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Meson Tail Effect and Treatment of Proton-Proton Scattering Data*)
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The 6t of experimental material on proton-proton scattering by
phenornenological potentials is reviewed with the inclusion of
observations by Heydenburg-Little in the 300-kev region and of
Cork at 30 Mev. Weighting of data by a criterion based on internal
consistency is employed. Data obtained by means of Van de
GraaR machines are used to determine the best fits for diRerent
shapes of potential energy curves. Other data are compared with
the resultant (f, Z) plots graphically. A trend towards agreement
with the long-tailed Vukawa and exponential well potentials is
noticeable among the supposedly more accurate measurements of
Rouvina and of Cork. The meson potential —Ce "f /(r/u) with
C= (93.4+1.0)mc' u= (0.412&0,002)e'/mc' fits experiment and
corresponds to a meson mass of 333&2@&, the limits of error
being stated above somewhat arbitrarily.

The eRect of the tail of the Vukawa potential on scattering is
studied with particular attention to its influence on the nearly
linear functions of energy used in the analysis of experiment, and
on the coeS.cients of powers of the energy in the expansion of
this function (f).

The convergence of the power series is better if the tail of the
potential is chopped oR. Calculation of coefIjcients in this series
is also easier for the potential without tail. The more practical
arrangements of calculations are: (a) direct calculation of f for a
number of energies, the tail effect being treated by a first-order
approximation; arid (b) calculation of coefhcients of powers of
8 in the series for f for potential without tail followed by 6rst-
order calculation of effect of tail on f Resul. ts obtained in these
ways are compared.

I. INTRODUCTION

S INCE the appearance of the comprehensive review
of experimental and theoretical aspects of proton-

proton scattering by Jackson and Biatt' there appeared
some additional measurements by Rouvina, ' Bruce
Cork, 3 Panofsky and Fillmore, 4 Faris and. %right, '
Zimmerman and Kreuger, ' and by Mather. ~ Some
preliminary measurements of Heydenburg and Little'
also have become available. It appeared desirable,
therefore, to compare the enlarged experimental ma-
terial with expectation for diRerent phenomenological
potentials. It will be seen that there is now a slight
trend towards agreement with the Vukawa or expo-
nential type of potential. This circumstance may
perhaps be signihcant since it has been found possible
to reconcile the simple hypothesis of the syIQmetric
Hamiltonian with neutron scattering experiments
through the employment of long-tailed potentials' and
since the exactness of the equality of rs-p and p-p forces
is even improved by making relativistic and magnetic
eRects corrections as has been found by Schwinger. '

In view of the usual difhculty of assigning relative
weights to diRerent sets of experimental data on a
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rational basis the experiment has been tried of em-

ploying general agreement with the majority of the
better measurements as a criterion for establishing the
relative weights. This is made possible by the employ-
ment of the f function of Breit, Condon, and Present, 's

which varies approximately linearly with energy, a
circumstance successfully used by Schwinger, "Blatt,"
Bethe, "Chew and Goldberger, "and others in analysis
of scattering experiments. In order not to prejudice
the determination of the range parameter, the criterion
used disregards the manner in which the centroid of
the f values faiis on the f, E curve but pays attention
to the way in which the slope of f, E curve is reproduced
by the data of one set of observers. This criterion is
manifestly unjust to data which contain an error vary-
ing systematically with energy and is present only at
some energies. Such an error need not aRect the position
of the centroid very strongly. This is the case for the
observations of Heydenburg, Hafstad, and Tuve, "
which show other evidence of being quite accurate at
their highest energy. Since a great many points are
now available, such an occasional unfairness has prob-
ably an insigni6cant eRect on the Anal result. The
values of Heydenburg, Hafstad, and Tuve" obtained
ln the vlclnlty of the scatteI'lng IQlnlmuIQ and some"
times' shown in surveys are not included in the
analysis since the object of this work was to ascer-
tain the existence of the minimum rather than to
provide accurate phase shift values. Other questions

"Breit, Condon, and Present, Phys. Rev. 50, 825 (1936})
referred to in the text as BCP."J.Schwinger, hectographed lecture notes prepared at Harvard,
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"Heydenburg, Hafstad, and Tuve, Phys. Rev. 56, 1078 (1939},

referred to in the text as HHT.
'6 Heydenburg, Hafstad, and Tuve, Phys. Rev. 53, 239- (1938).
'7L. Rosenfeld, Nuclear Iiorces (Interscience Publishers, Inc. ,¹wVork, 1948).
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Fro. 1. Lower curve: Plot off vs E for best fits with experimental points as designated. Use scales on right and lower
margins. Upper curves: Plots off vs E for best Qts as labeled with experimental points having the following designations:
HKPP—Herb, Kerst, Parkinson, and Plain (reference 31); BFLSW—Blair, Freier, Lampi, Sleator, and Williams
(reference 32); R—Rouvina (reference 2); MP—May and Powell (reference 29); M—Meagher {reference 36); Ma-
Mather (reference 7); ZK—Zimmerman and Kreuger (reference 6); WC—Wilson and Creutz (reference 37); W-
Wilson (reference 38); FW—Faris and Wright {reference 5); Wl RWS—Wilson, I ofgren, Richardson, Wright, and
Shankland (reference 39); C—Cork (reference 3); PF—Panofsky and Fillmore (reference 4). Use scales on left and
upper margins.

concerned with the use of data are discussed in a more
detailed account contained in the body of the paper.

The differences caused by fitting data in different
ways are examined as follows with special reference to
the distinction between linear fits to the f, E curve and
6ts employing the deviations from linearity which are
expected for an assumed shape of the potential energy
well. These have been previously mentioned in a more
limited way by Breit and Batcher" in relation to the
quadratic terms but are more fully covered here with a
consideration of the eGect of cubic and quartic terms.
In addition to comparison of power series and directly
computed f values mentioned below, an analytic dis-
cussion of the effects of linear fits shows that if the
curvature of the (f, E) curve is produced by a quadratic
term, a linear visual fit will give the same initial slope
as a linear least squares fit, but will fail to reproduce
the initial value (f, E=O) by an amount proportional
to the square of the maximum energy used in the fit.
If a quadratic term is accounted for properly, but a

' G. Breit and R. D. Hatcher, Phys. Rev. 78, 110 {1950},
referred to in the text as BH.

cubic addition is fitted linearly, the addition to the
slope is nearly determined, but an error in the initial
value proportional to the cube of the maximum energy
is left out of account.

In order not to be completely dependent on least
squares analyses of the data and on semi-empirical
formulas relating the potential parameters to the results
of such an analysis, a further study was undertaken
wherein theoretical f, E plots for various sets of param-
eters were compared directly with the experimental
data and with an f, E plot resulting from a least
squares analysis of the data. In such plots a change in
the range parameter appears approximately as a rota-
tion of the f, E plot, while a change in the depth
parameter appears as change in the value of f by nearly
the same amount at each energy. The comparison,
therefore, allows a determination of the changes in the
parameters needed to rotate and translate one of the
theoretical curves into the one derived from experiment.
The parameters obtained from both methods of analysis
differ by much less than the estimated errors.



TA@Lz I, Values of the f(') in their difterent interpretations for the Yukawa potential vrith u'=0.40, C'=99.

Line f«) f(i)

A 7.9917 0.905
8 7.9900 0.910

0.917
D 7.9684 0.9295
8 7.9900 0.9153
F 7.9684 0.9269

f(2)

—0.005—0.006—0.00|)3—0,0090
-0.00659—0.00890

f(3)

0
0.00005
0.000053
0.00026
0.000051
0.000270

f(4)

0
0
0—5.3&10 '

5.4&10 ~

—5.3&10 '

Tail
presence

No
No
No
Yes
No
Ves

How obtained

HAB representations. '
Least squares 6t to f in Table I of HAB.b

Least squares fit to BfjBE.'
Graphical tail corrections applied to preceding entry. ~

Integrals involving @;.'
Integrals involving n;. f

a Direct substitution of e'=0.40, C'=99 into Eqs. (3) to (3.8) of HAB.
& Least squares fit to values off for different values of maximum energy from 9 to 40 Mev. Vahie of f(» proved necessary to insure energy independence

of other f(4). Value of f(» obtained agrees. with that from Eq. (8.6) of BB,
o Calculation of BfjBBby the BH extension of the Schwinger formula to arbitrary Z; least squares fits at H =0, 1, 2.6, 6, 8, 10„12,14, and 16 Mev.
d Graphical determination of b(8f/8Z) from Fig. 2; power series 6ts to these values.

Jac14son-Blatt equations involving energy derivatives of radial functions applied to potential without tail; the value of f(4) was required to represent
directly computed f s of HAB up to 32 Mev. It is probably not accurate since it may be including effects of f(».

