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The fit of experimental material on proton-proton scattering by
phenomenological potentials is reviewed with the inclusion of
observations by Heydenburg-Little in the 300-kev region and of
Cork at 30 Mev. Weighting of data by a criterion based on internal
consistency is employed. Data obtained by means of Van de
Graaff machines are used to determine the best fits for different
shapes of potential energy curves. Other data are compared with
the resultant (f, E) plots graphically. A trend towards agreement
with the long-tailed Yukawa and exponential well potentials is
noticeable among the supposedly more accurate measurements of
Rouvina and of Cork. The meson potential —Ce™"/¢/(r/a) with
C=(93.441.0)me?, a=(0.41240.002)¢?/mc® fits experiment and
corresponds to a meson mass of 333+2m, the limits of error
being stated above somewhat arbitrarily.

The effect of the tail of the Yukawa potential on scattering is
studied with particular attention to its influence on the nearly
linear functions of energy used in the analysis of experiment, and
on the coefficients of powers of the energy in the expansion of
this function (f).

The convergence of the power series is better if the tail of the
potential is chopped off. Caleulation of coefficients in this series
is also easier for the potential without tail. The more practical
arrangements of calculations are: (a) direct calculation of f for a
number of energies, the tail effect being treated by a first-order
approximation; and (b) calculation of coefficients of powers of
E in the series for f for potential without tail followed by first-
order calculation of effect of tail on f. Results obtained in these
ways are compared.

I. INTRODUCTION

INCE the appearance of the comprehensive review
of experimental and theoretical aspects of proton-
proton scattering by Jackson and Blatt! there appeared
some additional measurements by Rouvina,? Bruce
Cork,® Panofsky and Fillmore,* Faris and Wright,’
 Zimmerman and Kreuger,® and by Mather.” Some
preliminary measurements of Heydenburg and Little8
also have become available. It appeared desirable,
therefore, to compare the enlarged experimental ma-
terial with expectation for different phenomenological
potentials. Tt will be seen that there is now a slight
trend towards agreement with the Yukawa or expo-
nential type of potential. This circumstance may
perhaps be significant since it has been found possible
to reconcile the simple hypothesis of the symmetric
Hamiltonian with neutron scattering experiments
through the employment of long-tailed potentials! and
since the exactness of the equality of #-p and p-p forces
is even improved by making relativistic and magnetic
effects corrections as has been found by Schwinger.®
In view of the usual difficulty of assigning relative
weights to different sets of experimental data on a
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rational basis the experiment has been tried of em-
ploying general agreement with the majority of the
better measurements as a criterion for establishing the
relative weights. This is made possible by the employ-
ment of the f function of Breit, Condon, and Present,!°
which varies approximately linearly with energy, a
circumstance successfully used by Schwinger,!! Blatt,?
Bethe,® Chew and Goldberger,* and others in analysis
of scattering experiments. In order not to prejudice
the determination of the range parameter, the criterion
used disregards the manner in which the centroid of
the f values falls on the f, E curve but pays attention
to the way in which the slope of f, E curve is reproduced
by the data of one set of observers. This criterion is
manifestly unjust to data which contain an error vary-
ing systematically with energy and is present only at
some energies. Such an error need not affect the position
of the centroid very strongly. This is the case for the
observations of Heydenburg, Hafstad, and Tuve,!®
which show other evidence of being quite accurate at
their highest energy. Since a great many points are
now available, such an occasional unfairness has prob-
ably an insignificant effect on the final result. The
values of Heydenburg, Hafstad, and Tuve!s obtained
in the vicinity of the scattering minimum and some-
times'” shown in surveys are not included in the
analysis since the object of this work was to ascer-
tain the existence of the minimum rather than to
provide accurate phase shift values. Other questions
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F16. 1. Lower curve: Plot of f vs E for best fits with experimental points as designated. Use scales on right and lower
margins. Upper curves: Plots of f vs E for best fits as labeled with experimental points having the following designations:
HKPP—Herb, Kerst, Parkinson, and Plain (reference 31); BFELSW—Blair, Freier, Lampi, Sleator, and Williams
(reference 32); R—Rouvina (reference 2); MP—May and Powell (reference 29); M—Meagher (reference 36); Ma—
Mather (reference 7); ZK—Zimmerman and Kreuger (reference 6); WC—Wilson and Creutz (reference 37); W—
Wilson (reference 38); FW—TFaris and Wright (reference 5); WLRWS—Wilson, Lofgren, Richardson, Wright, and

Shankland (reference 39); C—Cork (reference 3);
upper margins.

concerned with the use of data are discussed in a more
detailed account contained in the body of the paper.
The differences caused by fitting data in different
ways are examined as follows with special reference to
the distinction between linear fits to the f, E curve and
fits employing the deviations from linearity which are
expected for an assumed shape of the potential energy
well. These have been previously mentioned in a more
limited way by Breit and Hatcher'® in relation to the
quadratic terms but are more fully covered here with a
consideration of the effect of cubic and quartic terms.
In addition to comparison of power series and directly
computed f values mentioned below, an analytic dis-
cussion of the effects of linear fits shows that if the
curvature of the (f, E) curve is produced by a quadratic
term, a linear visual fit will give the same initial slope
as a linear least squares fit, but will fail to reproduce
the initial value (f, E=0) by an amount proportional
to the square of the maximum energy used in the fit.
If a quadratic term is accounted for properly, but a

18 G. Breit and R. D. Hatcher, Phys. Rev. 78, 110 (1950),
referred to in the text as BH.

PF—Panofsky and Fillmore (reference 4). Use scales on left and

cubic addition is fitted linearly, the addition to the
slope is nearly determined, but an error in the initial
value proportional to the cube of the maximum energy
is left out of account.

In order not to be completely dependent on least
squares analyses of the data and on semi-empirical
formulas relating the potential parameters to the results
of such an analysis, a further study was undertaken
wherein theoretical f, E plots for various sets of param-
eters were compared directly with the experimental
data and with an f, E plot resulting from a least
squares analysis of the data. In such plots a change in
the range parameter appears approximately as a rota-
tion of the f, E plot, while a change in the depth
parameter appears as change in the value of f by nearly
the same amount at each energy. The comparison,
therefore, allows a determination of the changes in the
parameters needed to rotate and translate one of the
theoretical curves into the one derived from experiment.
The parameters obtained from both methods of analysis
differ by much less than the estimated errors.
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TaBLE L. Values of the f® in their different interpretations for the Yukawa potential with ¢’=0.40, C'=99.

