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The multiple scattering of waves interacting with a system of particles is treated by a self-consistent,
approach. Scattering processes are described by operators that permit anisotropy, absorption, and creation.
The scattering system may be randomly, partially, or completely ordered.

The propagation constant k' of the coherent wave in the scatterer medium divers from the vacuum
constant k by (k')'=k +4xncf(k', k'), where n is the scatterer density and f is an operator whose matrix
elements f(b, a) represent the scattering amplitude in direction 1 for a wave incident in direction a on a
single scatterer bound by the forces of its neighbors. The parameter c, defined by cf(k', k') =J' exp( —ik' x}f
XP,(x)dx, is a measure of the ratio of the effective field P,(x) to the average field.

An integral equation is found for P,(x) with the help of a "quasi-crystalline" approximation. A variational
expression is then found for c that becomes exact for point scatterers.

A comparison is made of finite and infinite scattering systems. The extinction theorem is proven. The
macroscopic viewpoint is found to be applicable to small systems whose size is large compared to the scat-
terer potential range, and the range of scatterer position correlations.

I. INTRODUCTION The equation obtained by the author for the index of
refraction, containing as it does, the unknown relation
between the effective and coherent fields has been
criticized' as an "approximation. "This is by no means
the case. The determination of the effective Geld was
merely considered to be a problem of sufhcient intricacy
to warrant separate discussion.

%e intend to show in this paper that a good approxi-
mation can be obtained for the effective field by using
the second in the set of equations mentioned. Additional
accuracy can, of course, be obtained by using the third
equation, and then higher order equations. %'e have
decided to publish results at this point, using only two
equations, because the accuracy involved is equivalent
to the use of the Lorentz-Lorenz formula for nonpolar
liquids. A detailed treatment of the electrostatic
problem using a self-consistent procedure by Brown5
indicates (in addition to the experimental evidence),
that the corrections to the I orentz-Lorenz formula in
nonpolar liquids are small.

' ~WALD' in 1916developed a fairly complete theory
~ of optical dispersion in crystals based on the

multiple scattering of light by atoms acting as induced
dipoles. Foldy has applied a similar self-consistent
scattering calculation to obtain the index of refraction
for scalar waves travelling in a medium of randomly
distributed, isotropic scatterers. The author in 1949
generalized the self-consistent procedure to include (1)
anisotropic scattering in addition to the monopole and
dipole cases, (2) inelastic scattering, including the
creation and absorption of particles, and (3) scattering
systems that are randomly, partiaHy, or completely
ordered.

The results obtained by the self-consistent procedure
were an equation for the total (coherent) wave in terms
of the effective GeM with one particle held 6xed, an
equation for the eGective fieM with one particle 6xed in
terms of the Geld with two particles 6xed, etc. A solution
of these equations by an iteration procedure using the
incident wave as starting function would lead to an
expansion in waves that were singly scattered, doubly
scattered, triply scattered, etc. Such a procedure is
poorly converging because it assumes that the effective
6eld is similar to the incident wave, whereas it has the
propagation constant of the total wave.

The author therefore suggested a procedure similar
to that of Lorentz —assuming that the effective 6eld
(with one scatterer fixed) bears a simple relation to the
total field —for point scatterers a proportionality con-
stant is sufi. cient. In this way, the 6rst of the set of
equations described can be used to obtain an equation
for the index of refraction. The succeeding equations
must then be used to obtain the relationship between
the eGective and the coherent 6elds.

II. FORMULATION

In plev1ous worit (see 1-3.7 and 1-3.8) lt was shown
that a self-consistent description of the total field

f(r;1, 2, .N) and the eiIective Geld P&(r; I N)
could be given by the equations

(2.1)

where the symbols I, 2, i, j, s N refer to the
positions of the scatterers (which are omitted for sim-

plicity in f and P'). The energy and Hamiltonian of
the wave are 8 and H. The transition operator' T(s)
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describes the scattering produced when the wave inter-
acts with a single scatterer at s. (Strictly speaking, the
scatterer is not 6xed at 8 but merely bound by the forces
exerted by other particles in the system. This point will
be established in paper III of this series. )

In. principle, one should solve Eqs. (2.1) and (2.2)
for a 6xed set of scatterer positions and then average
f(r; I, N) against the quantum-mechanical dis-
tribution of scatterer positions. The resulting average

Q(r)) will be the coherent wave. Such a procedure is
analogous to the Born-Oppenheimer calculation of elec-
tron wave functions in molecules: the wave functions
are calculated for 6xed nuclear con6gurations; then the
nuclei are allowed to move.

The solution of Eqs. (1) and (2) for an arbitrary,
6xed set of scatterer positions is quite difficult unless one
is willing to,resort to iteration methods. Instead, we can
follow Foldy's' procedure of averaging 6rst and then
solving. Using the methods of I-Secs. I7 and V, the
averages of (1) and (2) are:

(4(r))= (~—&) ' n(s)d»(s)(4" (r)). (2.3)

8'(r)) =(~—&) ') n(jls)d»(s)(4'(r)). ;, (24)

g &(r)),;= (8 II) " tn(ji—
~
s)dsT(s)(P'(r))„;. (2.5)

Subscripts denote variables held fixed in a given aver-
aging process. Particle variables have been suppressed
when their presence is obvious. For example, Q"(r))„
the effective field hoMing particle s fixed, clearly depends
on the position of that particle and should be written in
full (P'(r; s)),.