& Obtained from values given in immediately preceding entry with inclusion of tail effect corrections calculated by means of Eq. (2) employing energy
differentiation of asymptotic Bessel function expansions (see reference 26) at B=0.A least squares fit of f up to P =22 Mev determined f(4) which is prob-
ably not accurate and may include effects of f(».

T1M scctloIl on t1M tIcRtment of dRtR ls plcccded by
a consideration of the effect of including the tail of the
Yukawa potential at distances greater than 3e'/mc'.
This tail eftect is found to be represented poorly by a
power series in the energy E, and it has a marked

.inhuence on the coeKcients f"' in the power series in E
which represents f. The difference between representing

f by a polynomial with a small number of terms and by
a power series is studied and is found to be appreciable.
The power series representation of f at 32 Mev is found
to require terms in E"with e= 4 as is seen by inspection
of Table I and Fig. 1r The power series representation
of the values of f without tail converges more rapidly,
homever, and could be used in conjunction with a,

directly computed tail CR'ect obtained as in Sec. II.
The notation is the same as in Hatcher, Arfken, and

Breit" with the following additions or changes:

r, = interpa, rticle separation in units e'/mc'.
K= ~f—0.15443 is the function introduced. by Jackson

and Blatt' in their analysis of 'experimental data.
I'=C05'/sinKO, where 5' is the Coulomb function

Ii cosKO+ G sinKO.
v= 1/(C'~")'.
A= energy in Mev unless otherwise stated.

5Eo= chRngc ln Eo cRuscd by an addition to tlM po-
tential. In the present ease, the addition is taken
to be the tail of the Vukawa potential from
r=3e'/mc' to 6e'/mc'.

In the mork reported on which follows, use is Inade
of the fact that the eRect of the tail extended from
r,=3 to inanity is given with an accuracy of at least
0.0003 degrees by the first-order perturbation formula

6

8KO —— ~ (8V/E')52dp,

'9Hatcher, Arfken, and Breit, Phys. Rev. 75, 1389 41949),
referred to in the text as HAB.

where bEo=change in phase shift as a. result of the
extension of the Yukawa potential beyond 3e'/mc' (SKAG

is to be added to Eo of Table II of HAB to give the
effect of the Yukawa potential extended to in6nity),
8V=Ce "~'/(r/a)= Yukawa potential, Z=energy of
relative. motion, and 5'= Coulomb function with phase
shift Eo. The erI'or is usually much less than 0.0003'.
Since the tail Hfect is calculated here for use with the
phase shift table of HAB" which has an accuracy of
0.01', this error is negligible. Inaccuracies in 5', the
nature of which is explained in deta, il later, may give
at most an additional error of 0.0002'.

The smaHness of the e&eets of these errors in appli-
cRtlons may bc judged by obsclvlng that R one pclccnt
error in scattering at an observation angle of 45' usuaHy
introduces errors in the phase shift having absolute
values between 0.01' and 0.4'. The dependence of the
errors in Ko and f on energy caused by such an error
in scattering is seen in Table II.This table will be found
useful for comparison with values of the tail cRect
Rrrlvcd Rt 1Rtcl ln the RI'tlclc.

The inherent errors introduced by the use of Eq. (1)
are to be assigned to two main causes. First there is
the neglect of the tail beyond 6e'/mc'. The maximum
CRcct of cutting oR the Vukawa potential at r,=6 was
estimated by evaluating the integral of Eq. (1) from
r,= 6 to inanity with 5' = 1. Since

~ $ ~

—1, this provides
an upper Hmlt on the error which is found to be less
thaI1 8.5X10 /QE degrees with E ln Mev. For aH

energies used this is less than 0.0001 degree. The in-
accuracy introduced by using the square of the Coulomb
function instead of the product of the Coulomb and
Yukawa functions was investigated. For the higher
energies, an analytical argument shows this to be less
than 0 22/4E percent of 4KO, tha, t is less tha, n a,bout
2&10 ' degree. At the low energies, numerical esti-
mates indicate an upper limit to this type of error of
about 0.0002 degree.

In order to calculate 8KO from Eq. (1) it is necessary
to obtain the wave function g=F cosKe+G sinK».
The phase shifts used mere taken directly from Table II
of HAB. Calculation of the regular and irregular
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Coulomb functions, Ii and G, proceeded in several
di8erent ways.

For energies below 2 Mev, Eqs. (13) through (21) of
Yost, Wheeler, and Breit2P were used. In this region
inaccuracies in Ii and G present in the calculations
introduced errors of less than 3&(10 ' degree in 8Ep.

For energies above and including 9 Mev, g was
approximated by a sine function, A sincQ(b)r, +bj
where Q is defined by the Coulomb equation, dg/dr, '
+Q'(r, )5=0, and b is some suitably chosen value of r,
slightly greater than 3. A and 8 were found by Qtting
the sine function in slope and value at r,=3 to
a sin(y+ICp); a and y at r,=3 were obtained from
previous unpublished work at this laboratory by
Hatcher who used Eqs. (4(b)), (9),and (10) of Wheeler. "
Estimates of the error introduced by this approximation
for E&9 Mev were made by integrating

a' 0.40 0.40 0.40 0.42 0.45 0.45 0.45

c'
Mev) Q

0.8
1.4
3
5
6
7
9

16
22
28
32
40

102 99 96 89.648 84

5.8
4.3
0,8
0.1
0.3
0.5
0.9
1.0
0.4
0.2
0.2
0.4

5.3 4.8
4.3 4.2
1.0 1.2
0.2 O.i
0.2 0.2
0,4 0.3
0.8 0.7
0.9 1.0
0.4 0.5
0.2 0.2
0.2 0.2
0.4 0.4

7.5
6.1
1.5
0.2
0.3
0.6
1.2
1.4
~ ~ ~

0.3
0.3
0.6

14.9
8.7
2.0
0.5
0.9
1.5
2,4
2.3
0.9
0.4
0.5
1.0

13.6
9.4
2.8
0.3
0.7
1.2
2.1
2.3
1.0
0.4
0.5
1.0

12.2
9.6
3.7
0.3
0.5
0.9
1.9
2.2
1.0
0.4.
0.4
0.9

TABLE III. Values of tail correction bE0 in hundredths of
degrees for meson potential. These should be added to the Eo in
Table I of HAS to allow for the eGect of the potential beyond
r =3e'/mcp.

$e 'i~/(r/a) j[a~ sin'(pp+E )
~r, =3

taking into account 6rst-order effects in Ep. The
resultant upper limit for the error is 3X10 '/EM, '

which is &0.0002 degree. Numerical checks on the
sine approximation were made in a number of cases by
comparison with accurate values of g. The agreement
was always better than 0.0001 degree in 6Ep.

For 2 Mev(E(9 Mev a sine function of the form
A sin[Qr, +bj was joined to $ at r,= 3. F and G and
their derivatives at r,=3 were obtained from Table I
in Thaxton and Hoisington. " At larger values of r„
the difference between the sine function and the desired
Coulomb function was calculated by means of a
Taylor s series in r,—3, the successive derivatives of
which were obtained from the Coulomb equation. The
series converges rapidly requiring only two or three
terms. The error in g where it mattered was not more
than 0.001 and the error in BEp was less than 0.0002
degree.

~6

bf= —2 (8V/mc') (u')'dr, (2)

which follows from Eq. (1) and the relation between bf
and 5Ep where at any energy

(2.1)u =Cpg/sinEp,

an expression, the limit of which for E=O is according
to Breit and Batcher, "

u'= —x[Ei(x)+(y —-,')Ii(x)]+ (x/4)I i(x)f, (2.2)

where

(2.21)

By differentiation of Eq. (2) the energy derivatives of
bf at E=O can be obtained in terms of energy deriva-
tives of u' at zero energy which can be expressed in
terms of Bessel functions. The values of bf and B(Bf)/BE
at E=O for various meson parameters are included in
Tables IV and V. The values of bf given in Table IU
are to be added to the values off for the meson potential
extended to r,=3 in order to give the effect for a
meson potential extending to in6nity. "

The uncertainty in. bf is roughly constant over the
complete energy range and is probably not greater
than about 0.0003 in most cases. At zero energy esti-
mates indicate that the uncertainty in bf is probably
not greater than 0.0005.

Tail corrections for the Yukawa parameters C'

TABLE II. Errors in XO in degrees and f produced by a one
percent error in scattering at 45' for C= 84.422mc2 and
c=0.4323e2/mc2.