Tail
Line F@ fo i@ @ f@ presence’ How obtained
A 7.9917  0.905 —0.005 0 0 No HAB representations.?
B 7.9900 0.910 —0.006 0.00005 0 No Least squares fit to f in Table I of HAB.P
C Ca. 0.917 —0.0063 0.000053 0 No Least squares fit to 8f/dE.c
D 7.9684  0.9295 —0.0090 0.00026 —5.3X107¢ Yes Graphical tail corrections applied to preceding entry.4
E 7.9900 09153 —0.00659  0.000051 5.4X1077  No Integrals involving u;.°
F 7.9684  0.9269 —0.00800  0.000270 —5.3X1078 Yes Integrals involving u;.f

® Direct substitution of a’ =0.40, C’ =99 into Egs. (3) to (3.8) of HAB.

b Least squares fit to values of f for different values of maximum energy from 9 to 40 Mev. Value of f® proved necessary to insure energy independence

of other f®). Value of (0 obtained agrees with that from Eq. (8.6) of

¢ Calculation of 8f/dE by the BH extension of the Schwmger formula to arbitrary E; least squares fits at E =0, 1, 2.6, 6, 8, 10, 12, 14, and 16 Mev.
d Graphical determmatmn of §(af/0E) from Fig. 2; power series fits to these values.
e Jackson-Blatt equations involving energy derwatlves of radial functxons applied to potential without tail; the value of f®) was required to represent

directly computed f

f's of HAB up to 32 Mev. It is probably not accurate since it may be mcludmg effects of f( ),

f Obtained from values given in immediately preceding entry with inclusion of tail effect corrections calculated by means of Eq. (2) employing energy
differentiation of asymptotic Bessel function expansions (see reference 26) at E =0. A least squares fit of f up to E =22 Mev determined f@ which is prob-

ably not accurate and may include effects of f(5),

The section on the treatment of data is preceded by
a consideration of the effect of including the tail of the
Yukawa potential at distances greater than 3e?/mc2.
This tail effect is found to be represented poorly by a
power series in the energy E, and it has a marked
Jinfluence on the coefficients f? in the power series in E
which represents f. The difference between representing
f by a polynomial with a small number of terms and by
a power series is studied and is found to be appreciable.
The power series representation of f at 32 Mev is found
to require terms in E* with #=4 as is seen by inspection
of Table I and Fig. 1. The power series representation
of the values of f without tail converges more rapidly,
however, and could be used in conjunction with a
directly computed tail effect obtained as in Sec. II.

The notation is the same as in Hatcher, Arfken, and
Breit!® with the following additions or changes:

7.=Iinterparticle separation in units €?/mc?.

K=1f—0.15443 is the function introduced by Jackson
and Blatt! in their analysis of experimental data.

u*=C{/sinK,, where § is the Coulomb function
F cosKy+G sinK.

=1/(C'a’»)%
E=energy in Mev unless otherwise stated.
8K o=change in K, caused by an addition to the po-

tential. In the present case, the addition is taken
to be the tail of the Yukawa potential from
r=23¢%/mc® to 6¢%/mc>.

II. EFFECT OF THE TAIL OF THE YUKAWA
POTENTIAL ON PHASE SHIFT

In the work reported on which follows, use is made
of the fact that the effect of the tail extended from
7,=3 to infinity is given with an accuracy of at least
0.0003 degrees by the first-order perturbation formula

6

PKo= f _ov/E)as )

19 Hatcher, Arfken, and Breit, Phys. Rev. 75, 1389 (1949),
referred to in the text as HAB.

where 6K,=change in phase shift as a result of the
extension of the Yukawa potential beyond 3e?/mc? (6K,
is to be added to K, of Table IT of HAB to give the
effect of the Yukawa potential extended to infinity),
8V=Ce"'*/(r/a)=Yukawa potential, E'=energy of
relative motion, and = Coulomb function with phase
shift K. The error is usually much less than 0.0003°.
Since the tail effect is calculated here for use with the
phase shift table of HAB' which has an accuracy of
0.01°, this error is negligible. Inaccuracies in {, the
nature of which is explained in detail later, may give
at most an additional error of 0.0002°.

The smallness of the effects of these errors in appli-
cations may be judged by observing that a one percent
error in scattering at an observation angle of 45° usually
introduces errors in the phase shift having absolute
values between 0.01° and 0.4°. The dependence of the
errors in Ky and f on energy caused by such an error
in scattering is seen in Table IT. This table will be found
useful for compa,rison with values of the tail effect
arrived at later in the article.

The inherent errors introduced by the use of Eq. (1)
are to be assigned to two main causes. First there is
the neglect of the tail beyond 6¢?/mc?. The maximum
effect of cutting off the Yukawa potential at »,=6 was
estimated by evaluating the integral of Eq. (1) from

=6 to infinity with §=1. Since || =1, this provides
an upper limit on the error which is found to be less
than 8.5X107%/v/E degrees with E in Mev. For all
energies used this is less than 0.0001 degree. The in-
accuracy introduced by using the square of the Coulomb
function instead of the product of the Coulomb and
Yukawa functions was investigated. For the higher
energies, an analytical argument shows this to be less
than 0.22/4/E percent of §Kj, that is less than about
2X 1075 degree. At the low energies, numerical esti-
mates indicate an upper limit to this type of error of
about 0.0002 degree.

In order to calculate 6K, from Eq. (1) it is necessary
to obtain the wave function F=F cosKo+G sinK,.
The phase shifts used were taken directly from Table IT
of HAB. Calculation of the regular and irregular
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Coulomb functions, F and G, proceeded in several
different ways.

For energies below 2 Mev, Egs. (13) through (21) of
Yost, Wheeler, and Breit?® were used. In this region
inaccuracies in F and G present in the calculations
introduced errors of less than 3X10~° degree in §K,.

