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The hamiltonian of a diatomic homonuclear molecule in a magnetic field is discussed. Included in the
hamiltonian are the effects of the nuclear and rotational magnetic moments interacting with the external
magnetic field, magnetic shielding, molecular diamagnetism, the spin-spin magnetic interaction of the two
nuclei, the interaction of the nuclear magnetic moments with the field due to the rotation of the molecule,
and the interaction of nuclear electric quadrupole moments. Perturbation theory expressions for the energy
of Hy and D in the first rotational state are obtained in both strong and weak field limits. The secular
equation is numerically solved for intermediate fields. Curves are given showing the theoretical dependence
of the energy and the transition frequencies upon the field.

I. INTRODUCTION

N the original molecular beam studies of hydrogen
and deuterium by Kellogg, Rabi, Ramsey, and
Zacharias'—® that led to the discovery of the deuteron
quadrupole moment, the measurements were made only
in strong external magnetic fields. Consequently the
theory of the energy levels and transition frequencies
was limited to a perturbation treatment in which the
interactions within the molecule were assumed small in
comparison with the interaction of the nuclear moments
with the external magnetic field.

However, as a confirmation of the assumed nature of
the interaction and as a means of increasing the preci-
sion of the measurement of the interaction constants
within the molecule, experiments have recently been
made by Kolsky, Phipps, Ramsey, and Silsbee*~¢ in the
limit of weak and intermediate values of the magnetic

Tasre 1. Nonvanishing matrix elements of JC in
mpm representation.
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field. The present paper contains the theory of the
energy levels and transition frequencies relevant to
weak, strong, and intermediate field experiments with
H,; and D, molecules in the first rotational state.
Magnetic shielding effects which were neglected in the
earlier discussion are included in the present one.

II. THE HAMILTONIAN
The hamiltonian for a homonuclear 2 diatomic
molecule in a magnetic field H may be taken as
3e/h=—[1—0oJ)Jel-H/H
—[=e,(NI-H/H—cI-J

(3 TP 31 T TR
(27 —1)(2J+3)

S

—— BJ-HYm-P—g (1
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where I is the resultant spin angular momentum in
units of %# and J is the molecular rotational angular
momentum in units of #.

The first term in (1) corresponds to the interaction
of the nuclear magnetic moments with the external
magnetic fields and ¢ is defined by

a=p:H/ih 2)

Taste II. Nonvanishing matrix elements of JC in
Fm representation.
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Tasie II1. Perturbation theory in strong fields. Cs, Cy'; and
C; are second- and third-order perturbations and are defined by
Co=[(c+34)*+(9/2)d*]/(a—b)

C'=(c—3d)*/(a—D)
Cs=(c+2d)*(c—(9/2)d) /(a—b)*.

The state designation is the same for H,; and D,.

State mr myg Energy/h

A/L F1 F1
B/K F1 0
C/G F1 %1
D/F 0 F1
E 0 0

:i:(l—aﬂ)a:i:(l 0‘11)6 c+ld~§f—g
+(1—a)a—d+3%f—¢ +Cy
+(1— «m)a:F(l—oJx)b—i—c—i-ld —gECo—Cs
+(1—or)b—d—3f—g FCo
2d+3f—g +2Cs

where p; is the magnetic moment of one of the nuclei
and- ¢ the corresponding nuclear spin. The factor
[1—0:(J)] arises from the magnetic shielding of the
nucleus by the molecule. As shown by Ramsey™?$

ol =20,4+30,+ (0.~ 0x)[2/3(2T—1)(27+3)]
X{3J-WY -1} (3)

where J is the quantum number of the total rotational

TaBLE IV. Perturbation theory in weak fields. K» and Ky’ are
second-order perturbations defined by

Ko=(a—10)?/(2c—3d)
=2(a—b)2/3(c+(15/2)d).
The third-order perturbations vanish.

H, D2
state state F m Energy/h
A/L  A/L 2 F2 —c+3d+(a+b)
B/F D/K 1 =F1 c—-(S/Z)d:!:Z(a—l—b)—PKg
C C 0 0 2c+5d
D/K B/F 2 =F1 —c+1d:|:2(a+b)——
E G 1 0 c—(5/2)d +3iK,—
G E 2 0 —c+3d —3K,

angular momentum and ¢, is the magnetic shielding
constant for a magnetic field applied perpendicular to
the internuclear axis while o, is the shielding constant
for fields parallel to the internuclear axis. Theoretical
expressions for ¢, and ¢, have been given by Ramsey.?