The incident wave g(r) has been omitted from Eqs.
(3)—(5). This is permissible for infinite systems. A dis-
cussion of this point and of 6nite systems will be pre-
sented in Sec. VI. The density of scatterers at s is given
by n(s) if no information is available, by n. (j~ s) if a
scatterer is known to be at j, and by n(ji~ s) if scatterers
are known to be at j and i. For a set of fixed scatterers,
e.g. , a crystal, these density functions are given by

n(s) =P 8(s—s'), (2.6)

n(j
~
s) = —b(s —j)+Q 8(s—s'), (2.7)

and for a liquid they are averages of thes eexpressions
with symbols to the left of the vertical bar held fixed.
For a liquid n(s) =n= a constant and

ri (s) =n (0 i s)/n (2 g)

is the usual pair correlation function normalized to
unity at large distances.

In the crystalline case, Eqs. (3) and (4) constitute a
complete description of the problem since no additional
information can be gained by holding additional par-
ticles fixed. Thus for any fixed set of scatterers, (P')„.

does not diRer from Q'), so that (4) involves only
effective 6elds of a single type. Thus no approximations
are required to treat the crystalline case.

In the case of a liquid or gas, the 6eld on the right-
hand side (RHS) of any equation has one more particle
held fixed than the left-hand side (LHS). A suitable
approximate procedure is then to take one such equation
and modify the RHS by dropping an index on one 6eld
variable. The solution of this equation, with the help
of the preceding equations in the series, can be used to
determine the index of refraction. The accuracy of such
a procedure will depend on the equation chosen. If the
Xth equation were used, where all particles are held
fixed, then no approximation is involved whatever.

(4 (r)) = [&—&(p)3 '»(0)4.(r),

D= n(s)ds exp[i(k' —p) s],

(3.4)

where we abbreviated the effective field Q'(r; 0)), by
P,(r).

The matrix elements of D in the liquid case are then
given by

Dt,.= nfl(b, a)b(k', a), (3.7)

III. THE INDEX OF REFRACTION

In this section, an equation for the index of refraction
will be developed starting from (2.3) without the use
of any approximations. Instead, we shall make use of
the general properties of the transition operator and the
various 6elds under displacements.

The operator T(s) differs from the corresponding
operator T(0) for a scatterer at the origin by a displace-
ment transformation of the usual form:

T(s) = exp( ip s—)T(0) exp(ip s), (3.1)

where y= —iV is the momentum operator in units 5= 1.
The corresponding statement in matrix rotation

T&,(s) =exp[i(a —b) sjT&,(0) (3.2)

was established in Eq. I-(3.4), where a and b are the
initial and 6nal propagation constants previously
written k. and kp.

In a manner similar to that used in deriving the
properties of Bloch waves in crystals, it can be shown
that f(r; I, . N) and P'(r; I, N) are multiplied by
a factor exp(ik' d) if all the variables r, I, N are
subject to the same displacement d. For a liquid, d. is an
arbitrary displacement; for an ideal crystal, d. is a
lattice displacement. It follows from these general con-
siderations that

exp(ip s)g'(r; s)),= Q'(r+s; s)),
=exp(ik' s)Q'(r; 0)),. (3.3)

The propagation constant k' is, as yet, unknown. The
use of these translational properties, however, permits
(2.3) to be rewritten in the simpler form:
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Uk'+K k' F K) '
pi{a'+K) .r

)

( ) (
0(r) =Ex

E—H(k'+K) Z
(3.13)

where
U(b, k') =n(yl, (r), T(0)p,(r)). (3.14)

In the crystalline case, no averaging symbol shouM be
used since no average has been taken.

Thus we have established that for the liquid, the
coherent, wave is a plane wave, and in the crystal a plane
wave plus plane waves in all the possible Bragg reAec-
tion directions. In fact, (3.13) has the Bloch form of a
plane wave exp(ik' r) times a function with the crystal
periodicity. If the periodic factor is replaced by its
space average, i.e., K=O part, we obtain the macro-
scopically observable part of the solution. Since F(0) =Z,
the macroscopic average of (3.13) is identical in form
to (3.12). Therefore, the macroscopic average coherent
6eld can for both the crystalline and liquid cases be
denoted, without ambiguity, by the same symbol
Q(r)). In both cases, then, {f(r)) is obtained by re-
placlllg B(8) by a collstall't 111 (3.4).