For energies above and including 9 Mev, § was
approximated by a sine function, A4 sin[Q(b)7r.+ 6]
where Q is defined by the Coulomb equation, d*%/dr 2
+Q%(r.)F=0, and b is some suitably chosen value of 7,
slightly greater than 3. 4 and & were found by fitting
the sine function in slope and value at 7,=3 to
dsin(o+K,); @ and ¢ at #,=3 were obtained from
previous unpublished work at this laboratory by
Hatcher who used Egs. (4(b)), (9), and (10) of Wheeler.?!
Estimates of the error introduced by this approximation
for E>9 Mev were made by integrating

6

Lemr!e/(r/a)J[@ sin*(o+ Ko)
T¢=3
— A% sin*(Q()re+6) Idp,

taking into account first-order effects in K, The
resultant upper limit for the error is ~3X107%/Epev?
which is <0.0002 degree. Numerical checks on the
sine approximation were made in a number of cases by
comparison with accurate values of {§. The agreement
was always better than 0.0001 degree in 6K,.

For 2 Mev<E<9 Mev a sine function of the form
A sin[Qr.~+ 6] was joined to § at 7,=3. F and G and
their derivatives at 7,=3 were obtained from Table I
in Thaxton and Hoisington.? At larger values of 7,,
the difference between the sine function and the desired
Coulomb function was calculated by means of a
Taylor’s series in 7,—3, the successive derivatives of
which were obtained from the Coulomb equation. The
series converges rapidly requiring only two or three
terms. The error in {§ where it mattered was not more
than 0.001 and the error in 6K, was less than 0.0002
degree.

TaBirE IL. Errors in K, in degrees and f produced by a one
percent error in scattering at 45° for C=84.422mc* and
a=0.4323¢2/mc?.

E AKO Af
0.25 —0.05 0.03
0.50 0.03 —0.01
0.75 0.08 —0.02
1 0.13 —0.03
2 0.23 —0.05
4 0.33 —0.09

10 0.37 —0.16
20 0.35 —0.24
30 0.33 —0.30
40 0.32 —0.35

2 Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).

21 J. A. Wheeler, Phys. Rev. 52, 1123 (1937).

%2 H. M. Thaxton and L. E. Hoisington, Phys. Rev. 56, 1194
(1939), referred to in the text as TH.
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TasLe III. Values of tail correction 8K, in hundredths of
degrees for meson potential. These should be added to the K, in
Table I of HAB to allow for the effect of the potential beyond
r=23e%/mc.

@ 040 040 040 042 0.45 0.45 0.45
kc’ 102 99 9  89.648 84 81 78
(Mev) \\

0.8 5.8 5.3 4.8 7.5 14.9 13.6 12.2
14 4.3 4.3 4.2 6.1 8.7 9.4 9.6
3 0.8 1.0 1.2 1.5 2.0 2.8 3.7
5 0.1 0.2 0.1 0.2 0.5 0.3 0.3
6 0.3 0.2 0.2 0.3 0.9 0.7 0.5
7 0.5 0.4 0.3 0.6 1.5 1.2 0.9
9 0.9 0.8 0.7 1.2 24 2.1 1.9
16 1.0 0.9 1.0 14 2.3 2.3 2.2
22 0.4 0.4 0.5 N 0.9 1.0 1.0
28 0.2 0.2 0.2 0.3 0.4 0.4 04
32 0.2 0.2 0.2 0.3 0.5 0.5 0.4
40 0.4 0.4 0.4 0.6 1.0 1.0 0.9

Values of 6K, for Yukawa parameters close to the
best fit to experiment are listed in Table III.

Values of §f were obtained as first-order effects of
6K, from the definition of f and are shown in Table IV.

At zero energy, it was convenient to use

of =—2 f 6(5V/ me?) (u?)*dr e, @

which follows from Eq. (1) and the relation between &f
and 6K,, where at any energy

w*=Co§/sinK,, 2.1)

an expression, the limit of which for E=0 is according
to Breit and Hatcher,!8

w=—x[ Ki(x)+ (y— 1) 11(x) ]+ (x/4) 11 (x)f,

where

2.2)

(2.21)

By differentiation of Eq. (2) the energy derivatives of
df at E=0 can be obtained in terms of energy deriva-
tives of #°® at zero energy which can be expressed in
terms of Bessel functions. The values of §f and d(5f)/0E
at E=0 for various meson parameters are included in
Tables IV and V. The values of §f given in Table IV
are to be added to the values of f for the meson potential
extended to 7,=3 in order to give the effect for a
meson potential extending to infinity.?

The uncertainty in 6f is roughly constant over the
complete energy range and is probably not greater
than about 0.0003 in most cases. At zero energy esti-
mates indicate that the uncertainty in 8f is probably
not greater than 0.0005.

Tail corrections -for the Yukawa parameters C’

2*=8/ap.

28 A knowledge of the phase shifts enables one to calculate f
from Eq. (7.6) of BCP for various energies. For different Yukawa
parameters one can calculate f up to 10 Mev to within about 0.01
from the representations given in Eqs. (3) through (3.8) of HAB.

- An uncertainty of 0.01 in f, for almost all energies, corresponds

to an uncertainty in scattering at 45° of less than 1 percent as
indicated in Table IL.
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TaBrE IV. Values of 8f caused by tail of meson potential. These should be added to f to allow
for the effect of the potential beyond »=23¢?/mc2.

\ a’ 0.40 0.40 0.40 0.42 0.45 0.45 0.45
ENC 102 99 96 89.648 84 81 78
(Mev) \\
0 —0.0179 —0.0216 —0.0257. —0.0299 —0.0287 —0.0366 —0.0455
0.8 —0.0110 —0.0134 —0.0166 —0.0188 —0.0169 —0.0223 —0.0286
1.4 —0.0073 —0.0093 —0.0115 —0.0128 —0.0107 —0.0147 —0.0194
3 —0.0016 —0.0024 —0.0032 —0.0035 —0.0034 —0.0057 —0.0086
5 —0.0004 —0.0006 —0.0005 —0.0005 —0.0011 —0.0009 —0.0009
6 —0.0008 —0.0006 —0.0005 —0.0009 —0.0025 —0.0021 —0.0016
7 —0.0016 —0.0014 —0.0012 —0.0020 —0,0045 —0.0039 —0.0033
9 —0.0034 —0.0033 —0.0031 —0.0047 —0.0085 —0.0080 —0.0076
16 —0.0055 —0.0058 —0.0061 —0.0083 —0.0119 —0.0126 —0.0134
22 —0.0029 —0.0032 —0.0035 oo —0.0062 —0.0069 —0.0077
28 —0.0014 —0.0014 —0.0015 —0.0022 —0.0034 —0.0035 —0.0038
32 —0.0018 —0.0017 —0.0017 —0.0026 —0.0046 —0.0045 —0.0044
40 —0.0045 —0.0044 —0.0044 —0.0064 —0.0107 —0.0106 —0.0105

=89.648, a’=0.42, can be used to determine the tail
corrections for other sets of slightly different parameters
within 4-0.0007 in f. The results can be summarized
as follows. For 0< E=9 Mev,

(8f—8f @)/ (8fo— 8fo®)
=1415(a’—0.42)[143.7(a’— 0.42) ]
+0.248[1412(a'—0.42) ]

X[15.81—C'a”[1—0.0855E], (3)

5f©/6f,®=1+414.6(a'—0.42)[1+4.6(a’— 0.42) ]
+0.344[ 14+10.5(a’—0.42) [15.81—C'a’2].