0.25
0.50
0.75

2
4

10
20
30
40

0.03—0.01—0.02—0.03—0.05—0.09—0.16—0.24—0.30—0.35

—0.05
0.03
0.08
0.13
0.23
0.33
0.37
0,35
0.33
0.32 "A knowledge of the phase shifts enables one to calculate f

from Eq. {7.6) of BCP for various energies. For different Yukawa
parameters one can calculate f up to 10 Mev to within about 0.01
from the representations given in Eqs. (3) through (3.8) of HAS.
An uncertainty of 0.01 in f, for almost all energies, corresponds
to an uncertainty in scattering at 45' of less than 1 percent as
indicated in Table II.

~ Yost, Wheeler, and Hreit, Phys. Rev. 49, 174 (1936)."J.A. Wheeler, Phys. Rev. 52, 1123 (1937).
~ H. M. Thaxton and L. E. Hoisington, Phys. Rev. 56, 1194

(1939), referred to in the text as TH.

Values of 8Ep for Yukawa parameters close to the
best fit to experiment are listed in Table III.

Values of 8f were obtained as first-order effects of
A' »n'(Q(b)r +b)]dPi bop from the definition of f and are shown in Table IV.

At zero energy, it was convenient to use
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TA&LE IV. Values of bf caused by tail of meson potential. These should be added to f to allow
for the effect of the potential beyond r =3e'/mc2.

(Mev) g
0
0.8
1.4
3
5
6
7
9

16
22
28
32
40

0.40

102

—0.0179—0.0110—0.0073—0.0016—0.0004—0.0008—0.0016—0.0034—0.0055—0.0029—0.0014—0.0018—0.0045

0.40

99

—0.0216—0.0134—0.0093—0.0024—0.0006—0.0006—0.0014—0.0033—0.0058—0.0032—0.0014—0.0017—0.0044

0.40

96

—0.0257.
—0.0166
—0.0115—0.0032—0.0005
—0.0005
—0.0012—0.0031—0,0061—0.0035—0;0015—0.0017—0.0044

0.42

89.648

—0.0299—0.0188—0.0128—0.0035—0.0005—0.0009—0.0020—0.0047—0,0083
~ ~ ~

—0.0022—0.0026
—0.0064

0.45

—0,0287—0.0169—0.0107—0.0034—0.0011—0.0025—0.0045—0.0085—0.0119—0.0062—0.0034—0.0046—0.0107

81

—0.0366—0.0223—0.0147—0.0057—0.0009—0.0021—0.0039—0.0080—0.0126—0.0069—0.0035—0.0045—0.0106

0.45

—0.0455—0.0286—0.0194—0.0086—0.0009—0.0016—0.0033—0.0076—0.0134—0.0077—0.0038—0.0044—0.0105

=89.648, a'=0.42, can be used to determine the tail
corrections for other sets of slightly diferent parameters
within &0.0007 in f. The results can be summarized
as follows. For 0(E~9 Mev,

(3f 3f"')/-(ufo ufo'")-
= 1+15(a'—0.42) [1+3.7(a' —0.42)]

+0.248[1+12(a' —0.42)]
X [15.81—C'a"][1—0.0855E], (3)

3f"&/ufo'" 1+14.6——(a' —0.42) [1+4.6(a' —0.42)]
+0.344[1+10.5(a' —0.42)][15.81—C'a"]. (3.1)

For E~&9 Mev,

waif/ufo = 1+18.3(a'—0.42)[1+5.7 (a' —0.42)]
+0.150[1+16.7 (a' —0.42)][15.81—C'a"]

Xsin[0.0331E''(E—12)]. (3.2)

Here E means the energy in the laboratory system in
Mev, hf &Pi is the first term in a power series in energy
for 3f, and the subscript 0 means tha, t 3f and Sf&Pi for
a'=0.42, C'=89.648 have been taken. Values of ufo

and 3fp&oi are obtainable from Table IV, fourth column,
with Bfp&" =3fp at E=O.

It may be pointed out that Eq. (3) can be used
to obtain 8f"', since [B(3f)/BE]s o bf "', and——
[8(ofp)/BE]z p ufo&'& is 0.0161 f——rom Table V.

III. COEFFICIENTS OF E IN THE
POVfER SERIES OF f

The quantities f&@,f&", are defined as coefficients
of powers of E in the power series representing f. In
the work of HAB the primary object was to represent

f as a function of the energy with an accuracy sufficient
for preliminary comparison with experiment. Simplicity
of representation was therefore put ahead of accuracy
in the values of the fi". The procedure followed by
HAB was that of fitting directly computed values of f
by a quadratic

f(P)+fii)E+f (&)E&

for values of E from 0.2 to 10 Mev, and while the fact
that the values of f ' i, f'", and fi" will be affected by
the presence of f"& with i)2 has been realized and
even brought out in HAB's paper, no explicit account
of them has been taken. It is clear that the effect of
the omitted f"' is a function of the energy range within
which the fits of f are made. In tbe work of Jackson
and Blatt, ' on the other hand, the function f is repre-
sented by a power series in E, and the coefficients fi"
are used in their strict mathematical sense. The agree-
ment between the two sets of the f"' is, therefore, not
as good as that between the values of f The situa. tion
is somewhat similar to that encountered in the analysis
of experimental material by means of the f function.
The best that can be done without assuming a shape
of. the potential well is presumably to fit the experi-
mental values of f by a polynomial using least squares
with appropriate weights. The values of the f&' arrived
at are then functions of the assumed number of sig-
nificant f ~"'&. The values could be appreciably in error if
the f curve contains some large enough f&'& with large
enough i. The procedure of HAB is sufficiently close
to what has to be done in treating data with respect to
effects of neglected f"' to make it at least comparable
in usefulness with that of a mathematically rigorous
representation. It sacrificed some numerical accuracy
in order to cover a" large range of parameters, and a
direct comparison with Jackson and Blatt's work would
be difficult for any one who has not carried out similar
calculations. It appeared desirable, therefore, to take
into account the effect of the tail of the potential energy
curve on the f&@ both in order to make the comparison
more immediate and in order to ascertain the eftect of
the inclusion of the tail on the f"' It will be seen .that
the effect of the tail is not negligible and that the

TABLE V. Values of B(8f)/BE at 8=-0. 8 is in Mev.

u'= 0.40 0,40 0.40 0.42 0.45 0.45 0.45
C'= 102 99 96 89.648 84 81 78

B(bf)/BE=0 0102 0.0116 0.0133 .0.0161 0.0177 0.0211 0.0248
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546 YOVITS, SMITH, JR. , HULL, BENGSTON, AND BREIT

I

f (o& =0.000170gf &o& —0.01086f('&. (5)

The tail of the meson potential beyond r=3e'/me'
has the efkct of increasing the range of nuclear force

parameter value differences. Such checks have been
described by BTE and related ones by HAH. The
question of the number of coefficients needed for a
given energy range does not enter in the method of
direct calculation while it cannot be avoided if one
uses a power series in K

The direct method of calculating f is not entirely free
of stringent accuracy requirements, however. In this
case Eqs. (7.1) and (7.6) of BCP are used together with
quantities tabulated in the appendix of BTE, in TH,
or obtained some other way for the Coulomb functions,
and logarithmic derivatives of the meson functions
obtained by a numerical integration of the suitable
Schroedinger equation or an equivalent method. The
tabulated Coulomb functions are given to four decimals
in the places mentioned, and an assumed uncertainty
5&10 ' in each quantity at, say, 8=2.6 Mev, intro-
duces an uncertainty in f of 0.003. If there is an error
in one of the quantities, for example 4000, of 1.5X10 4,

there is an error in f of roughly the same amount.
While these uncertainties are small, they entered within
the accuracy of the graphs discussed later in this paper.
There is also a further mitigating circumstance in the
use of the integral formulas in the fact that the tail
effect contributes the major part of the coefficients f&'&

for i)2, and this part may be computed directly with
the aid of the first-order formula, Eq. (2), where the
wave function is suitably differentiated with respect to
E under the integral. Thus for the entry in Table I,
line 8, the error in f(o& without tail is estimated at
&10 percent, while in line Ii, the error in f(o& with tail
is only about 3 percent, since the tail effect is known to
about 0.5 percent and is four-fifths of the value. The
values of f"' and f"' with or without tail are known to
~0..03 percent and &0.5 percent, respectively.

It has, therefore, been found helpful in the present
work to use both direct calculations of f and energy
expansions with coefficients obtained by integral for-
mulas in order that independent checking could be
eGected.

In deriving the values of meson well parameters from
experiment, it is convenient to have available the
approximate equations

Ae'= —0.0138hf ('&+0.411'&'&

[(C') '*/u j=0.00309hf (o&+0.01663f(n

which follow from the representations of the f&'& by
HAB. These formulas relate small cha, nges in f(" and

f&'& to corresponding changes in C' and a' on the sup-

position that f"& is varied with f&" and f &'& in a manner

required by the meson well. The effect of f('& beyond
f&'& is neglected and the variation of f &'& is obtainable
from

and of producing an increase in f&'& of approximately
one percent. The change in phase shift, of course, is
always positive. Since f'&f is proportional to —f'&E„f'&f'is
always negative, and in particular, 8f(o& is negative.
The curvature of the f curv-e is increased in absolute
value because of the 'tail by about 35 percent in a
typical case.

