings of Non-Or. and Orthog. to
whose explanation we now turn. If the Hylleraas wave
function, N~, is written

%~=Cia(ls )+c2$(1$2s)+

where the f's are the symmetrized product functions
described above, we are at once faced with the fact that
these P's are not orthogonal except for the 2p' function
which is orthogonal to all esses functions. In view of
this, two sets of coefficients are given in Table I for each
of the expansions which have been made. One set is
determined using the non-orthogonal functions. In this
case we assume that (for the numerical functions) the
five configurations considered, namely 1s', 1s2s, 1s3s,
2s', and 2p', are the only ones which make any con-
tribution to the ground state. One can then solve the
system of simultaneous linear equations obtained from
Eq. (1) by multiplication of both sides by the various
P's and integration over all space for the different c's.

W. S. Wilson and R. B. Lindsay, Phys. Rev. 47, 681 (1935).
We are indebted to these authors for supplying us with more
complete tables of their wave functions than were published.' Morse, Young, and Haurwitz, Phys. Rev. 48, 948 (1935).

9E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectru (Cambridge University Press, London, 1935), p. 366.
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It was felt that if the values obtained for the various
coefficients did not change appreciably as the series was
broken oG after three, four, and five terms, considerable
con6dence could be placed in the values obtained even
from this limited expansion. In the worst case, that of
1s', in going from the three to the four term expression
the change was only 0.0004 so that some measure of
stability seems to have been obtained in the values of
these coefficients.

Another possible way of dealing with the fact that
our iP's are not orthogonal is, of course, to build from
them by the Schmidt process" a new set of functions
which are orthogonal. This has also been done and the
results are given in Table I. However, such a procedure
is open to some criticism, for the different members of
the set of self-consistent field functions are not solutions
of the same differential equation and of course this is
also true of the analytic functions. After orthogonaliza-
tion the nature of the new functions is somewhat
obscure. On the other hand, it is clear from the similarity
of the coefficients for the orthogonal and non-orthogonal
functions in Table I that the eGect of orthogonalization
is small, that is, the P's were almost orthogonal initially.
This would of course account for the stability of the
coefFicients of the P's noted above. As far as the effect
of orthogonalization on the functions is concerned, it
would therefore seem that the results in Table I can be
taken with some con6dence.

If now the coefficients in Table I are examined, the
importance of the 1s' configuration appears in every
column. This is, of course, no surprise in view of the
fact that the energy of 1s', as found for example by
Wilson" diGers by only 1.4 percent from the experi-
mentally determined value and the contribution to the
ground state energy of this configuration should be
roughly proportional to the square of its coefficient in
Table I.

Perhaps the second most noticeable point in Table I
is the large size of the coeflicients for 2s' and 2p'. These
are so much larger than the coefficients for other excited
states considered that it was thought wise, in spite of
the agreement of the customary checking computations,

' D. Jackson, courier Series and Orthogonal I"olynomials (Carus
Monograph No. 6, the Mathematical Association of America,
Oberlin, Ohio, 1941), p. 151.

"W. S. Wilson, Phys. Rev. 48, 536 (1935).

to repeat the whole calculation for at least one of them
using diGerent numerical methods. The result obtained
for 2s' was 0.0266, somewhat larger but less accurate
than before. It might appear possible that the large
size of this coefficient was the result of not having
orthogonalized this function to all the various possible
members of the 1sms set of functions. An examination
of the eGect on this coeKcient of orthogonalizing 2s'
to 1s', 1s2s, and 1s3s shows that the largest eGect arises
from 1s' but that even here it is necessary to subtract
only 0.01648 of 1s2 from Wilson and I.indsay's 2s' to
obtain a 2s' orthogonal to 1s'. It therefore seems un-

likely, but not certain, that the coefficient for 2s' would
be radically changed by orthogonalization to all
members of the 1sms set. To check the coefficients of 2p'
further, the value of the constants in an arbitrary linear
combination of 1s' 'S and 2p' 'S using hydrogenic
functions with Z= 2 have been determined by the vari-
ational method. The coefFicient of the 2p' '5 proved to
be 0.0271 in as good agreement as could be expected
with the value given in Table I for the six-term Hyl-
leraas function. Since 2p' is orthogonal to all esses wave
functions and is the lowest member of the zipmp set,
there is no possibility of any reduction in the size of its
coefficient through orthogonalization.

It is also clear from Table I that the values of the
coefficients for the configurations making the smaller
contribution are sensitive to whether the three or the
six term Hylleraas function is used. The indication is,
however that the larger coefFicients are relatively stable.

Finally it should be noted that if the expansions
represented the Hylleraas function accurately, the sum
of the squares of the expansion coeKcients of the
orthogonal functions would be one. Since the coefficients
of all configurations considered other than 1s' are small
and therefore make a still smaller contribution to the
sum of the squares, it is highly probable that it would
be necessary when using self-consistent field functions
to consider a large number of con6gurations if the
ground-state wave function or'energy is desired to high
accuracy.

In summary, the present work emphasizes (a) the
large contribution of 1s' to the ground state wave
function, (b) the surprisingly large size of the 2s' and 2p'
contributions, and (c) the very large number of con-
figurations which would have to be considered if a
high accuracy wave function or energy were desired.