For E2 9 Mev,

5f/8fo=1418.3(a'— 0.42)[ 1+5.7(a'— 0.42) ]

+0.150[1416.7(a’—0.42) J[15.81— C'a]
Xsin[0.0331EH(E—12)7].

(3.1)

(3.2)

Here E means the energy in the laboratory system in
Mev, §f©@ is the first term in a power series in energy
for §f, and the subscript 0 means that §f and 6f for
d’=0.42, C’'=89.648 have been taken. Values of &f,
and 8f,(® are obtainable from Table IV, fourth column,
with 6fo(®=§f, at E=0.

It may be pointed out that Eq. (3) can be used
to obtain §f®, since [8(8f)/IE]r—o=25f?, and
[8(6/0)/0E]p—o=0fo® is 0.0161 from Table V.

III. COEFFICIENTS OF E IN THE
POWER SERIES OF f

The quantities [, f®_ ... are defined as coefficients
of powers of E in the power series representing f. In
the work of HAB the primary object was to represent
f as a function of the energy with an accuracy sufficient
for preliminary comparison with experiment. Simplicity
of representation was therefore put ahead of accuracy
in the values of the /. The procedure followed by
HAB was that of fitting directly computed values of f
by a quadratic

fOLfOELfOR,

for values of E from 0.2 to 10 Mev, and while the fact
that the values of f© f® and f® will be affected by
the presence of f® with 4>2 has been realized and
even brought out in HAB’s paper, no explicit account
of them has been taken. It is clear that the effect of
the omitted f® is a function of the energy range within
which the fits of f are made. In the work of Jackson
and Blatt,! on the other hand, the function f is repre-
sented by a power series in E, and the coefficients [
are used in their strict mathematical sense. The agree-
ment between the two sets of the f(¥ is, therefore, not
as good as that between the values of f. The situation
is somewhat similar to that encountered in the analysis
of experimental material by means of the f function.
The best that can be done without assuming a shape
of the potential well is presumably to fit the experi-
mental values of f by a polynomial using least squares
with appropriate weights. The values of the f® arrived
at are then functions of the assumed number of sig-
nificant . The values could be appreciably in error if
the f curve contains some large enough f® with large
enough 4. The procedure of HAB is sufficiently close
to what has to be done in treating data with respect to
effects of neglected f® to make it at least comparable
in usefulness with that of a mathematically rigorous
representation. It sacrificed some numerical accuracy
in order to cover a-large range of parameters, and a
direct comparison with Jackson and Blatt’s work would
be difficult for any one who has not carried out similar
calculations. It appeared desirable, therefore, to take
into account the effect of the tail of the potential energy

‘curve on the f@ both in order to make the comparison

more immediate and in order to ascertain the effect of
the inclusion of the tail on the . It will be seen that
the effect of the tail is not negligible and that the

TABLE V. Values of 8(8f)/0E at E=0. E is in Mev.

a= 040 040 040 042 045 045 045
C'= 102 99 96  89.648 84 81 78
4(8f)/0E=0.0102 0.0116 0.0133 0.0161 0.0177 0.0211 0.0248
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inclusion of the higher ¢ is especially important in
representing its effect. This is especially clear by in-
spection of Fig. 2 which shows the tail effect §f plotted
against E. An expansion of this quantity in powers of
E is obviously not the easiest way of representing it.
The values of the f® corresponding to different con-
ventions and purposes of employment are summarized
in Table I. The fundamental constants enter the calcu-
lations for Table I in the combinations (M /m)(e®/fic)?
=0.097714 and (mc®/Mev)=0.5114. The numerical
values used here are consistent with those in Breit,
Thaxton, and Eisenbud,?* Breit and Bouricius,?® HAB,
BH. The last line of Table I is in good agreement with
the values of Jackson and Blatt.! The first four coeffi-
cients obtained from their work and adjusted with their
formulas to correspond to a Yukawa well with ¢’=0.40,
C’'=99 and f®=7.9666, f©=0.9268, f®=—0.0089,
and f®=0.00026.

Table I shows that the same set of values of f can
be represented in a number of ways by polynomials
and that the rather tempting interpretation of data by
means of the almost rectilinear plots of f against energy
has its limitations. This fact has been brought out by
BH in connection with the influence of quadratic terms
on straight line fits to data. It is seen in Table I that
cubic and quartic terms also. have an appreciable
influence. While the least squares fitting was made to
values of f computed for a definite model rather than
to values obtained from experiment, the indefiniteness
in conclusions could not have been made worse by
doing so. One may conclude that the mere fact that a
set of experimental values of f shows no recognizable
curvature in the (f, E) plot does not justify one in
fitting it by a straight line if it is desired to obtain the
potential well parameters.

The evaluation of f can be either made directly for a
number of energies as in the work of HAB or else by
the calculation of the /¢ as in the work of Jackson and
Blatt. For a small range of energies in the immediate
vicinity of E=0, the latter method is more efficient if
one wishes to avoid the use of Coulomb functions and
prefers to employ tabulations of Bessel functions (7, K)
instead. For wider ranges of E the direct calculation of
f or K, is definitely the easier approach because of the
severe cancellation in the integral expressions for f@
with higher 4. When the meson wave function, expanded
as a power series in the energy to yield coefficients
which are functions of 7 analogous to the Bessel function
coefficients of the Coulomb function,?® is joined at
re=3¢*/mc® to the Coulomb function, the limits of
integration for the computation of the f® are 0 and 3
on 7., and the two terms in the integrand which are
subtracted are closely equal in value over the latter
part of the range of integration. The cancellation is

24 Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939),
referred to in the text as BTE.