The absolute value of the tail eGect is greatest for

f&'& and decreases with the order of the f-coeKcients.
However, in percentage, the tail has the greatest effect
on the higher order coeKcients. For example, the tail
increases f"& by about 500 percent an.d f &4& by about
—1000 percent.

As would be expected, the tail has the greatest effect
on the phase shift for low energies because of the
Coul'omb barrier. The oscillatory nature of f&f arises
because of the way in which the"wavelength" of the
wave function decreases with energy, in combination
with the exponentially decreasing factor in bV.

In the course of this work it has been found to be
simpler to determine f curves by direct calculation of
phase shifts rather than by determining the f('& by
means of integral formulas' "' ' lt is not meant,
however, .to deny the advantages of this latter method
in showing qualitative features of the behavior of the

f&'& with changes in potential well parameters especially
for f&". It is somewhat cumbersome, however, for the

f&" with higher i which are necessary to represent f at
higher energies.

The large number of coefficients needed is illustrated
by comparing results of using the values in Table I,
line Ii at 20 Mev with a value of f computed from the
HAH phase shift and corrected for tail effect. When

f&'& was included, the series yielded a value too large
by 2.11 or 9.5 percent, inclusion of f"' led to an f which
was too small by 5 percent, and the series with four
coeKcients was too large by 3.8 percent. The conver-
gence is definitely faster, however, when the coefIi-
cients without tail of line E of Table I are used to
compute values of f not corrected for the tail effect,
as may be seen from the fact that at 20 Mev the series

f is high by 9 percent for two terms, low by 2 percent
for three terms, and low by 0.5 percent for four terms.
With the same coeKcients, the series disagrees with
the tail-corrected f at 40 Mev by 20 percent and with
the tail-uncorrected f by only 2 percent.

This comparison coupled with earlier discussions of
cancellations encountered in integral formulas for the
f&'& for i)3 leads one to the conclusion that the
expansions in powers of E can most profitably be used
for calculations not including the tail eGect, followed

by a direct calculation of the tail eGect by means of
Eq. (2) or interpolations in Table IV. Since the tail
contributes most of the value of the coeKcient from
f&'& on, such a plan reduces the need for extreme
accuracy in computing the f('& without tail, and in

2' G. Breit, Revs. Modern Phys. 23, 238 (1951).
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addition, the more rapid convergence of the series
representing the tail-uncorrected f can be fully utilized.

The tail effect illustrates an extreme condition of
variability with bombarding energy of sensitivity of
scattering to changes in potential energy. This varia-
bility is clearly seen in Fig. 2. At energies of 30 Mev
the tail effect is small, and it is small again at 5 Mev
while in the region 0—j. Mev it has its largest values. The
calculations by means of which, the tail has been com-
puted involve the same approximation as has been used

by Hoisington, Share, and Breit" and BBH for the
discussion of sensitivity of scattering to changes in
potential in general. Figure 2 shows in conjunction
with Table II that the tail effect is equivalent to a
change in 45' scattering by roughly 0.7 percent at
1 Mev bombarding energy and is over 1 percent at
0.5 Mev. While small, the tail eftect is seen to be not
negligible from an experimental viewpoint.

It appears appropriate at this place to clear up a
misunderstanding concerning statements in HSB'8 as
interpreted by Jackson and Blatt. The word "shape"
was used by HSB in two senses: (a) the one according
to which changes in range and depth parameters do
not alter the shape of the potential well (this convention
has become universal since); (b) the one according to
which the addition of a potential anywhere changes the
shape. The latter convention was a natural one to use
in a part of the discussion since the paper of HSB was
written as an illustration of the method of calculating
elects of such changes. A diGerent shape in sense (b)
is also a diferent shape in sense (a) in most cases, but in

special cases it is the same shape in sense (a). By
"exponential well" the well with speci6c values of depth
and range parameters of Rarita and Present was meant
throughout as is clear from references to the work on
binding energies with these parameters in HSB and
from the discussion of their comparison of the meson
Rnd exponential wells, which applies to what HSB
considered to be the best 6t to scattering data by the
Yukawa potential with what appeared to be at the time
the best fit to binding energies of the Rarita-Present
exponential potential. The distinction in the two uses
of the word "shape" should have been more clearly
brought out in the HSB paper. At the time at which
it was written the interest in the Rarita-Present well

and the absence of binding energy calculations for the
meson potential made elaborate statements unneces-

sary. The statement by HSB concerning the fact that
the data then under consideration were in better agree-
ment with some shapes of potential energy wells (in the
currently accepted sense) than with others was correct
and can be seen in Fig. 15 in Jackson and. Blatt's paper
Rnd in Fig. 1 of the present paper. The points of HHT
which couM not have been disregarded suggested
strongly a preference for the meson potential and the
trend toward convexity of the (f, Z) plot for the HKPP

'Hoisington, Share, and Breit, Pcs. Rev 56' 884 (1939),
referred to in the text as HSB.

points when viewed from below is also clear. It should
be stated that the comparison of the best 1939 meson
potential fit with the Rarita-Present exponential well
was correct. The superiority of the (f, 8) plot over the
(EO, E) plot claimed by Jackson and Blatt is more
esthetic than practical as may be seen from the agree-
ment of "best 6ts" obtained by the two methods. It is
probable that the safest method is a direct plot of
experimental data such as Fig. 11 of BTE. It is more
laborious than either of the other two but frees one
considerably from the confusion caused by the custom-
ary and frequently rather meaningless assignment of
probable errors to their results by experimenters. The
inclusion of data at various angles and diagrammatic
presentation of experimental rather than theoretical
quantities makes judgment concerning relative goodness
of diGerent fits more concrete.

IV. COMPARISON OF THEORETICAL f
WITH EXPERIMENTAL DATA

Heydenburg and. I.ittlea have recently performed
pl oton"proton scattering cxpcl lments Rt low cncrglcs
using a Van de Graaff generator. These data were ana-
lyzed using the tables in Breit, Thaxton, and Eisenbud24
and were found, at each energy, to be consistent among
themselves to within 0.04' assuming only 5 wave
scRttcllng. This wouM lndlcRtc R minimum unccrtalnty
in f of between 0.01 and 0.04.

In order to obtain the phase shift Eo as a function
of energy two types of least squares 6ts were made to
these data. In the 6rst, Eo was determined by a 6t at
each energy to all the observation angles, In the second,
it was supposed that at each energy there is present an
undetected systematic error which RGects scattering
yields by the same factor at all angles. The least squares
calculation included an adjustment of this factor at
each energy in such a way as to enforce best agreement
with theory on the assumption of a pure 5 scattering
anomaly. The value of the phase shift is not assumed
but is derived from the 6t to adjusted experimental
values. This factor in all cases turns out to diGer from
unity by less than 2 percent, and for all but two energies
it leaves values unchanged to within less than I percent.
The two types of 6ts give results that are almost
identical, differing generally by only a few hundreths
of a degree. Since all of the present experimental
evidence indicates the absence of any deviations from
5 scattering at the energy of these experiments which
could have been detected, and since absolute values of
scattering yields could conceivably have errors de-

pending on energy, the second type of 6t appeared
preferable and is used in the following. The results are
given in Table VI along with the corresponding values
of f.

The experimental results are analyzed by means of
the f function of Breit, Condon, and Present. " In
terms of this function the subsequently introduced f
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TssI.E VI. 8 @rave phase shifts according to experiments of
Heydenburg and Little.

0.2
0.3
0.4
0.45
0.5
0.6
0.7
0.8
0.9

Ko(degrees)

6.66
11.16
15.02
17.16
18.82
22,32
25.13
27.97
30.35

8.053
8.031
8.216
8.163
8.261
8.304
8.450
8.504
8.607

~9A. N. May and C. F. Povrell, Proc. Roy. Soc. (London)
A190, 170 (1947).

f~.=f+2 2y= f—+0.84557,

and the function used by Jackson and Blatt is

K=-',f+1—2y= ~if—0.15443.
f

Here y is the Euler-Mascheroni constant. The original
notation is adhered to on account of the simplicity of
the relation between the logarithmic derivative of the
wave function and f which is apparent in Eq. (7.5)
of BCP.

The determination off '0&, f&",f"' proceeded. from the
morc RCCUI'ately IncRsulcd phase shifts. In addition to
the work of Heydenburg and Little, the same values as
used by BH, with the exception of the value at 4.2 Mev
by May Rnd Powcll, wcI'c COIisidcI'cd. Thc cnergics
and. the experimental f's used are shown in Table VII.
Thc interpretation of the data is as mentioned ln BH.