Since Eqs. (2.3)—(2.6) are homogeneous, the nor-
malization of (g(r)) can be chosen at our convenience
to be:

Q(r))=exp(ik' r) (3.15)

for both liquid and crystalline cases. Kith this choice
of normalization the index of refraction in both cases is
given by

H(k') =E U(k', k'). —(3.i6)

If in (3.14) the effective field P,(r) is replaced by the
plane wave Q(r)), then we obtain U(k', k') =nTl, l, and
the elementary result that the index of refraction is
determined by thy forward scattered amplitude, Devi-

where 8(b, a) is a Kronecker delta that equals unity
when b=a, and zero otherwise. In the crystalline, use
must be made of the periodic density (2.6) and

Dl,.=eh(b, a)Qx 8(k'+K, a)F(K)/z, (3.8)

where the K are the reciprocal lattice vectors, Z is the
number of particles per unit cell, and F(K) is the cell
structure factor:

F(K)=P;; „ll exp[iK (j—i)] (3.9)

taken xelative to a particular atom i in the cell. The
average of F(K) over the positions i in the cell is given
by

(F(K))= I F(K) I'/Z. (3.10)

The total or coherent wave is given by

P(r) =2, y, (r)(y, (r), P(r)), (3.ii)
where the yl, (r)=exp(ib. r) constitute a set of plane
waves normalized in a box of unit volume. For the
liquid and crystalline cases, respectively, we obtain:

(P(r))=[8—H(k')]-'U(k' k') exp(ik' r), (3.12)

f= 2~~T/h—' (3.20)

IV. THE QUASI-CRYSTALLINE APPROXIMATION

In. the preceding section, the calculation of the index
of refraction was xeduced to a determination of the
effective field, using only (2.3) and the translation
properties of the Gelds. Kith the help of the translational
requirement

(0"(r+s; s, j))'=exp('k' s)(4"(r; o, j—s)). (4 1)

the effective fmld according to (2.4) is given by:

0"(r) = ~~(i
I s) exp['(k' —ll) (s—i)3

This result has again been obtained without making
approximations. And. (P')„should be investigated with
the help of (2.5). In this way, each effective field can
be expressed in terms of an effective 6eld with one more
particle held 6xed. The accuracy of the result depends
on how many of the Kqs. (2.3), (2.4), (2.5), etc. are used.

An iteration procedure, applied. to (2.2), is equivalent
to choosing for f,(r) a plane wave exp(ik r) with the
vacuum propagation constant k, and then inserting
t}lls 1'esult lllto 'tile fol'illllla (3.14) foi' 'tile illdex of
refraction. A double iteration procedure is approxi-
mately equivalent to replacing Q')„. by exp(ik r),
inserting this result into (4.2) and then inserting the

ations from this result depend on the extent to which
the effective 6eld differs from the macroscopic average
6eld and can be referred to as effective 6eld corrections.
The author has previously suggested' 'that these cor-
rections be taken into account by using the formula:

H(k') =E ecT—1, 1,.
whex'e c is a measure of the ratio of the effective field

P,(r) to the average field g (r)).
For point isotropic scatterers, the matrix element

U(k', k') depends only on the value of f,(r) at the
origin, so that c can be interpreted as P,(0)jg (0)). For
point dipole scatterers c=V'f, (0)/V'Q(0)). For non-
point scatterers, the matrix (3.14) depends on the
properties of iP,(r) over a region. The correctly weighted
ratio of effective to average 6elds is in all cases
c= U(k' k') j(NTi p) or:

~= (A, T4.)j(A, T(4)) (3 ig)

For Schrodinger type waves, E= (hk)'/(2m) and
H(k') = (hk')'/(2m)& so that (3.17) can be rewritten in
the form:

(k')'= k'+4~~cg(k', k'), (3.i9)

where f(b, a) is the scattering amplitude in direction b
for a wave a incident on a bound single scatterer. The
scattering amplitude operator is proportional to the
transition operator and may be de6ned by
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resulting f,(r) into (3.14). Such a procedure is essen-
tially an expansion in powers of the scattering am-
plitude.

Instead, we shall suggest an approximation:

8"(r:s, j)).=(4"(r' s)). (4 3)

that is (1) at least as good as the double iteration pro-
cedure, (2) is not strictly an expansion in powers of the
scattering amplitude, and (3) is most accurate for dense
systems where multiple scattering corrections are most
important.

Equation (4.3) may be referred to as the quasi-
crystalline approximation since it is strictly valid in the
crystalline case. This approximation is tacitly made in
many treatments of homogeneous media, ~' since the
notation used does not distinguish between various
types of eRective fields. The quasi-crystalline assurnp-
tion is equivalent to the neglect of the Quctuation of the
eRective 6eld as s due to a deviation of particle j from
its average position. The success of this assumption is.
based on the approximate validity of the cellular model
for liquids. Certainly further investigation of this
assumption is necessary. Because of their usefulness,
however, we shall present here the results obtained by .

a multiple scattering treatment using the quasi-crys-
talline approximation.