25 G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (1949),

referred to in the text as BB.
26 G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 392 (1950).
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Fic. 2. A typical plot of §f vs E for the parameters C’ =89.648mc?,
a'=0.42¢2/mc?. Similar curves result for the other sets of param-
eters appearing in Table IV.

minimized, therefore, by reducing the range of integra-
tion. It appears that integration over 60 percent of the
range reproduces 99 percent of f® while cancellation
leaves 20 percent of S (#0%)%dr.. Integration over 85
percent of the range is necessary to give 98 percent of
7@ and only 2 percent of fuo*u,’dr, is left, while in
order to obtain 96 percent of f® the integration must
be carried over 94 percent of the range and 0.06 percent
of S (us°)%dr, is left. Here u;°= (8'u®/dE*) g, where u*
is the Coulomb function. This may be viewed differently
by saying that if one wishes only 1 percent error in f®,
the integrals must be known to 0.2 percent, a 2 percent
error in f® requires knowledge of the integrals to 0.04
percent, and a 4 percent error in f® is obtained if one
knows the integrals to 0.0025 percent. Such numerical
accuracy requirements would be too severe and could
make the calculation of the ¢ very impractical if it
were not for the fact that when the two integrals
representing each f( are combined into one, the re-
sultant integrand is a relatively smooth function of 7.
Numerical quadrature performed on this integrand,
which changes sign within the range of integration, has
not shown any special difficulties regarding the necessity
of using high order quadrature formulas. Nevertheless
one may have a feeling of caution regarding numerical
work with this integrand, since it arises as a difference
of two much larger quantities which are sufficiently
complicated mathematically to make conclusions re-
garding the smoothness of the difference rather difficult.
It may be of interest to note that computation of f by
the power series method throws all of the weight on the
accurate calculation of the f® while direct calculation
of f distributes the accuracy requirements. In employing
the power series greater care has to be taken concerning
accuracy because for the larger E the errors become
magnified. Direct computation has the advantage of
providing a number of checks such as regularity of
differences against energy and integral relations enabling
one to expand logarithmic derivatives and related
quantities in powers of energy differences or other
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parameter value -differences. Such checks have been
described by BTE and related ones by HAB. The
question of the number of coefficients needed for a
given energy range does not enter in the method of
direct calculation while it cannot be avoided if one
uses a power series in E.

The direct method of calculating f is not entirely free
of stringent accuracy requirements, however. In this
case Egs. (7.1) and (7.6) of BCP are used together with
quantities tabulated in the appendix of BTE, in TH,
or obtained some other way for the Coulomb functions,
and logarithmic derivatives of the meson functions
obtained by a numerical integration of the suitable
Schroedinger equation or an equivalent method. The
tabulated Coulomb functions are given to four decimals
in the places mentioned, and an assumed uncertainty
5X 1075 in each quantity at, say, E=2.6 Mev, intro-
duces an uncertainty in f of 0.003. If there is an error
in one of the quantities, for example ®,0,, of 1.5X 1074,
there is an error in f of roughly the same amount.
While these uncertainties are small, they entered within
the accuracy of the graphs discussed later in this paper.
There is also a further mitigating circumstance in the
use of the integral formulas in the fact that the tail
effect contributes the major part of the coefficients f®
for ¢>2, and this part may be computed directly with
the aid of the first-order formula, Eq. (2), where the
wave function is suitably differentiated with respect to
E under the integral. Thus for the entry in Table I,
line E, the error in f® without tail is estimated at
=410 percent, while in line F, the error in f® with tail
is only about 3 percent, since the tail effect is known to
about 0.5 percent and is four-fifths of the value. The
values of f® and f® with or without tail are known to
=+0.03 percent and 0.5 percent, respectively.

It has, therefore, been found helpful in the present
work to use both direct calculations of f and energy
expansions with coefficients obtained by integral for-
mulas in order that independent checking could be
effected.

In deriving the values of meson well parameters from
experiment, it is convenient to have available the
approximate equations

Ad'=—0.0138Af©4-0.411Af®

4
A[(C")#/a’]=0.00309A7 ©+0.0166Af ©, (4)

which follow from the representations of the f® by
HAB. These formulas relate small changes in f©® and
f® to corresponding changes in C’ and a’ on the sup-
position that f@ is varied with £ and f® in a manner
required by the meson well. The effect of f/® beyond
7@ is neglected and the variation of f® is obtainable
from

Af®=0.000170Af®—0.0108Af ©. ()

The tail of the meson potential beyond r=23e?/mc?
has the effect of increasing the range of nuclear force
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and of producing an increase in f® of approximately
one percent. The change in phase shift, of course, is
always positive. Since 8f is proportional to — 6Ky, &f is
always negative, and in particular, §f is negative.
The curvature of the f-curve is increased in absolute
value because of the 'tail by about 35 percent in a
typical case.

The absolute value of the tail effect is greatest for
f© and decreases with the order of the f-coefficients.

‘However, in percentage, the tail has the greatest effect

on the higher order coefficients. For example, the tail
increases f® by about 500 percent and f® by about
—1000 percent.

As would be expected, the tail has the greatest effect
on - the phase shift for low energies because of the
Coulomb barrier. The oscillatory nature of 6f arises
because of the way in which the“wavelength” of the
wave function decreases with energy, in combination
with the exponentially decreasing factor in 6V.

In the course of this work it has been found to be
simpler to determine f curves by direct calculation of
phase shifts rather than by determining the @ by
means of integral formulas!:18:27 Tt is not meant,
however, to deny the advantages of this latter method
in showing qualitative features of the behavior of the
@ with changes in potential well parameters especially
for f®. It is somewhat cumbersome, however, for the
f with higher ¢ which are necessary to represent f at
higher energies. ’

The large number of coefficients needed is illustrated
by comparing results of using the values in Table I,
line F at 20 Mev with a value of f computed from the
HAB phase shift and corrected for tail effect. When
f® was included, the series yielded a value too large
by 2.11 or 9.5 percent, inclusion of f@ led to an f which
was too small by 5 percent, and the series with four
coefficients was too large by 3.8 percent. The conver-
gence is definitely faster, however, when the coeffi-
cients without tail of line E of Table I are used to
compute values of f not corrected for the tail effect,
as may be seen from the fact that at 20 Mev the series
£ is high by 9 percent for two terms, low by 2 percent
for three terms, and low by 0.5 percent for four terms.
With the same coefficients, the series disagrees with
the tail-corrected f at 40 Mev by 20 percent and with
the tail-uncorrected f by only 2 percent.