Thc proper weighting to be assigned to the work of
a set of experimenters is uncertain. The use of the
nominal probable error as a criterion may be of signifi-

cance, but it does not necessarily correspond to the
rclRtlvc vRhlc of diGcrcnt sets of obscl'vRtlons since thc
rcluctRQcc of RQ cxpcI'1DMntcl to claiID too much
accuracy enters the nominal error in a strong but
unknown manner. Nor does this criterion consider the
self-coDslstcDcy of R glvcD sct, of dRta. It wRs dcslI'cd

to obtain weightings for the diferent observations
which were free in some measure from arbitrariness.
This was partially accomplished by employing a cri-
terion based on the internal consistency of the data of
R given set of observers. It is clearly impossible to
devise R criterion which is completely adequate and
fair, since the comparison of observations at different
energies presupposes the knowledge of variation of f
with energy, RDd this vRllRtloQ ls onc of the thlQgs
which must be found. On the other hand the data of
one group of observers cover a reasonably liIDited range
of energy values, and the collection of all data with any
reasonable assignment of relative weights to the obser-
vations determines df/dE with fair definiteness. It is

possible, therefore, to reduce the data of a single group
of observers (SGO) to one energy by correcting for the

effect of df/dE and to test the quality of the data by
the consistency with which the reduced values check
each other. Specifically this plan was carried out as
follows. A preliminary fit to data similar to that ob-
tained by BH was used to determine approximate
values f&0& = 7.788,f"'=0.940, f&2& = —0 0053. The value
of f&2& used here corresponds to that expected for the
meson potential according to the representations of
f&'&, f&'&, f&'& in terms of the depth parameter C' and
range parameter a' of the meson potential. The corre-
sponding fit in the BH paper gave the very siInilar
values f&'&=0.939, f"'=—0.0057, even though the
weights used in the least squares calculation were very
diferent. The fit was next corrected for tail CGect
employing 0.41 as the value of the range parameter,
Thc inclUslon of thc tRll cGcct ls pI'1IDRI'ily I'csponsiblc
for the markedly different value of f"&=—000935.
The values fio& and f"' were then adjusted so as to
correspond to the best linear fit for f—fi2&E' resulting
in fio&=7.780, fo&=0.954. According to Appendix A,
the three f&'& thus obtained should correspond to the
best meson 6t rather closely except for changes arising
from the assignments of different weights to observa-
tions. Since these values were obtained by fitting what
are believed to be all of the morc accurate measure-
ments, the values of f"' and f i'& were considered to be
good enough for making corrections for energy of data
within the material of any SGO. A constant f"&i was
then determmed by subtracting f&'&E+f&'&E' from the
observed f of a SGO and averaging the results. This
f&'&i is a local f&'& for the SGO, and the subscript I is
meant for "local" in local energy. The mean deviation
of the observed f from f&0&+fo&E+f&'&E' was calculated
for the SGO, and a relative weight for any observation
of the SGO proportional to the reciprocal of the square
of the mean deviation was then used in R leRst squm'cs
adjustment of f'0&, f'", f@& to the observations of all of
the SGO included in the analysis.

It appears pertinent to mention that the criterion is
Dot CRpRblc of penalizing thc dRtR on RccouIlt of thc
presence of a systematic error which would RGect all
the f o«n SGO by the same amount. The desirable
feature of this circumstance is that Rll observations are
on the same footing regarding the determination of the
f clirve as loiig as tile qliality of observations is tlie
same in. the sense tested by the criterion of internal
consistency. An undesirable feature is the possibility
of lcRvlQg systematic crrols undetcctcd RQd of occR-
sionally permitting statistical accidents in which data
with poor statistics receive a high rating because the
sample happens to show small dispersion. The criterion
does not in any sense provide a figurc of merit for the
data of a given group of observers from such viewpoints
as accuracy within a certain percentage of error in the
cross section. In principle poor data at an energy
especially favorable for the determination of f can
receive a relatively Qigh rating. Other possibilities of
unfairness to data are mentioned in the introduction.
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Since several groups of observers are involved, a degree
of statistical compensation of errors committed in
weight assignment may be expected. ' The weights per
observation m, determined by this criterion, are Ragan,
Kanne, and Taschek30: 0.00353; HL: 0.0233; HHT:
0.00843; Herb, Kerst, Parkinson, and Plain": 0.08338;
and Blair, Freier, Lampi, Sleator, and Williams":
0.06438. This method of obtaining weights will be
referred to as criterion 8 to indicate that it is primarily
based on internal consistency.

In order not to depend on this criterion too heavily,
a second criterion was used in which the deviation of
the f values of a SGO from the f curve as determined

by criterion 8 was also used to determine the quality
of data. The obvious danger of relying on such con-
siderations is apparent in the example of sampling a
Gauss error distribution. Were one to omit the obser-
vations outside the probable error, perfectly valid
measurements would be left out of account. The differ-

ence between the Gauss error distribution and the
statistical sample for the determination of the f curve

is, however, that the statistical equivalence of all

observations of the Gauss error distribution can hardly
be expected to apply to data obtained with different

equipment in di6'erent energy regions. Observations
which are removed from the f curve by several times

the nominal probable error would have to be supposed
to contain a systematic error with a large probability,
and their weight would have to be considered as small.
A partial account of this circumstance was taken by
calculating a second set of relative weights w', propor-
tional to the reciprocal square deviation from the f
curve determined by criterion 8. The weights obtained
were RKT: 0.00315; HL: 0.01981; HHT: 0.00441;
HKPP: 0.09242; and BFLSW: 0.06113. The least
squares fit was then repeated with relative weights
(w+r(&')/2. The second criterion is referred to as the
8 h criterion, The values obtained are

f(0)=7 7846 f('&=0 9564, f()=.—0.01041
(criterion 8),

f(')=7.7864, f"&=0.9558, f"'= —001044
(criterion 8 8).

In addition, a linear least squares fit to the data results
in

f"&=7.8107, f('&=0 9173 (criterio. n 8),
(7)f("= 7.8132, f('& =0.9165 (criterion 88).

This procedure is admittedly arbitrary and has been
tried in a somewhat experimental spirit. It is apparent,
however, that the assigned weights cannot make too
much difference in the least squares fit. Using their
weighting, BH found by a linear least squares fit that

"Ragan, Kanne, and Taschek, Phys. Rev. 60, 628 (1941},
referred to in the text as RKT.

3' Herb, Kerst, Parkinson, and Plain, Phys. Rev. 55, 998 (1939},
referred to in the text as HKPP.

'2 Blair, Freier, Lampi, Sleator, and Williams, Phys. Rev. 74,
553 (1948},referred to in the text as BFLSW.

TABLE VII. Values of f used in the least squares analysis. These
are in addition to those for the Heydenburg-Little data.

Z(Mev)

0.25
0.30
0.670
0.776
0.867
0.860
1.200
1.390
1.830
2.105
2.392
2.42
3.04
3.27
3.53

7.984
8.174
8.279
8.465
8.616
8.601
8.944
9.134
9.478
9.749

10.004
10.022
10.637
10.781
11.029

Source

RKT.
RKT
HHTb
HHT
HHT
HKPPe
HKPP
HKPP
HKPP
HKPP
HKPP
HKPP
8PLSW~
BFLSW
BPLSW

a See reference 30. b See re&erence 15. o See re&erence 31. ~ See re&er-
ence 32.

f('&=7.82, f("=0.916. These values are very close
(with —,

' percent) to those obtained similarly by Jackson
and Blatt. The present linear least squares fit gives
values which diGer from those of BH by about 0.1
percent for f"' and less for f'", as shown in Eq. (7).

The importance of considering the curvature in a fit
of this type has already been discussed. "It is, however,
not a large eGect, and the fit to data overed by Eqs. (6)
is perhaps just significantly better than the fit as
oil'ered by Eqs. (7). For the quadratic fit, the root
mean square (rms) residuaP' is 0.0332 fy the criterion
8 and 0.0309 for that using the weights of criterion 88.
The rms residual for any quadratic fit to these data
with f(2& fixed, of which the linear fit is a special case,
is 0.0320(1+6),where the average quadratic fit residual
is used as the basic value. The quantity 6 will always
be a positive number and is in fact =390(f('&+0.01)2.
For a linear fit, 6=0.04. The improvement in the fit to
the data which is produced by employing a quadratic
rather than a linear fit is thus seen to be only 4 percent
as measured by the rms residual. The rms residual
apparently is sufficiently large to preclude the precise
determination of three coefficients. Another condition
to limit the variation. of f(2) is needed.