The second term in (1) provides for the interaction
of the molecular rotational magnetic moment with the
external magnetic field and b is defined by

b=usH/Th 4)

TaBLE V. Assumed values for constants in secular equations.
The constants are given in kilocycles per second.

Constant Ha D
a 4.258H 0.6536H
b 0.6717H 0.3368H
c 113.8 8.783
a 57.68 25.24

7 N. F. Ramsey, Phys. Rev. 78, 699 (1950).
8 N. F. Ramsey, Phys. Rev. 83, 540, 659 (1951).
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F1c. 1. Energies of H, states as functions of magnetic field.

where ps is the magnetic moment due to the rotation
of the molecule in rotational state J. The third term
corresponds to the spin rotational magnetic interaction
and ¢ is related to the quantity H’ of KRRZ'? by
c=w;H'/ih. ©)

The fourth term in (1) includes the combination of
the spin-spin magnetic interaction of the two nuclei
with each other together with the interaction of any
nuclear electrical quadrupole moment with the variation
of the molecular electric field in the vicinity of the
nucleus. That these two separate phenomena combine
in this way in homonuclear molecules is shown by
KRRZ!2 who also show that for computation of matrix
elements diagonal in J and in 7, the quantum number
of the total spin angular momentum, d can be expressed
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TaBrE VI. Numerical solution of secular equation for Hs. The energy divided by % is given in kilocycles per second for the designated
state in the indicated magnetic field. Magnetic field (gauss).

State

(mym sFm) 0 5 10 20 60 100 140 180 220 260 300 400 500
A(—1-12-2) —8496 ~—60.31 —35.66  13.6  210.8  408.0 6052  802.4 999.6 1197 1394 1887 2380
B(-101-1) 3038 —1662 —0.3 3660 2012 3702 5399 7009 880.1 1050 1221 1647 2072
C(—1+100) 5160 5164 5176 5222 5691 6532 7593  879.0 1006 1138 1273 1618 1960
Dl0~12~1) —8496 —7400 —6569 —53.45 —20.8 371 349 62.1 89.2 1162 143.0 210 278
E(0010) ~3054 —2896 —2417 —11.63 4051 6506 8284  93.00 9034 1033 1063  109.8  112.1
FO+1 14+1) —3040 —41.27 —49.69 —61.9  —046 —122.8 —150.3 —177.5  —2045  —231.5 —258.5 —325.5 —303
G(+1—120) —8490 —86.75 —90.84 —106.1 ~—188.4 —317.5 —44l.4 —5713  —7048  —8408 —978 —1326 —1679
K(+¥102+1) —8496 —9874 —1150 —152.0 —316.7 —4857 —655.3 —825.3  —905  —1166 —1336 —1762 —2187
L(+1+12+2) —8496 —109.6 —134.3 —183.6 —380.8 —5780 —775  —972  —1170  =1367 —1564 =—2057 —2550
as expressions for £, and £, have been given.!® The quantity

2\ I(I-1)b4ili f is related to the quantities £, &, and & previously
Qe AN (I+1)+4i(+1) used by Ramsey?® by
7243 —
2/ 52I—1)(20+3) F= H(£g1— £0)/20= HPhu s/ Th. (10)
eQa?Ve/ 8202[ I(I41)44i(i+1) In principle, the magnetic shielding which arises in

)

where 7 is the distance between the two nuclei, Q is the
deuteron quadrupole moment, V¢ is the potential from
the charges external to a small sphere surrounding the
nucleus and z, is along the internuclear axis of the
molecule. The quantity 82V¢/dz,® is related® to the
quantity ¢ of KRRZ? by

92 V"J’/a.‘&'o2

10i(2i—1) | QI—1)2I+3)

—eq(2J+3)/J. @)

The last two terms in (1) are for the diamagnetic
interaction of the molecule with the external magnetic
field. If &, is the magnetic susceptibility of the molecule
for a field perpendicular to internuclear axis and £, is
the susceptibility parallel to that axis

f=(E—E)H/5h 8)
g=GEtsE) /b ©)

The form of diamagnetic interaction given in (1), (8),
and (9) arises from averaging the sin? of Ramsey’s
paper!® on diamagnetic interaction in the same manner
as in his later paper® on magnetic shielding. Theoretical

and

the spin-spin magnetic interaction should also be
included.t However, this correction has been negligibly
small in all experiments so far and consequently is
omitted here. However, when the external magnetic
field is so weak that the spin-spin magnetic interaction
is comparable to the interaction of either spin with the
magnetic field, the diamagnetic correction for the
external field is comparably small. Consequently, for
consistency in approximations as well as for simplifica-
tion, all diamagnetic corrections will be omitted in
magnetic fields sufficiently low that a perturbation
treatment in the high field approximation is not
adequate.