This comparison coupled with earlier discussions of
cancellations encountered in integral formulas for the
F® for i>3 leads one to the conclusion that the
expansions in powers of E can most profitably be used
for calculations not including the tail effect, followed
by a direct calculation of the tail effect by means of
Eq. (2) or interpolations in Table IV. Since the tail
contributes most of the value of the coefficient from
f® on, such a plan reduces the need for extreme
accuracy in computing the f without tail, and in

27 G. Breit, Revs. Modern Phys. 23, 238 (1951).
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addition, -the more rapid convergence of the series
representing the tail-uncorrected f can be fully utilized.

The tail effect illustrates an extreme condition of
variability with bombarding energy of sensitivity of
scattering to changes in potential energy. This varia-
bility is clearly seen in Fig. 2. At energies of 30 Mev
the tail effect is small, and it is small again at 5 Mev
while in the region 0~1 Mev it has its largest values. The
calculations by means of which the tail has been com-
puted involve the same approximation as has been used
by Hoisington, Share, and Breit?® and BBH for the
discussion of sensitivity of scattering to changes in
potential in general. Figure 2 shows in conjunction
with Table II that the tail effect is equivalent to a
change in 45° scattering by roughly 0.7 percent at
1 Mev bombarding energy and is over 1 percent at
0.5 Mev. While small, the tail effect is seen to be not
negligible from an experimental viewpoint.

It appears appropriate at this place to clear up a
misunderstanding concerning statements in HSB?® as
interpreted by Jackson and Blatt. The word “shape”
was used by HSB in two senses: (a) the one according
to which changes in range and depth parameters do
not alter the shape of the potential well (this convention
has become universal since); (b) the one according to
which the addition of a potential anywhere changes the
shape. The latter convention was a natural one to use
in a part of the discussion since the paper of HSB was
written as an illustration of the method of calculating
effects of such changes. A different shape in sense (b)
is also a different shape in sense (a) in most cases, but in
special cases it is the same shape in sense (a). By
“exponential well” the well with specific values of depth
and range parameters of Rarita and Present was meant
throughout as is clear from references to the work on
binding energies with these parameters in HSB and
from the discussion of their comparison of the meson
and exponential wells, which applies to what HSB
considered to be the best fit to scattering data by the
Yukawa potential with what appeared to be at the time
the best fit to binding energies of the Rarita-Present
exponential potential. The distinction in the two uses
of the word ‘“shape” should have been more clearly
brought out in the HSB paper. At the time at which
it was written the interest in the Rarita-Present well
and the absence of binding energy calculations for the
meson potential made elaborate statements unneces-
sary. The statement by HSB concerning the fact that
the data then under consideration were in better agree-
ment with some shapes of potential energy wells (in the
currently accepted sense) than with others was correct
and can be seen in Fig. 15 in Jackson and Blatt’s paper
and in Fig. 1 of the present paper. The points of HHT
which could not have been disregarded suggested
strongly a preference for the meson potential and the
trend toward convexity of the (f, E) plot for the HKPP

28 Hoisington, Share, and Breit, Phys. Rev. 56, 884 (1939),
referred to in the text as HSB.
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points when viewed from below is also clear. It should
be stated that the comparison of the best 1939 meson
potential fit with the Rarita-Present exponential well
was correct. The superiority of the (f, E) plot over the
(K, E) plot claimed by Jackson and Blatt is more
esthetic than practical as may be seen from the agree-
ment of “best fits” obtained by the two methods. It is
probable that the safest method is a direct plot of
experimental data such as Fig. 11 of BTE. It is more
laborious than either of the other two but frees one
considerably from the confusion caused by the custom-
ary and frequently rather meaningless assignment of
probable errors to their results by experimenters. The
inclusion of data at various angles and diagrammatic
presentation of experimental rather than theoretical
quantities makes judgment concerning relative goodness
of different fits more concrete.

IV. COMPARISON OF THEORETICAL f
WITH EXPERIMENTAL DATA

Heydenburg and Little? have recently performed
proton-proton scattering experiments at low energies
using a Van de Graaff generator. These data were ana-
lyzed using the tables in Breit, Thaxton, and Eisenbud?*
and were found, at each energy, to be consistent among
themselves to within 0.04° assuming only S wave
scattering. This would indicate a minimum uncertainty
in f of between 0.01 and 0.04.

In order to obtain the phase shift K, as a function
of energy two types of least squares fits were made to
these .data. In the first, Ko was determined by a fit at
each energy to all the observation angles. In the second,
it was supposed that at each energy there is present an
undetected systematic error which affects scattering
yields by the same factor at all angles. The least squares
calculation included an adjustment of this factor at
each energy in such a way as to enforce best agreement
with theory on the assumption of a pure S scattering
anomaly. The value of the phase shift is not assumed
but is derived from the fit to adjusted experimental
values. This factor in all cases turns out to differ from
unity by less than 2 percent, and for all but two energies
it leaves values unchanged to within less than 1 percent.
The two types of fits give results that are almost
identical, differing generally by only a few hundreths
of a degree. Since all of the present experimental
evidence indicates the absence of any deviations from
S scattering at the energy of these experiments which
could have been detected, and since absolute values of
scattering yields could conceivably have errors de-
pending on energy, the second type of fit appeared
preferable and is used in the following. The results are
given in Table VI along with the corresponding values
of [.

The experimental results are analyzed by means of
the f function of Breit, Condon, and Present.!* In
terms of this function the subsequently introduced f
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TaBLE VI. S wave phase shifts according to experiments of
Heydenburg and Little.

E(Mev) Ko(degrees) f
0.2 6.66 8.053
0.3 11.16 8.031
0.4 15.02 8.216
0.45 17.16 8.163
0.5 18.82 8.261
0.6 22.32 8.304
0.7 25.13 8.450
0.8 27.97 8.504
0.9 30.35 8.607

of Bethe, faz., is
fBe=f+2—2y=140.84557,

and the function used by Jackson and Blatt is
K=3/+1-2y=3f—0.15443.

Here v is the Euler-Mascheroni constant. The original
notation is adhered to on account of the simplicity of
the relation between the logarithmic derivative of the
wave function and f which is apparent in Eq. (7.5)
of BCP.

The determination of f©@, f®, f® proceeded from the
more accurately measured phase shifts. In addition to
the work of Heydenburg and Little, the same values as
used by BH, with the exception of the value at 4.2 Mev
by May and Powell,® were considered. The energies
and the experimental f’s used are shown in Table VIL.
The interpretation of the data is as mentioned in BH.