Strictly speaking, one must consider the problem
from the viewpoint of fitting the data by a polynomial
in g such as f(0)+f(i)Q+f (~)g2 wjth f(0) f(i) f(2) regarded
as functions of the potential well parameters such as. C'
and a' for the meson well. Since f(0), f"' can be used to
determine C', a', this amounts to subjecting f('& to the
condition of being a definite function f('&(f('&, f('&) oi
f( and f(') and regarding f('&, f('& as independent
variables. The weighted sum of squares of deviations
must then be minimized with respect to f(" and f(".
It is shown in Appendix A that in a good approximation

"See reference 18, Kq. (7) et seq, , and amplified discussions in
Sec. I and Appendix A of the present paper.

34 The residual is defined as the difference between the experi-
mentally determined value and the value obtained from the fitted
curve. The root mean square or rms residual represents an
"average" deviation from the curve.
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such a procedure gives nearly the same answers as are
obtained by the following requirements: (A) the equa'-

tions obtained by minimizing the weighted sum of
squares with respect to f&" and f"', neglecting the
entrance of f&0&, f&'& into f&@; (B) restricting the value
of f&'& so obtained by the requirement that f"&
=f&'&(f&0&, f&1&). The solution of the modi6ed problem
can bc obtained ln plRctlcc by Rn iteration procedure
in which step (A) is taken with an approximate f&I&,

the resultant values of f'", f'" are used to compute an
improved f"', and the cycle repeated if necessary Th. e
first step in this procedure is essentially what has been
done in the work of Jackson and Blatt' and of Breit
and Hatcher. " The question arises regarding the
advisability of fitting data by least squares in preference
to the simpler visual adjustment of a straight line or
curve, VA'thout trying. to provide R complete answer,
one may note nevertheless some pitfalls in the method
of visual fits. These have bccn pRltly discussed
HAH ln conlMctlon with fhe cxrol lnvolvcd ln Dcglcctlng
the curvature of the (f, E) plo. t. More speci6cally one
CRQ estimate thc c+cct of Rn error of judgnMDt ln
estimating the curvature of this plot. If the curvature
is a result of a term in x with x=E/E, „, then the
least squares representation of an error x2 by a linear
function has exactly the slope of the chord between
x=0 and the maximum x used. A replacement of the
least squares fit by a chord between end. points wouM
in this case give a rehable value of f&". However, the
value of f&'& would. be seriously affected because the
least squares straight line is lower than the chord by
x'/6, and for an error resulting in the representation of
—0.0040E' by R linear fit there results a false contri-
bution to f&0& of amount 0.00067E . '. For E=3 this
contI'lbutlon ls 0.006 which ls uncoIIlfortRbly close to
the desired accuracy.

Similarly, data analysis taking no account of the
presence of f&"E' and assigning a correct f&'& will

reproduce the value of the slope of the chord to within
9/10 of the true value of the omitted part and will make
a false contribution to f&0& of —f"'E'/5. For E= 10 and.
f&3&=0.000270 the error in slope is equivalent to 0.27
percent cfkct on range, while for 8=3 this error is
negligible. For E= 10 the effect on f&o& is an objection-
ably large 0.05 while for 8=3.5 it is a tolerable but
nevertheless undesirable 0.002. All of the numbers
quoted ln connection with fhQ cubic crlox' Rlc fo1
uniform weighting of the observations. It is presumably
dificult to make visual straight line Gts with allowance
for curvature to a degree much better than establishing
the chord between end. points followed by an approxi-
mate and roughly parallel displacement. The resultant
errors may be appx'eciably greater than those arrived
at in the estimates just quoted because of the confusion
presented to the eye by points not following a regular
line and because the cancellation of errors for the slope
is accidentally small for uniform weighting,

Accordingly, therefore, the least squares equations

were solved to give the best Gt consistent with various
types of potentia;l wells. In order to make the solution
consistent with the meson potential, for example, one
can correct for the tail CGect and then use values of
f&'&, f&'&, f"& consistent with the representations of these
quantltlcs '1Q tcx'Ins of depth Rnd x'RQgc parameters by
formulas in HAB. For the square well, Eqs. (8.6)
through (8.84) of BBwere used, with Eq. (8.42) of that
paper, to give an approximate value of f&"=0.004"/5
when a range was fixed. The value f&2& = —0.0015 given
by Jackson and Blat t' for the exponential well was used.
The changes in f&0&, f&'&, and f&2& are so small that they
Rl'c pI'opoltlonRl to each other) RQd lt ls thus unlMccs-
SRI'y to solve the lcRst squRlcs equations RgaiD once
the solutions given by Eqs. (6) and (7) have been
obtained. By the use of Eq. (5) along with Eqs. (6)
and (7), one is able to 6nd the best meson 6t at once.
Equations (8.6) through (8.42) of BB are used in place
of Eq. (5) for the square well, while Eq. (11.3E) of
Jackson and Blatt serve for the exponential well.

The results arc:
(a) best meson fit,

f&0& = 7.787+0.009, f"'=0.953&0.005,

f"'=—0.00949 (criterion d),
(8)f&"= 7.789~0.009, f&"=0.952+0.005,

f II& = —0.00947 (criterion S'h).

Although the values of the f&'& listed in Eq. (8) are
referred to Rs "the best meson 6t," the procedure
followed lQ obtRlnlQg flMIQ contR1Qs Rn Rppx'oxlIQRtlGD

wlllch I11ust liow bc cxplmllc&l. It WRs Rssllllled. tllat
approximate proportionality of f'" to the square of the
range parameter holds for f&", including tail CGect, even
though the proportionality of l&f "& to a u" has not been
Investigated. Since tllc stRlldard I'cfcl'cllcc vRhlc of f & &

with tail which was used here (line F, Table I) was for
C'=99, a'=0.40 R pair of parameters lying close to the
vRlues rcplcscntlQg experiment, fhls Rppx'oxlmRflon CRQ

be expected to be satisfactory. The values of C', a'
obtained by means of it will be referred to below as

preliminary. They hRvc bccn clMckcd by two other'
methods which will be described presently.

(b) approximate best exponential fit„

f&0&="/ 810, f&'&=0.9. 22, f&"=—0.0015
(criterion 0 h); (8.1)

f&0& = '/. 825 f&'& =0.899 f&'& =0.0048
(criterion d h). (8.2)

The values of d are, respectively, 0.0001, 0.028, and
0.087 for the meson, exponential„and square well 6ts.
The smallness of these values indicates that the data
Rx'c not. suSclcntly Rcculatc to dlstlngulsh satlsfactoI'lly
among the fits. The entries preceded by + signs such
as +0.010 for f&0& indicate probable errors (not standard
dcvlRtlolls) Rlid llavc bee&i CRlculatcd f1oI11 I lns I'csl&lllals



MESON TAIL EFFECT

in the least square work. It is of interest to compare
them with the error in f to be expected for one percent
error in scattering which is shown for comparison in
Table II. With 15 observations of equal weight and a
probable error of &0.01 in f&'&, the probable error of
one observation can be expected to be +0.04, and this
number is reasonable if onc supposes that the scattering
measurements have an accuracy of one percent and
employs Table II. The approximate magnitude of the
uncertainty in f&'& can be understood. as being the
uncertainty in f&'& at an energy distant 2 Mev from a
reference energy. The distance of 2 Mev is a reasonable
distance since the observations are distributed through
3.3 Mev. The uncertainty of f&'& is thus essentially
understandable also in terms of a one percent error in
scattering.

The parameters C', u' of the Vukawa potential which
correspond to the f-coeflicients of Eq. (8) are obtained
in first approximation from Eq. (4) by the use of the
values of line F, Table I for C'=99, a'=0.40 as base
coefficients. Equation (4) resulted from the HAH
representations, and thus does not contain the CGect of
the tail of the potential. The preliminary values of.C'
and a' resulting from Eq. (4) were used, therefore, in
Eq. (3) to compute fi" and f"&. These tail corrections
were applied with opposite sign to the "experimental
6t" coefficients of Eq. (8); thus a virtual chopping off
of the physical tail of the potential was CGected. The
coefficients so obtained were used in Eq. (4) to obtain
the final values of the parameters. The results are

C'= 93.44mc', a'= 0.412e'/mc', (criterion d)
(9)C'=93.58mc', a'=0.412e'/mc', (criterion db).

Since these values diGered by less than 0.5 percent
from the preliminary results, the calculations of bf&0&

and 8f&'& were not repeated. The ranges agree within
the precision with which they are written for the two
weightings and correspond to a meson mass of 333
clcctx'oQ IQRsscs.