The cases of greatest experimental interest:®® are
molecular hydrogen and deuterium in the first rotational
state for both of which 7=J=1. In these cases the
subscripts H and D can be used to designate hydrogen
and deuterium and

duh={4px?/57%)= (2/5)2uuHu" (11)
2uph 1 Ve
dph= < >+_€Q
51’3 10 6202

=(2/5)up(H" p+H"'p)=2upSp  (12)

TaBLE VII. Numerical solution of secular equation for D,. The energy divided by % is given in kilocycles per second for the designated
state in the indicated magnetic field. Magnetic field (gauss).

State .

(mImJFm) 0 10 20 50 100 200 300 400 600 800 1000
A(—1—12-2) 3.84 13.74 23.65 53.36 102.9 201.9 301.0 400.0 598.1 796.2 994.2
B(—102 —1) 3.84 8.84 13.92 29.66 57.39 116.8 179.0 242.6 371.3 500.9 631.1
C(—14+100) 143.8 143.8 143.9 144.6 147.2 157.0 172.6 192.7 241.9 207.4 356.0
DO0—1 1-1) —54.32 —4941 —4459 —30.62 —8.83 30.80 67.60 103.2 172.6 240.9 308.9
EO 0 20) 3.84 391 4.06 5.21 8.76 18.11 26.66 32.96 40.51 44.31 46.30
F(0+1 241) 384 —108 —-590 —19.87 —4165 —81.28 —1181 —153.6 —223.0 —2914 —359.4
G(+1—110) —54.33 —5441 —54.68 —56.54 —62.61 —81.80 —105.9 —1324 —189.1 —248.4 —309.0
K(+10141) —5432 -—59.32 —6440 —80.14 —1079 —167.3 —229.5 —293.0 —421.7 —5514 —681.6
L(+1+1 2+2) 384 —6.06 —1597 —4568 —9520 —1942 —2933 —3923 —5904 —788.5 —986.6

9 B. T. Feld, Phys. Rev. 72, 1116 (1947).
10 N. F. Ramsey, Phys. Rev. 78, 221 (1950).

1 Note added in proof.—The effect of magnetic shielding on the nuclear spin-spin interaction is discussed in a letter by Ramsey and

Purcell now in course of publication in T/he Physical Review.



H; AND D,

IN MAGNETIC FIELDS 63

TasrE VIIL Transition frequencies for allowed transitions in the strong field limit.
The transition designation is the same for Hy and Ds.

’

’

Transition mr mJ mr my Transition frequency

AD/FL -1/0 F1 0/+1 F1 (1=oi)ed=(—c+3d) +C’

DG/CF 0/—1 F1 +1/0 +1 (1—os)aF(c+3d) +Co—Cy £Cs
BE/EK —-1/0 0 0/+1 0 (1=0i0)aTF3d +C' F2Cs
AB/KL F1 —1/0 F1 0/+1 (1—or)bE(—c+3d)Ff —Cy

BC/GK F1 0/—1 F1 +1/0 (1=or)bF(c+3d) LS —(Cy—Cy) =£Cs
DE/EF 0 —-1/0 0 0/+1 (1—0s1)bF3d Ff —Co TF2C;s

where H", H'”, and Sp are identical with the corre-
sponding quantities used by KRRZ.:-3

IlI. THE ENERGY MATRICES

From (1) the energy matrices can be calculated. This
will be done only for I=J=1, since this is the case of
greatest interest.

The energy matrix will first be written in the mm;
representation which is most appropriate to strong
external fields. To simplify the writing one can let oy
be the magnetic shielding of the nucleus when m;=0
and ¢;; when m;==1. Then, from (3)

(13)

The nonvanishing matrix elements of (mmy|3¢| mim;")
with the aid of the tables in KRRZ? can be shown to
have the values given in Table 1.