The proper weighting to be assigned to the work of
a set of experimenters is uncertain. The use of the
nominal probable error as a criterion may be of signifi-
cance, but it does not necessarily correspond to the
relative value of different sets of observations, since the
reluctance of an experimenter to claim too much
accuracy enters the nominal error in a strong but
unknown manner. Nor does this criterion consider the
self-consistency of a given set of data. It was desired
to obtain weightings for the different observations
which were free in some measure from arbitrariness.
This was partially accomplished by employing a cri-
terion based on the internal consistency of the data of
a given set of observers. It is clearly impossible to
devise a criterion which is completely adequate and
fair, since the comparison of observations at different
energies presupposes the knowledge of variation of f
with energy, and this variation is one of the things
which must be found. On the other hand the data of
one group of observers cover a reasonably limited range
of energy values, and the collection of all data with any
reasonable assignment of relative weights to the obser-
vations determines df/dE with fair definiteness. It is
possible, therefore, to reduce the data of a single group
of observers (SGO) to one energy by correcting for the

2 A, N. May and C. F. Powell, Proc. Roy. Soc. (London)
A190, 170 (1947).

HULL,

BENGSTON, AND BREIT

effect of df/dE and to test the quality of the data by
the consistency with which the reduced values check
each other. Specifically this plan was carried out as
follows. A preliminary fit to data similar to that ob-
tained by BH was used to determine approximate
values [ =7.788, f10=0.940, f®= —0.0053. The value
of f® used here corresponds to that expected for the
meson potential according to the representations of
F@, fO, f® in terms of the depth parameter C’ and
range parameter ¢’ of the meson potential. The corre-
sponding fit in the BH paper gave the very similar
values f=0.939, f@=-—0.0057, even though the
weights used in the least squares calculation were very
different. The fit was next corrected for tail effect
employing 0.41 as the value of the range parameter.
The inclusion of the tail effect is primarily responsible
for the markedly different value of f®=—0.00935.
The values f® and f® were then adjusted so as to
correspond to the best linear fit for f— f®E? resulting
in f©=7.780, f¥=0.954. According to Appendix A,
the three f( thus obtained should correspond to the
best meson fit rather closely except for changes arising
from the assignments of different weights to observa-
tions. Since these values were obtained by fitting what
are believed to be all of the more accurate measure-
ments, the values of f© and f® were considered to be
good enough for making corrections for energy of data
within the material of any SGO. A constant f©®; was
then determined by subtracting f®E+f®E? from the
observed f of a SGO and averaging the results. This
@1 is a local f© for the SGO, and the subscript 7 is
meant for “local” in local energy. The mean deviation
of the observed f from f®+ f®E+ f® F? was calculated
for the SGO, and a relative weight for any observation
of the SGO proportional to the reciprocal of the square
of the mean deviation was then used in a least squares
adjustment of f©@, f® f® to the observations of all of
the SGO included in the analysis.

It appears pertinent to mention that the criterion is
not capable of penalizing the data on account of the
presence of a systematic error which would affect all
the f of an SGO by the same amount. The desirable
feature of this circumstance is that all observations are
on the same footing regarding the determination of the
f curve as long as the quality of observations is the-
same in the sense tested by the criterion of internal
consistency. An undesirable feature is the possibility
of leaving systematic errors undetected and of occa-
sionally permitting statistical accidents in which data
with poor statistics receive a high rating because the
sample happens to show small dispersion. The criterion
does not in any sense provide a figure of merit for the
data of a given group of observers from such viewpoints
as accuracy within a certain percentage of error in the
cross section. In principle poor data at an energy
especially favorable for the determination of f can
receive a relatively high rating. Other possibilities of
unfairness to data are mentioned in the introduction.
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Since several groups of observers are involved, a degree
of statistical compensation of errors committed in
weight assignment may be expected. The weights per
observation w, determined by this criterion, are Ragan,
Kanne, and Taschek?®: 0.00353; HL: 0.0233; HHT:
0.00843 ; Herb, Kerst, Parkinson, and Plain®: 0.08338;
and Blair, Freier, Lampi, Sleator, and Williams®:
0.06438. This method of obtaining weights will be
referred to as criterion J to indicate that it is primarily
based on internal consistency. »

In order not to depend on this criterion too heavily,
a second criterion was used in which the deviation of
the f values of a SGO from the f curve as determined
by criterion ¢ was also used to determine the quality
of data. The obvious danger of relying on such con-
siderations is apparent in the example of sampling a
Gauss error distribution. Were one to omit the obser-
vations outside the probable error, perfectly valid
measurements would be left out of account. The differ-
ence between the Gauss error distribution and the
statistical sample for the determination of the f curve
is, however, that the statistical equivalence of all
observations of the Gauss error distribution can hardly
be expected to apply to data obtained with different
equipment in different energy regions. Observations
which are removed from the f curve by several times
the nominal probable error would have to be supposed
to contain a systematic error with a large probability,
and their weight would have to be considered as small.
A partial account of this circumstance was taken by
calculating a second set of relative weights w’, propor-
tional to the reciprocal square deviation from the f
curve determined by criterion J. The weights obtained
were RKT: 0.00315; HL: 0.01981; HHT: 0.00441;
HKPP: 0.09242; and BFLSW: 0.06113. The least
squares fit was then repeated with relative weights
(w+w")/2. The second criterion is referred to as the
9 & criterion. The values obtained are

fO©=7.7846, f©=0.9564, [®=—0.01041
(criterion 9),

fO©=7.7864, f©=0.9558, fP@=-—0.01044
(criterion 98).

(6)

In addition, a linear least squares fit to the data results
in
f©®=7.8107, f®=0.9173 (criterion 9),

7
f©=78132, f®=0.9165 (criterion 9&). @)

This procedure is admittedly arbitrary and has been
tried in a somewhat experimental spirit. It is apparent,
however, that the assigned weights cannot make too
much difference in the least squares fit. Using their
weighting, BH found by a linear least squares fit that

® Ragan, Kanne, and Taschek, Phys. Rev. 60, 628 (1941),
referred to in the text as RKT.

3t Herb, Kerst, Parkinson, and Plain, Phys. Rev. 55, 998 (1939),
referred to in the text as HKPP.