The assumption (4.3) is equivalent to neglecting the
difference between Q'(r;0, j—s))„and the effective
field P,(r). If m(j

~
s) is written in the form:

m(j ~
s) = e+ m(0

~
s—j)—e, (4 4)

the eRective 6eld is found to obey the integral equation:

& (r)=8(r))+(&—H) 'GT(0)4"(r), (45)
where

G(p —k') = ~Le(0~ r) —e] exp[i(k' —p) r]dr. (4.6)

Equations (4.5) and (4.6) are strictly valid for crystals
providing the pair correlation function is interpreted in
agreement with (2.7).

For a crystal, (4.5) and (2.7) can readily be combined
to verify that the effective field f,(r) is equal to the
total field (3.13) minus the field emitted by the scat-
terer at the origin. For a liquid (4.5) may be interpreted
as saying that the eRective field diRers from the total
field by the scattering produced by the hole I—n(0~ r)
left by the scatterer whose center is at r=o.

In the limiting case of point scatterers in a liquid, the
hole e—N(0~ r) approaches zero and it is very tempting
to say that G approaches zero so that according to (4.5)
the eRective 6eld can be represented accurately by the
average field exp(ik' r). That this is not generally the
case follows from a consideration of the case of scat-
tering of electromagnetic waves by induced dipoles.

~ M. Born, Optik (Julius Springer, Berlin, 1933},p. 313 ff.
8L. Rosenfeld, Theory of Electrons (North-Holland Publishing

Company, Amsterdam, 1951), Chapter VI.

c= (1—J)
t f(k', b)f(b, 0') G(b —k') dhJ—

f(I', u')

(4.10)

V. BOUNDARY CONDITIONS AT INFINITY

In scattering problems it is customary to introduce
a boundary condition that describes radiation travelling
outward at infinity. This boundary condition is included
in our formalism provided we understand the operator
(E—H) ' everywhere to mean'

(E—H)
—'= P(E—H)

—' —im.b(E—H) (5.1)

'P. A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, London, 1947), third edition, Section 50; see
also reference 6.

There, the effective field correction factor (a+2)/3
arises precisely because the 6eld within a hole, no
matter how small, differs from the 6eld in the external
medium.

It is therefore necessary to investigate the solution of
(4.5) for each particular problem and make approxi-
mations, if necessary, in the solution but not in the
kernel of the integral equation. For present purposes,
we are not interested in a complete evaluation of the
eRective field but merely in the matrix element

U(k', k') =e(q, TP,).
In order to obtain a variation expression for U(k', k'),

methods were developed for integral equations in which
neither the kernel I.=(E H) 'G —nor the perturbing
operator V= T(0) were Hermitian. ' With an appropriate
transcription of notation, the variational expression for
Ub, is given by:

~(V.' 2'(0)4.)(A, 2'(0)A )
Ub = —, (4.7)

(V ' LT(o)—T'(0)%—H) 'GT(0)]4:)

where P,~ is the effective field when the average field is
exp(ia r). The fields 'P, (r) are solutions' of an equation
adjoint to (4.5). If the guess

'4.'(r)=4""'(r)=«xp(ik' r) (4 g)

is inserted into (4.7), the diagonal matrix element of U
is given by.'

U(k', k') eTg g (1—J) '

J=(T~ ~.) 'pb Ti, ~(E—Eb)
—'G(b —k')Tti, . (4.9)

One of the advantages of the variational method (4.7)
is that U is insensitive to the choice of c. For point
scatterers, therefore, (4.9) is exact. The integral Eq.
(4.5), in fact, reduces for point scatterers to a linear
equation for the constant c. For scatterers that are
small but not point scatterers, (4.9) should be quite
accurate.

The ratio of the eRective 6eld to the average 6eld
(3.18), can be written according to (4.9) and (3.20) in
terms of scattering amplitudes:
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where I' stands for the principle valued reciprocal. The
transition operator T for a single scatterer with poten-
tial V is in fact the solution of the equation

T= V+V(E H)—'T, (5.2)

with the above boundary condition. Because of this
condition the operator T is nonhermitian and TI, I, is
complex. Thus, if we would neglect the correction factor
c, the index of refraction would have an imaginary part
determined by the imaginary part of the forward scat-
tered amplitude —i.e., by the total cross section, scat-
tering plus absorption. 6

Ekstein4 has recently suggested that for an in6nite
system, the radiation condition should be replaced by
a standing wave condition, i.e., that (E—H) ' be
interpreted as the principal valued reciprocal. This is
equivalent to replacing T of (5.2) by a new operator E
SRtlSfylng

E= V+VI'(E Il) 'E.— (5.3)

If no true absorption is present, V is Hermitian, and
because of (5.3) E is Hermitian.

Since no explicit use has been made in our paper of
the radiation condition (5.1), all of our equations can
be applied with either boundary condition. An examina-
tion of (4.7) and (4.9), assuming T is Hermitian (i.e.,
replaced by X) and using principal-valued reciprocals,
demonstrates that under these circumstances the
diagonal matrix elements of U are real. Thus Ekstein's
boundary condition is equivalent to asserting that when
no true absorption is present, the index of refraction for
an in6nite system is real.