Alternatively one can use the F, m representation
which is most appropriate to very weak magnetic fields
where F is the total quantum number of the resultant
angular momentum F which equals I4+-J and  is the
magnetic quantum number of F. In the weak field
limit to which this representation is most appropriate
the diamagnetic corrections are very small and indeed
are comparable to the diamagnetic correction to the
spin-spin magnetic interaction which has already been
omitted because of its small size. Therefore, all dia-
magnetic corrections are omitted in the matrix elements,
In the evaluation of some of the matrix elements from
(1), the tables of Feld and Lamb! are useful. The
nonzero matrix elements (Fm|3C| F'm’) have the values
given in Table IL.

=2 3 —4 1
Ci=50ct350s Ou=%0,+30x.

IV. PERTURBATION THEORIES

Perturbation theory calculations appropriate to the
high field limit have been carried out by KRRZ with
the omission of the magnetic shielding and diamagnetic
interaction terms. When these are included, one obtains
for the energies of the nine states the expressions given
in Table III, where perturbations up to third order are
included. For the simplification of the correlation of the
states in the strong field limit to those in the weak
field limit, each state is designated with a capital letter
which is used for the same state in the low field limit.
The notation 4/L, used when plus or minus (#1) signs
are employed, indicates that the upper choice of sign
goes with state A while the lower goes with state L.

In the weak field limit, the energy levels can be
calculated from the energy matrix of Table II. The
results to third-order perturbation theory are given in
Table IV. Corresponding to the fact that the Fm and
mym,y quantum numbers are differently correlated to
each other in the H, and D, cases because of the
numerically different values of the parameters, the
state designations are different in the H, and D, cases.

V. SOLUTION OF SECULAR EQUATION

For intermediate values of the magnetic field, the
secular equation must be solved. For reasons mentioned
previously, the magnetic shielding and diamagnetic
interaction terms will be omitted in the calculation of
the secular equation. From either Table I or II the
solutions of the secular equations become

W ajp/h==+atb—c+3d (14)

TasLe IX. Transition frequencies for allowed transitions in weak field limit. Primes on the designation for the
transition indicates a transition with Am=0.

Transition

Ha D2 F m F’ m’ Transition frequency
CB/CF CD/CK 0 0 1 F1 ¢+ (15/2)dF3(a+b) —iKs+Ky'
CE' CG' 0 0 1 0 c+(15/2)d —3Ks+2K
BA/FL DA/KL 1 F1 2 F2 2¢—3dF3(a+Dd) +iK. )
BD'/FK’ DB’/KF’ 1 F1 2 +1 2c—3d +3K,
BG/FG DE/KE 1 F1 2 0 2c—3d=x%(a+0) +(7/12)K,
ED/EK GB/FG 1 0 2 +1 2¢—3dF$(a+b) +iK,
EG’ GE’ 1 0 2 0 2¢—3d +2K,— Ky
BE/FE DG/KG 1 F1 1 0 +3%(a+bd) —(1/12) K+ K’
AD/LK AB/JLF 2 F2 2 F1 +3(a+0) 1K,
DG/KG BE/FE 2 Ft1 2 0 +1(a+D) +1/12)K,

1B, T, Feld and W. Lamb, Phys. Rev. 67, 15 (1945).
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Weir/h=3%(tatb—2d)
£3[(6— ) +4(—c+3d)* ]
Wor/h=31(datb—2d)
Filla—0)*+4(—c+3d)" ] (16)
and W¢, We, and Wg are the three roots of the cubic
equation

(W/h)*— (2c+3d)(W/h)?
—[(a—b)*++45d2/4+ cd)(W/h)+2(a— b)*d
—3(d—26)(— (5/2)d+¢) (5d+2¢)=0. (17)

W is the root which in the high field limit approaches
(a—Dd)% while Wq approaches (—a+5)h.

Although, the cubic equation can, in principle, be
solved analytically, in practice it is more convenient to
leave it in the above form and to solve the cubic
numerically. This has been done for H, and D;. The
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Fic. 5. Frequencies of D; transitions that are allowed in the
strong field limit. Curves that are dashed along the lower halves
indicate forbidden transitions in the weak field limit whereas the
full curves indicate allowed transitions in the weak field limit.

constants assumed for @, , ¢, and d are given in Table V.
These are the best values obtainable from the experi-
ments of Kolsky, Phipps, Ramsey, and Silsbee.*~¢

The results of these calculations are plotted in Figs. 1
and 2. Since in interpreting the experiments, more
accuracy is often needed than that available from the
curves, the numerical results obtained are also tabulated
in Tables VI and VIL.