An independent method of arriving at the meson
parameters was also used. For this purpose plots of f, E
for a'=0.410 and 0.415 and each of three values of
1/(C'a") &—=y (namely, 0.2514372, 0.2511965, and
0.2509653), were compared with an f, Z plot made
using the coeScients of Eq. (6). The f values for the
theoretical curves were computed directly from the
material used to obtain the HAH phase shifts and
interpolated (linearly in y, parabolically or bilinearly
in a') to the desired values of a' and y. Tail corrections
interpolated in Table IV were applied. . In each case
the quantity actually plotted was f (7.7941+0.964—3E)
in order that a small variation in values over the energy
range 0—5 Mev would allow a very large scale to be used.
Figure 3 shows the one experinlental and six theoretical
curves thus obtained, together with the experimental
points used in the least squares analysis (Tables VI
and VII). The theoretical curves show that a change

in u' produces a rotation in the curves, while a change
in y translates the curves up or down, and that the
rotation and translation is very nearly linear in e' and

y, respectively, for the small changes illustrated in the
6gure. It is of interest to compare Figs. 6, 7, and cogent
material of STE, where Eo, E plots with similar
properties are used. The slope of chords drawn to the
theoretical curves between 0 and 3.5 Mev was used as
a measure of the rotation and with that of the experi-
mental curve to determine the value of a'. %Pith this
value of u', linear interpolations at several energies for
constant values of y were carried out on the graph to
give several points on a curve with the experimental
value of a' but with the values of y used in plotting the
tlMorctical curves. T1M cxpcrinMntRl value of p was
then interpolated. The results of this analysis are:

C'= 93.11mc' a'= 0.412e'/mc'

02

Q 0
g

c& -QI

r
I

-02

DESIGNATION OF POINTS:

x RAGAN, KANNE, TASCHEK3

oHEYDENBURG, LITTLEB

HEYDEN BURG HAFSTAD TU VE I5

c& HFRB, KERST, PARKINSON, PLAIN3
eBLAIR, FREIER, LAMPI, SLEATOR, WILLIAMS

o
yi

u—

o&~:
I

DESIGNATION OF CURVES:—-—ci'= 0.4 IO—--a=04I5
FIT TO FXPERIMENTAL POINTS

I I

0 j 2 3 4
E (MEV)

FIG. 3. Theoretical values of f—(7.7941+0.96438} for a' 0.4f.
and 0.415 with y1, y2, ys having the values 0.2514372, 0.2511965,
and 0.2509683, respectively, es 8, together with the least squares
Gt to data of Eq. (6), criterion (8'b}, and experimental points
as designated.

The close agreement between Eqs. (9) and (10) is
satisfying but is not to bc tRkcIl Rs RQ lndicRtlon of thc
precision of the present determination of the meson
parameters. If one puts the probable errors of Eq. (8)
into the first of Eqs. (4), an uncertainty in a' of 0.002
results. The scatter of the experimental points on Fig. 3
gives visual evidence of this uncertainty, as well as one
in y. The probable errors give an uncertainty in y of
5)&10 ', which is actually larger than the spread in the
three values of y obtained. from Eq. (8) . and in the
graphical analysis, and is of the order of that which
one might expect from the scatter (though somewhat
smaller). As the most precise result of this analysis,
therefore, the value of y may be stated as

y= 0.25 j.I2&0.00005.

Assuming this value of y and letting the uncertainty
in C' be determined, therefore, by that in a', the
parameters resulting from this analysis are

C'= 93.4+1mc', a'=0.412+0.002e'/mc'. (11)
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TAN&,z VIII. Values of f0 for meson potential with parameters
C0'=89.648, a0'=0.42, y0=0.2514667, and coeScients for 6nding
change in f with changes in u' and y.

&(Mev)

0.2
0.4
0.6
1.0
1.4
1.8
2.2
2.4
2.6
3.0
4.0
5.0
6
7
8
9

10
12
14
16
18
20
22
24
26
28
30
32
36
40

fo

7.977
8.169
8.361
8.743
9.122
9.498
9.872

10.057
10.242
10;611
11.526
12.427
13.315
14.185
15.056
.15.900
16.684
18,399
20.012
21.601
23.142
24.674
26.181
27.657
29.120
30.571
32.000
33.418
36.203
38.923

—11.350—10,889—10.436—9.538—8.679—8.013—7.033—6.640—6.212—5.418—3.467—1.593
0.158
1.861
3.523
5.122
6.613
9.628

12.457
15.216
17.757
20,305
22.778
25.171
27.536
29.656
31.909
34.273
38.342
42.445

275.5
277.4
279.2
282.9
286.7
290.1
293.7
295.3
297.2
301.3
310.3
319.3
327.5
336.3
344.6
353.0
359.8
377.1
392.6
407.7
422.4
436.9
451.0
464.8
478, 1
492.1
513.0
518.9
544.1
568.6

—691
-685
—673—668—662—652—647—641—640—623—610—581—578—561—547—533—512—494—470—453—433—417—399
-369
—358—350—312—308—269

D,= 13.50 Mev. (11.2')

The square well depth, D„given in Eq. (11.2') includes
the Coulomb potential inside the well. The correction
from D of Eq. (11.2) has been made by Eq. (11) of
BTE.A corresponding range correction, which is small,
has not been made. These results agree well with those
of BH and. of Jackson and Blatt.

The series expansions of f with the coefficients of
Eq. (6), (8), (8.1), and (8.2) are plotted in lower part
of Fig. 1 up to 4 Mev with the experimental points
included. Thc VR11ous sets of cocKcicnts glvc csscntlRlly
indistinguishable curves which fit the data equally well.
It is of interest, therefore, to see how mell a theoretical
curve fits thc hlghcr cQcI'gy dRtR. In older to obtaiQ
the values of f needed for the meson well, an interpo-
lation formula was obtained:

f=fo+~ (o' ~o')+~ (y yo)+ (~' o')(y —y.), (»)— —

where 0,~, a2, 0.3 are functions of E and are given in
Table VIII. Linear interpolation in E is quite accurate.

From Eq. (8.1), the parameters of the best fit expo-
nential well, if the potential of the interaction is written
as —Be "~~, are, approximately,

8= 214mc', fi =0.251e'/mc'. (11.1)

The square well depth, D, and range, r, are determined
from Eq. (8.2) to be about

D= 12.60 Mev, r =0.919e'/mc', (11.2)

The basic values of f, designated fo in Eq. (12), were
computed for C'=89.648, u'=0.420, and corrected for
tail effect from Table IV. The fo are also given in
Table VIII. The values of ao' and yo to be used are
ao'=0.420 and yo ——0.2514667. Accuracy of the order
of 0.01 in f is expected if (u' —ao') and (y—yo) are
~0.01 or less. Equation (12) with Table VIII may find
more general application than in the present analysis.
For use in converting experimental data to f values,
there are also presented in Table IX values of Co'/q
and q,/ii —2hsii. Equation (7.6) of BCP is then used
with the experimental IC„and this table to give fvalues.

For the exponential well, the value f@'=1.2)(10 '
taken from the analysis of Jackson and Blatt was used
together with the coeRicients of Kq. (8.1) to plot the f
curve at higher energies. The coeflicients of Kq. (8.2)
were used to plot the square well curve, and the plot
was discontinued before the contribution from f&'&

became significant, since f&"&0 for this well, and the
curve had already begun diverging strongly from the
experimental data at 20 Mev.

The f curves to 30 Mev corresponding to the param-
eters of Eqs. (11), (11.1), and (11.2) together with the
linear fit of Eq. (7) and the available experimental data
are shown in the upper part of Fig. 1. The data of
Dearnley, Oxley, and Perry" have not been used be-
cause it is understood that the later work of Rouvinam
at the same laboratory and using the same general
method has a much higher accuracy. The correction to
the phase shift of May and Powell, " the necessity of
which has been noted by Jackson and Blatt, ' has been
used in preparing the graph. The other data plotted
consist of work by Meagher, "Panofsky, and Fillmore, 4

Paris and Wright, ' Zimmerman and Kreuger, ' Mather, ~

%'ilson and Creutz)'~ Wilson/' Wilson) Lofgreny
R.lchardsony Wl lght) Rnd Sh.anklandi Rnd C01k. For
the value at 10 Mev by Wilson, the analysis of Peierls
and Preston4' was used. The values of f for the other
two points of Wilson et a/. were taken from Jackson
and Hlatt. The interpretation of Cork" was used for
other values given by him.

Points at energies below 7 Mev do not favor any
one of the potentials. Only the values of Rouvina

36 Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1949)."R.E. Meagher, Phys. Rev, 7S, 667 (1950)."R.R. Wilson and E. C. Creutz, Phys. Rev. 71, 339 (1947).
38 R. R. Wilson, Phys. Rev. 71, 384 (1947).
39 Wilson, Lofgren, Richardson, Wright, and Shankland, Phys.