Let us now examine the consequences of the usual
radiation condition (5.1). For this purpose we need to
evaluate the diagonal matrix element of U. A slight
generalization of the cross-section theorem' to Eq. (4.5)
leads to the relation:

ImU, =Im(f, , Tf, )
Z G.IQ», T4:)I'~(E —E.) (54)

To understand this result, introduce the approximation
(4.8) valid for point scatterers and rearrange terms:

ImV„= ).~
LImT„y~g,

~
T,.[ ~(Eb—E.)]

—~I ~I' Z&E1+G(b —a)] I
I'&.I'~(E~—E.).

Multiplication of (5.5) by —2/5 converts each term
into a transition probability. The term in ImT„
is the total transition probability for the single scat-
tering problem (aside from the factor

~

c~'). The second
terms in

~
T~i

~

is the negative of the transition prob-
ability for scattering. The sum of these two terms is
then the absorption probability. The term in (1+G&,)
is the transition probability for scattering modified by
the position correlation between a given atom and its
neighbors. In short, the second line is what is usually
referred to as the Quctuation scattering. Both lines are
corrected by a factor

~
c

~

' signifyirig the enhancement of
the scattering power due to the eGective 6eld correction.

irfi ' dmso(1+Gba) (5.7)

Here f is an abbreviation for the forward scattered
amplitude f(k', lr'). The imaginary part of the index of
refraction determined by (3.19) and (5.6) is found to
produce an attenuation in agreement with that pre-
dicted by R direct calculation of the QuctuRtion scRt-
tering' I-(6.20).

Thus the use of the radiation boundary condition has
led to the physically reasonable result that even in the
absence of true absorption the coherent beam will
attenuate at a rate determined by scattering due to
density Quctuations in the medium. For a gas, these
Quctuations are large, Gp ~0, and the Quctuation cross
section is essentially equal to the scattering cross
section. Thus the attenuation for a gas is determined
by the total cross section corrected by the factor

~
c~'.

For the liquid and solid states, Quctuations are greatly
reduced, since the density Quctuation is proportional
to the compressibility I-(1.14). Thus G is negative, the
Quctuation cross section is small, and the attenuation
will be more nearly determined by the absorption
cross section. In any case, to a good approximation, the
attenuation constant is given by

0abs &fl

VI. FINITE SCATTERING SYSTEMS

Some question has been raised by Ekstein2 as to the
proper manner of treating in6nite scattering systems.
In this paper, the questionable procedure has been
adopted of omitting the incident wave in setting up the
self-consistent Eqs. (2.3)—(2.5) for an infinite system.
It seems necessary, therefore, to investigate the index
of refraction for a 6nite scattering system and compare
the result with the previous calculation for an in6nite
system. An important by-product of this investigation
will be an answer to the question: how small can a
system be and still obey the "macroscopic" coherent
wave equation for an in6nite system. This question is
of some interest. in view of the recent application of a
macroscopic viewpoint to describe diffraction of high
energy neutrons by nuclei. '0

Equation (2.3) can be modified to describe finite
systems by adding the lilcldellt wave (fan(f) and hmltlng
the integration over s to a region bounded by the surface
S. Rewriting these results in the space representation

' Fernbach, Serber, and Taylor, Phys. Rev. 75, j.352 (1949).

If the transition probability is divided by the incident
flux Re(hk')/m to obtain cross sections, (5.5) can be
written in the form:

4~ Im(fc)/Re(k') =
~
cj'(~.b,+~n), (5.6)

where O-,b, in the total cross section for true absorption,
and Of~ is the total scattering cross section due to
density Quctuations:
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Q (r))=g(r)+]"dr' "e(s)G(s) y(s)ds,
"8

X(s)=f(4"(r'+s; s)).;

(6.1)

(6.2)
G(s).=[exp(~Pl r—r' —sl)/l r—r' —sl ].

with the help of (3.1) and (3.20), (2.3) takes the form: Finally the average 6eld can be written in the form:

&~())=4- g[(~) -~ j- (~())+~()
—

~
dSL(BG( )/B ) ~d"f(4'("+s; s)).

—G(s) dr'(B/Bn) fg'(r'+ s; s) ),]. (6.9)

{P(r))=QM(k') exp(ik' r). (6.3)

The translational consideration (3.3) must now be
replaced by the more general condition

g'(r'+s; s)),=P M(k') exp(ik' s)P, (k', r), (6.4)

where P, (k', r) is the effective field for an average field

in direction k'. Since the operator f does not act on s,
y(s) is a solution of the medium wave equation. With
the help of the replacement

X(s)= —(&') '~.'X(s), (6.5)

and Green's second identity, the volume integral in

(6.1) can be written as the usual integral over all space
plus a correction term in the form of a surface integral:

G(s) x(s)ds=4s [(k')' —k'] '[x(r—r') —I],

I= jl [x(s)(BG/BN) G(BX/B—N) jdS,

(6.6)

where the derivatives are outward normal to the
surface S.