VI. RESONANCE FREQUENCIES

In the high field limit, expressions for the transition
frequencies can be obtained by differencing the energies
of Table III. The results are given in Table VIII. Only
transitions allowed in strong fields (Am;=21, Am;=0,
or Am;=0, Ams;=1) are listed. The transition from
state A to state D is designated as AD.

In the low field limit, expressions for the transition
frequencies can be obtained by differencing the energies
of Table IV. The results for the allowed transitions

!
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Fic. 6. Frequencies of D, transitions that are forbidden in the
strong field limit. Curves that are dashed along the lower halves
indicate forbidden transitions in the weak field limit whereas the
full curves indicate allowed transitions in the weak field limit.
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(AF=0, 1, Am=0, 1) are given in Table IX. A
prime added to the transition designation as CE’ indi-
cates a transition for which Az =0. The oscillating field
inducing such transitions must be parallel to the
external field.

In intermediate fields the transition frequencies can
be obtained by differencing the values of Tables VI
and VII. The results of such a procedure are plotted
in Figs. 3, 4, 5, and 6. Lines which are dotted along

either their upper or lower halves indicate transitions
forbidden in either the strong or weak field limit. The
quantum numbers associated with each transition can
be obtained by correlating the quantum numbers with
the transition designation with the aid of Tables III
and IV.

The author wishes to thank Mr. Vaughn Culler for
his assistance in calculating the values in Tables VI
and VIL
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Superposition of Configurations in the Ground State of He I*
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To obtain some understanding of the role played by various configurations in configuration interaction,
the Hylleraas six-term expression for the ground-state wave function of He I has been expanded in series
of orthogonal functions. To determine the degree of dependence of the coefficients of the expansion on the
specific function used for the ground state, the Hylleraas three-term expression was also expanded. Two sets
of orthogonal functions were used. One set consisted of orthogonalized symmetrized product type wave
functions where the functions for the individual electrons were found from a Hartree self-consistent field
without. exchange. The second set consisted of orthogonalized variationally determined analytic wave
functions. The results emphasize the large number of configurations which would have to be considered if
the Hylleraas wave function were to be represented with high accuracy. After 1s? the largest contributors

among the configurations considered were 2p? and 2s2.

T has long been recognized' that the method of the
self-consistent field involves three principal approxi-
mations: (a) the neglect of relativity effects, (b) the
neglect of exchange effects, and (c) the neglect of the
nonseparability of the wave functions. Relativity effects
should be small for the lighter atoms. Exchange effects
have been extensively investigated, principally by
Hartree using Fock’s equations. The inclusion of ex-
change improves the wave functions considerably and
usually improves the energies somewhat. However,
something is left to be desired. For example in O, O,
and O** the average difference between the observed
and the calculated energies for the three lowest states
are found to be 0.188, 0.088, and 0.114 respectively in
units of the ionization energy of hydrogen when self-
consistent field wave functions without exchange are
used with Slater’s integrals.? If wave functions with
exchange are employed, the values obtained are 0.198,
0.086, and 0.080 with no improvement in the ratio of
the multiplet separations.? To obtain further improve-

* This work was supported in part by an ONR contract ad-
ministered by the University of Pennsylvania, and in part by a
grant from the Research Corporation.

1D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A150, 9 (1935).

2D. R. Hartree and M. M. Black, Proc. Roy. Soc. (London)
A139, 311 (1933).

3 Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1939).

ment one may attempt to remove the approximation
involved in the neglect of the nonseparability of the
wave functions. This has usually been done by con-
sidering the effects of superposition of configurations. A
number of calculations of this sort have been made.*
In general some improvement in multiplet separations
has been obtained when superposition was included but
in the two most thorough treatments of such effects by
self-consistent field methods, the work of Hartree? on
0, O+, and O+ and the work of Jucys® on C, the results
were disappointing. Hartree, by the superposition of
1522p2%2 on 15225229, obtained for the average difference
between the observed and calculated energies for the
same lowest states of O, O*, and O™+ mentioned above
0.180, 0.108, and 0.090 respectively using wave functions
with exchange to determine the effects of the con-
figuration interaction. The ratio of the multiplet sepa-
rations was considerably improved for O and somewhat
improved for O* and O**. Jucys, by. superposing
1522522p% 1522p% 1522522p3p, and 1522s2p?3s for CI
reduced the average difference between the observed
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