Rev. 71, 560 (1947}.
0 R. E. Peierls and M. A. Preston, Phys. Rev. 72, 250 (1947).

41 The hgure displaying agreement of data with theory in the
paper just quoted refers to Jackson and Slatt's work for the
theory used. Since the power series expansion given by Jackson
and Blatt is not supposed to apply at such high energies, and
since in the present work the employment -of higher powers of E
than the third was found necessary, there is some difhculty in
understanding this statement. The curve drawn in Cork's paper
differs only slightly from the f curve obtained by use of phase
shifts tabulated by HAH for u'=0.40, C'=99 and could have
been ascertained by substituting these phase shifts in the formula
for f and applying a small correction for diGerences in values of
potential well parameters.
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(lo+mox+nox' —f)=0

(lpx+mox'+npxo —fx)=0

(lpx'+mpx'+nox' —fx') =0.
(A-3)

Introducing X=1—/p, p=m —mp, v=s —sp one ob-
tains

n(lo+'A, mo+ y) np a=0- —
((1+n(x')(X+px+vx')) =0
((x+n x') P,+ &xy.x')) =0.

(A-4)

The X, p, v are relatively small. The approximation
corresponding to the iteration procedure described in
the text is obtained by setting n&, n =0 in Eq. (A-2).
The solution of the modified equation will be called
1', m', e'. To introduce X'=l' —lp, p, '=m —mp, v'=e —ep,
there results a way of obtaining (X', n', v') as the
solution of

n(lo+X', mo+ IJ', no+ ~') =0

(X'+p'x+ v'x') =0

(X'x+p'x'+ v'x') =0.

(A-5)

On expanding n(lp+X, mo+ p) in Eq. (A-4) in a Taylor
series and neglecting quadratic and higher order terms

indicate a slight preference for the Vukawa and expo-
nential wells. The preference is not definite, but the
value at 5.86 Mev from the measurements of Zimmer-
man and Kreuger' also appears to favor the longtailed
potentials. It seems that some additional work at
energies in this vicinity might be helpful in distin-
guishing between the phenomenologically postulated
potentials. At the higher energies, the values of Cork'
and that of Panofsky and Fillmore4 definitely favor the
longtailed potentials.

APPENDIX A

The justification for employing simple iteration in
determining "best values" of potential well parameters
will now be given. The complete problem with allowance
for the entrance ot Bf'@/Bf&+ Bf"'/Bfo' in the answer
will be considered, and it will then be shown that the
e8ect of these quantities is insignificant. It is convenient
to use the simplified notation

f'o'=l, E,„f"'=m, E,„'f'@= ,nEjE, =x
an/al=n(, an/am =n„ (A-1)

E, =maximum energy.

The least squares equations are

((1+noix') (l+mx+nx' f))=0—
(A-2)

((x+n x)(t+mx+nx' f))=0, —

where ( ) indicates a weighted mean. These equations
are conveniently referred to the best quadratic fit
(lp, mo, np) for the same relative weights. For this

TABLE IX. Quantities for computing f from phase shifts.

B(Mev)

0.2
0.4
0.6
1.0
1.4
1,8
2.2
2.4
2.6
3.0

5
6
7
8
9

10
12
14
16
18
20
22
24
26
28
30
32
36
40

Co~/y

0.76448
1.649211
2.411586
3.695285
4.776889
5.728617
6.588139
6.990691
7.377889
8.112484
9.767629

11.233633
12.563461
13.789206
14.932039
16.006798
17.024373
18.919171
20.663649
22.288750
23.816065
25.261372
26.636624
27.951095
29.212215
30.425987
31.597390
32.730549
34.895729
36.944136

(Coin) —2~ (~)

1,50563
2.06980
2.42936
2.90232
3.22223
3.46426
3.65899
3.74377
3.82192
3.96199
4.24472
4.46489
4.64522
4.79795
4.93042
5.04737
5.15207
5.33339
5.48683
5.61983
5.73719
5.84222
5.93726
6.02404
6.10389
6.17784
6.24668
6.31110
6.42867
6.53387

one obtains

~= ~(*)(*')-(*')'+.[&*)-(~)(*')]
+n [(x)(x')—(x')(x')] I /D

n = f (x)(xo)—(x')+ n((x)(x4) —(x')(x')]
+ -L(*')'—&*')]}/D (A-6)

v = I(x')—(x)'+n([(x')' —(x)(x')]
+. L(*')-&*)(*')]}/D,

with

[np n(lp, mp)]D=(x)' —(x')+2n~[(x)(x') —(x')']
+2n [(x)(x')—(x')]+Q (A-7)

Q —nP[(x ) (x )(x )]+2n~n~[(x)(x') —(x')(x')]
+ 'L(*')'-(")] (A-8)

The X', jM', v' are obtained by setting m&
——e =0 in these

relations. If the measurements have equal weights and
are distributed uniformly in the range 0(@&1,these
formulas reduce to

1= (1/72 —ni/240+ n„/60)/D

p, = (—1/12+ n(/60 4n„/4—5)/D (A-9)

v= (1/12 —n(/72+n„j12)/D

[np —n(l, , mo)]D= —1/12+ nt/36 n„/—6 nP/—240
+n(n~/30 4n '—/45 (A-.10)

For the approximate best quadr', tic 6t to data with one
of the weightings that has been tried in a preliminary
way f~o'=7.789, f ~o= 0938, f~"=—0.0049, and E
=3.5 Mev the values are lp ——7.79, mp =3.3, ep = —0.060.
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In the approximation n=constm' which takes into
account the principal variations of n one has m~=0,
I = —0.037, and n '/45 is quite negligible. All terms
in e are seen to be sufBciently small to allow neglect
of all but first-order sects in e . Q'ith this under-
standing and distinguishing quantities for the approxi-
mation /', nz', e' by primes throughout, one obtains
D'/D=1 —m =1.036, X/X'=0. 9928, p/y'=0. 9976, v/v'

1. For the relative weights corresponding to the best
quadratic fit under discussion the t', m', e' type of best
meson 6t to data gives f&"=7 780 f"'=0954 f&@

= —0.00935 which yields A.
'= —0.008, p, '=0.056 so

that the correction factor to the t', m', e' type of
solution arranged to obtain the L, m, e type is 1+&
with e= —0.0024(0.016/0.94)= —4X10 ' for m', i.e.,
f&" which amounts to a 0.004 percent correction in the
range parameter. The effect on f&0' is a correction of the
order —0.00006 in a total of 7.8 and is also of no
interest. By employing the representations of the f"' in
HAS and taking into account m~ one estimates for the
numbers under discussion that e /as~ 18—so—that n

gives the main effects.
In the aforementioned estimates the effect of second-

and higher order derivatives of eo has been neglected
consistently for the complete problem corresponding to
(f, m, e), and its approximation corresponding to
(f', m', e'). Since these terms are small and since the
difference in the two solutions, as considered, is negli-

gible, the corrections for the second- and higher order
derivatives may be considered as being practically
identical and for the condition under discussion the
corrections are of no practical interest.

In the more general case of arbitrary weights one has

)/V= 1+@([((x')' (x)( —4x))/P P/85—
+..( /~- v/~),

v/I'= 1+~~(~/v 0/~)—
+.-L(( & -&"&)/~-./»,

where

-=( )(")-(+)&"), ~=(*)(")-(")'
y = (x)(x')—(x'), 5= (x)'—(x').

(A-12)

Substitution into these formulas for the fit discussed
earlier in this Appendix employing values of the (x")
which correspond to the relative weights employed in
the least squares adjustment of the f'", there result
appreciably larger eGects than in the estimates making
use of uniform weighting. The values obtained by
means of Eqs. (A-11), (A-12) are as follows

X/X'=0. 9494, p/p, '=0.9802.

%bile larger than in the first estimates, the difference
between the complete and approximate solutions is
seen to be smaller than many other uncertainties in
the determination of f&" f"' f"'

The best linear 6t corresponds to f= la+ X",
m=mo+v, ", n=mo+v"=0 with

X"+~"(x)+ v"(x') =O, V'(x)+~"(x')+ v"(x') =O.

It follows from these relations and the result of setting
e~, e in Eqs. (A-6), (A-7) so as to obtain X', p', v' that

X"/X'= p"/y'= —mo/v'= v"/v',

which implies that diRerence between the values of
l, m, e for the best quadratic and linear fits are propor-
tional to corresponding differences between the best
quadratic 6t and any other fit with a preassigned f&'&.

According to the elementary relation for proportions
this also implies that diQ'erences of 1, rn, e for two fits
with arbitrarily assigned f&" from the linear fit are

proportional to each other. This fact follows directly
from the least squares linear equations for the three fits.
It gives a useful rule for avoiding repetition of similar

calculations.