With the help of (6.3) and (6.4) we may verify that

~
x( —')d '=(4())g, (6.7)

g=)t exp( —ik' r')fP, (k', r')dr'. (6.8)

Fquation (6.1) describes the macroscopic average field
in the crystalline as well as liquid cases provided e(s)
is regarded as a constant in both cases. Outside the
surface S, g (r)), like p(r), is a solution of the homo-
geneous unperturbed wave equation since all the
"sources" are within S. (More precisely, these sources
are within S plus a thin boundary layer whose thickness
depends on the spatial extent of the operator f For.
point scatterers, this layer vanishes. )

Inside the surface S, the field Q(r)) will not be a
plane wave because of diffraction effects. If the concept
of a medium is to be at all applicable, the average 6eld
must be rcpresentable as a sum of plane waves of
various orientations and propagation constant k'.

The surface integral may be interpreted as the field due
to a set of sources on the surface (or in a thin layer)
whose field within the region is like p(r) a solution of
the unperturbed wave equation. The, only way (6.9)
can be satis6ed inside the system is for the surface term
to cancel the incident wave and for

(k')' =k'+ 4vreg.

The 6rst. statement constitutes the "extinction"
theorem: the unperturbed incident wave is extinguished
within the medium by waves induced at the boundary
of the system. This theorem justi6es the procedure
adopted earlier in the paper of omitting the incident

' wave and neglecting boundary effects.
Thc second statcIQcllt ls equivalent to the validity of

the previous index of refraction formula (3.19), since g
is formally equivalent to cf(k', k'). The only question
to be investigated is whether the CGective 6eld entering
into the de6nition of g is the same as the one previously
used for an infinite system.

Applying to (2.4), for the effective field, a procedure
similar to the above calculation of the average 6eld, we
obtain:

(~(; j)),=~()+ "d" ".(jl.)G(.).(.)d., (6.»)

where we have made of the quasi-crystalline approxi-
mation (4.3). Writing N(j l s) —n+ii() l s) —e and using
(6.1) the effective field obeys the equation

8'(r; 3)),= Q(r))+ «' LN(jl s) —~3G(s)x(s)ds.
J

(6.12)

This equation would reduce to the previous Eq. (4.5) for
the effective 6eld provided the integral over 8 couM
be extended over a,ll space. However e(j l s) —e vanishes
quite rapidly for large

l
s—jl. Thus if the region of

integration is large compared to the region of importance
of the correlation density N(j l s) —I, the "macroscopic"
index of refraction will be valid. For liquid type systems,
this condition is easily satis6ed, since it merely requires
that the system be large in size compared to the inter-
particle separation. Nonideal, vibrating lattices obey a
similar restriction. Ideal lattices require further inves-
tigation of the convergence involved in the sum implied
by (6.12). Convergence can certainly be secured in the
ideal case by using a system large compared to the
wavelength as well as the interparticle separation. This
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wavelength condition is sufficient, but probably not
necessary.

Another restriction on the use of a macroscopic
viewpoint is that the region should be large compared to
the boundary layer associated with the surface 5
because of the finite range of the scatterer potentials.

A third restriction on the above discussion has been
the use of a constant density. This restriction can be
removed by introducing an index of refraction that
varies with position because of density changes. Such
a procedure can be useful, for example, in treating a
nucleus as a system, since for this case the density is not
completely uniform.

%hen the restrictions mentioned above are met, the
continuity of {P(r))and its gradient in (6.1) across the
surface 5 justifies the usual procedure of finding an
external solution and an internal solution, and matching
them at the boundary.

If we neglect the fact that k' may have a small
imaginary part, A and E will be real, E can be recog-
nized as the ratio by which the eGective scattering
cross section is modified by interference due to corre-
lation of scatterer pairs. In the long wavelength limit,
E can be interpreted as proportional to the mean square
fluctuation in number of particles [I-(6.23) and
I-(1H4)]:

E(0)= ((bÃ)')/(X) = —n(kT)(cj lnV/BP)r. {7.9)

Thus E is equal to the relative compressibility of the
liquid or solid to a perfect gas at the same pressure and
temperature. In other words, the Auctuation scattering
is small in a liquid or solid (vanishing in an ideal non-
vibrating crystal) and the imaginary part of (k')' is
determined ly fm{f—~kl fl ), which vanishes unless
true absorption is present. 4

The long wavelength approximation for A is:

VII. NEUTRON SCATTERING IN LIQUIDS
AND CRYSTALS A(0) =n "[1—u(r)]dr/r. (7.10)

J=f) (0'—k') —'G(b —k')db/(2x'), (7 1)

The results of the preceding sections can be applied
to neutron scattering in the low energy range by re-
placing the operator f,~ by f8(q) where f is the bound
scattered amplitude for scattering of neutrons by the
nucleus ln question [see Eq. (3.20)]. This ls equivalent
to replacing the matrix f(b, a) by the constant ampli-
tude f. Thus the usual index of refraction formula
(3.19) is applicable with c= (1—I) ' where I according
to (4.10) can be written as:

The rigid sphere model (valid at low densities) indicates
that A(0) =2xna'. In other words, A(0) is of order a '
and its effect as a correction is of order f/a, the ratio
of scattering amplitude to size of scatterer. For neutron
scattering. where only the nucleus is effective but u is of
atomic s1ze, f//8~10

A detailed evaluation of E in the short wavelength
limit has been given by Placzek, Nijboer, and van
Hove, " in the approximation k '~k. The average of E
over all orientations of h has been denoted in their
paper by 0«&. and 1+G(k—b) is designated 0 (b) where
b = (lr —b)/2x. Their results may be summarized by:

with G(p —lr ) given by (4.6). Utilizing the radiation
condition I'd0y/47r = 0 «g = 1—(X'/8~) e&I, {7.11)

(k' —k') '=I'(k' —k') '—im. 8(k' —k') (7.2)
where J is a pure number defined by

J= —f[A+ik(1 —E)], I=e—
l) [1—o(b)]dh/k, (7.12)

=e "r ' coskr[1——u (r)] cos(k' r)dr,

(7.4) when the integration is extended over a sphere in A

space of radius 2/X. They approximate (8.12) by
extending the integration over all h space, and then
revert to ordinary space:

I n& "[1—w(r)]dr/xr'. (7.13)

x=1+~ G(b —I ')dn, /4~ (7.6)

=) dQp/4rr 1+m I e'&' —"&'[w(r)—1]dr (7 7)

The index of refraction Eq. (3.19) can now be written in
the form:

(k')'= k'+4x~
I cl'[f—~k

I
f1'+A*If1'++

I
fl'~*] (7 8)

They can establish (a) I&3, (k) for close-packing
I~2.88, (c) for rigid spheres of radius a, I=4am'E, and
K=1—0.6488' for y«1 and K~0.64' ~ for y~1
where y=na'/V2 is a measure of the closeness of
packing such that y cannot exceed unity. Placzek
et al."give numerical results for J for ideal lattices and
for vibrating lattices.

"Placzek, ¹jboer, and van Hove, Phys. Rev. 82, 392 (1951).
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For ideal lattices and arbitrary wavelength, A can be
written in the form of a poorly converging series in
reciprocal space:

cos(k' —K) r F(K) ' coskr—A=lim 4ore P
xylo (k' —K)s—k' Z r

(7.14)

fQ

+ ~ exp{[k'—(k' —K)']t}dt. (7.15)
"0

The resulting series are:

This may be converted into a sum of two rapidly con-
verging series, one in ordinary space and one in
reciprocal space with the help of the device originally
introduced by Ewald

[(k'—K)'—k']—'

order of magnitude of (1/a) except in the immediate
neighborhood of a Bragg refmection.

It should be emphasized that the scattering amplitude
operator f has been defmed in terms of the transition
operator T by (3.20). And the transition operator is to
be obtained by solving a one-body interaction problem:
namely, a scattering problem in which the wave inter-
acts with a single scatterer while the latter. is subject
to the forces of its neighbors —i.e., a scatterer that is
neither completely bound nor completely free.

The one-body interaction problem was first considered
by Fermi" in treating the scattering of neutrons by
protons bound in a molecule. A more accurate treatment
by Breit" using integral equation methods led to cor-
rections of the order of 0.3 percent. A variational
approach to the same problem by Lippmann and
Schwinger'4 led to results in agreement with Breit.
Fermi's result for elastic scattering can be written in
the form [reference 14, Eq. (2.21)7:

exp{[k'—(k' —K)']g} F(K) '
—A=4ore Q

x~ o (k' —K)'—k' Tb.= Tb.(s)p(s)ds,
aJ

(7.22)

—4orn[(k')' —k']—'[1—
exprt (k' —k")]

+Z cocos(k' j)G(» j)

where

+lim„~o[G(k, r) —r '], (7.16)

G(k, r) = -', or
—i exp[k't —r'/(4t)]dt/t&. (7.17)

"0

= —(orrt)
—&+-,'or —i I [exp(kst) —17dt/t-:. (7.19)

Obt 0

In the limiting case of long wavelengths, A reduces to
the more familiar form:

A(0) 4—orb P ~

F.(h)/Z
~
'[exp( —E'g)/E']

K+0

+P G(0, j) 4ornrt (or—g) &, —(7.20)
j&0

rG(0, r) = (2/+or)~ exp( —I')dl; x= ', rrt '* (7.21)—.

Rapidity of convergence can be secured for the two
series by choosing, for example, rt=a'/(4or), where a is a
typical lattice constant. In any case A will have the

The sum over j is taken over all lattice points, except
j=0. For j'/g))1, G(k, j) can be approximated by:

G(k, j)—2(q/ )'{1—[2/+ (2k')']/j'}
Xe px[ 'krt j'/(4q)] —(7.1g).

The j=0 term requires special consideration:

lim, o[G(k, r) —r ']

where p(s) is the probability of finding the scatterer at
position s in the molecule and Tb, (s) is the transition
opera, tor for a free scatterer at s. Of course f is still
related to T by (3.20), but the free scattering length a
obeys a similar relation with the neutron mass m re-
placed by the corresponding reduced mass p relative
to the scattering nucleus, so that f= (am/tb). Aside
from this change in scattering amplitudes that does
not affect T, the primary effect of the binding is taken
into account by calculating the appropriate interference
sum over the distribution of scatterer positions. This
interference sum is automatically included in our
original formulation (2.3)—(2.5).

The results of this section on the neutron index of
refraction can therefore be understood to be correct in
Fermi approximation if for f we use the scattering am-
plitude appropriate to bound scatterers. The small cor-
rections obtained by Breit can be included if the scat-
tering amplitude is modi6ed to include the small e6ect
of tightness of binding. The modified scattering am-
plitude f(h, a) will, however, be slightly anisotropic, and
a rigorous calculation, even for the neutron case, can
be made only by returning to the general anisotropic
formulas (3.19) and (4.10).

VIII. SUMMARY

In previous work' the author has treated the multiple
scattering of waves by a system of particles using a
self-consistent approach. In this treatment, the use of
transition operators permitted the individual scattering

'~ E. Fermi, Ricerca sci. 7, Part 2, 13 (1936)."G. Breit, Phys. Rev. 71, 215 (1947); G. Breit and P. R. Zilsel,
Phys. Rev. 71, 232 (1947); Breit, Zilsel, and Darling, Phys. Rev.
72, 576 (1947).

.H. Lippmann and J. Schwinger, Phys. Rev. 79, 469 i1950).
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processes to possess anisotropy and includes the pos-
sibility of absorption or creation of waves in a generalized
scattering act. The scattering system was described by
a quantum-mechanical distribution function in con-
figuration space. The final results depended largely on
the density of scatterers and the pair correlation density
of scatterers. The treatment was suKciently general to
handle scattering systems that are randomly, partially,
or completely ordered, i.e., gases, liquids, imperfect and
ideal crystals.

One of the principal results of the self-consistent
approach was an adequate definition of the coherent
wave and a proof that the latter obeys a suitable wave
equation, i.e., a proof that a distribution of scatterers
can, for this purpose, be represented by a medium. Most
calculations" proceed by assuming the existence of
such a "medium" equation.

The propagation constant k' associated with the
medium equation was found to di6er from the corre-
sponding vacuum constant k by

(k')'= P+4~mcf(k', k'), (8.1)

where e is the scatterer density and f is an operator
whose matrix elements f(b, a) represent the scattering
amplitude with propagation vector 1 for a wave incident
in direction a on a bound scatterer.

The parameter c is a measure of the ratio of the
effective field P,(r) to the macroscopic average 6eld
(P(r)). For point isotropic scatters c=P,(0)/Q (0)) and
for point dipole scatterers, c is simply the ratio of
gradients at the origin. In this paper, we have demon-
strated that a valid general formula for c including
finite scatterers is

c= t exp( —ik' r)fP, (r)dr exp( —ik' r)fQ(r))dr

(8.2)

Following the procedure described in I, a set of
equations [(2.3)—(2.5)] were developed expressing the
coherent field (P(r)) in terms of the effective field

Q'(r)), with one particle fixed, and the latter in terms
of the effective field Q'(r))„with two particles fixed,

etc. This in6nite sequence of equations was broken by
the quasi-crystalline approximation:

(8 3)

An integral Eq. (4.5) was thus obtained for the effective
field. This integral equation reduces to a linear equation
for point scatterers. Using (4.5), a variational expression
(4.10) [see also (8.2)] was developed for c, valid for
finite scatterers and exact for point scatterers.

The preceding results were obtained using an in6nite
scattering system with the radiation boundary condi-
tion (5.1).The imaginary part of the index of refraction
was found to lead to an attenuation constant (5.8)
produced by the cross section for true absorption plus
the cross section for fluctuation scattering, each en-
hanced by a factor

~

c~'. This result is in exact agree-
ment with a direct calculation of the attenuation
I-(6.20).

In Sec. VI, a comparison was made between finite
and indnite scattering systems. A general proof was
given for the extinction theorem: the unperturbed
incident wave is extinguished within the medium by
waves induced at the boundary of the system.

An investigation was made of the validity of applying
the macroscopic medium viewpoint to small scattering
systems. This procedure was found applicable for
systems whose size is large (1) compared to the range
of the potential presented by a single scatterer to the
wave and (2) compared to the distance over which
correlations in scatterer positions are signiffcant. (For
ideal crystals, the last condition is too stringent. ) These
conditions can be relaxed somewhat by making direct
use of (6.9) and (6.12).

In Sec. VII, applications are made to neutron scat-
tering. It is emphasized that the scattering amplitudes
to be used must be those of a scatterer bound by inter-
action with its neighbors. It is demonstrated (7.22) that
the corrections used by Fermi are automatically in-
cluded in this paper if T(s) is the transition operator for
a free scatterer. However, additional small correc-
tions"" must be included by making a small change
in the operator T(s). This point will be considered in
more detail in a subsequent paper.