3 Blair, Freier, Lampi, Sleator, and Williams, Phys. Rev. 74,
553 (1948), referred to in the text as BFLSW.
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TasLE VII. Values of f used in the least squares analysis. These
are in addition to those for the Heydenburg-Little data.

E(Mev) f Source
0.25 7.084 RKTa
0.30 8.174 RKT
0.670 8.279 HHT®
0.776 8.465 HHT
0.867 8.616 HHT
0.860 8.601 HKPPe
1.200 8.944 HKPP
1.390 9.134 HKPP
1.830 9.478 HKPP
2.105 9.749 HKPP
2.392 10.004 HKPP
2.42 10.022 HKPP
3.04 10.637 BFLSWd
3.27 10.781 BFLSW
3.53 11.029 BFLSW

a See reference 30. b See reference 15. ©See reference 31. dSee refer-

ence 32.

fO©=782, f®=0.916. These values are very close
(with § percent) to those obtained similarly by Jackson
and Blatt. The present linear least squares fit gives
values which differ from those of BH by about 0.1
percent for f® and less for /¥, as shown in Eq. (7).

The importance of considering the curvature in a fit
of this type has already been discussed.® It is, however,
not a large effect, and the fit to data offered by Egs. (6)
is perhaps just significantly better than the fit as.
offered by Eqgs. (7). For the quadratic fit, the root
mean square (rms) residual® is 0.0332 for the criterion
g and 0.0309 for that using the weights of criterion 98&.
The rms residual for any quadratic fit to these data
with f@ fixed, of which the linear fit is a special case,
is 0.0320(1+ A), where the average quadratic fit residual
is used as the basic value. The quantity A will always
be a positive number and is in fact =390(f®--0.01)2
For a linear fit, A=0.04. The improvement in the fit to
the data which is produced by employing a quadratic
rather than a linear fit is thus seen to be only 4 percent
as measured by the rms residual. The rms residual
apparently is sufficiently large to preclude the precise
determination of three coefficients. Another condition
to limit the variation of f® is needed.

Strictly speaking, one must consider the problem
from the viewpoint of fitting the data by a polynomial
in Esuch as fO4 fOE4 f@E? with fO f®O @ regarded
as functions of the potential well parameters such as C’
and o' for the meson well. Since f©®, f® can be used to
determine C’, ¢, this amounts to subjecting f® to the
condition of being a definite function f@(f©@  f®) of
f©@ and f® and regarding f©, f® as independent
variables. The weighted sum of squares of deviations
must then be minimized with respect to f© and f®.
It is shown in Appendix A that in a good approximation

# See reference 18, Eq. (7) ef seq., and amplified discussions in
Sec. I and Appendix A of the present paper.

3 The residual is defined as the difference between the experi-
mentally determined value and the value obtained from the fitted
curve. The root mean square or rms residual represents an
‘“average” deviation from the curve.
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such a procedure gives nearly the same answers as are
obtained by the following requirements: (A) the equa-
tions obtained by minimizing the weighted sum of
squares with respect to f© and f®, neglecting the
entrance of f@, f® into f@; (B) restricting the value
of f® so obtained by the requirement that f®
=fO(fO, f®), The solution of the modified problem
can be obtained in practice by an iteration procedure
in which step (A) is taken with an approximate f®,
the resultant values of f©, f® are used to compute an
improved f@, and the cycle repeated if necessary. The
first step in this procedure is essentially what has been
done in the work of Jackson and Blatt! and of Breit
and Hatcher.’® The question arises regarding the
advisability of fitting data by least squares in preference
to the simpler visual adjustment of a straight line or
curve. Without trying to provide a complete answer,
one may note nevertheless some pitfalls in the method
of visual fits. These have been partly discussed by
HAB in connection with the error involved in neglecting
the curvature of the (f, E) plot. More specifically one
can estimate the effect of an error of judgment in
estimating the curvature of this plot. If the curvature
is a result of a term in a? with x=E/Epn.x, then the
least squares representation of an error #? by a linear
function has exactly the slope of the chord between
#=0 and the maximum « used. A replacement of the
least squares fit by a chord between end points would
in this case give a reliable value of f®. However, the
value of @ would .be seriously affected because the
least squares straight line is lower than the chord by
#2/6, and for an error resulting in the representation of
—0.0040E? by a linear fit there results a false contri-
bution to f© of amount 0.00067E,,.x* For E=3 this
contribution is 0.006 which is uncomfortably close to
the desired accuracy.

Similarly, data analysis taking no account of the
presence of f®E* and assigning a correct f@ will
reproduce the value of the slope of the chord to within
9/10 of the true value of the omitted part and will make
a false contribution to f©® of — f®E3/5. For E=10 and
f®=0.000270 the error in slope is equivalent to 0.27
percent effect on range, while for E=3 this error is
negligible. For E=10 the effect on f©® is an objection-
ably large 0.05 while for E=3.5 it is a tolerable but
nevertheless undesirable 0.002. All of the numbers
quoted in connection with the cubic error are for
uniform weighting of the observations. It is presumably
difficult to make visual straight line fits with allowance
for curvature to a degree much better than establishing
the chord between end points followed by an approxi-
mate and roughly parallel displacement. The resultant
errors may be appreciably greater than those arrived
at in the estimates just quoted because of the confusion
presented to the eye by points not following a regular
line and because the cancellation of errors for the slope
is accidentally small for uniform weighting.

Accordingly, therefore, the least squares equations
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were solved to give the best fit consistent with various
types of potential wells. In order to make the solution
consistent with the meson potential, for example, one
can correct for the tail effect and then use values of
FO©, fO, f® consistent with the representations of these
quantities in terms of depth and range parameters by
formulas in HAB. For the square well, Egs. (8.6)
through (8.84) of BB were used, with Eq. (8.42) of that
paper, to give an approximate value of f®=0.00475
when a range was fixed. The value f®= —0.0015 given
by Jackson and Blatt! for the exponential well was used.
The changes in f©@, f® and f® are so small that they
are proportional to each other, and it is thus unneces-
sary to solve the least squares equations again once
the solutions given by Egs. (6) and (7) have been
obtained. By the use of Eq. (5) along with Egs. (6)
and (7), one is able to find the best meson fit at once.
Equations (8.6) through (8.42) of BB are used in place
of Eq. (5) for the square well, while Eq. (11.3E) of
Jackson and Blatt serve for the exponential well.
The results are:
(a) best meson fit,

f©®=7.78740.009, f®=0.95340.005,
f®=—0.00949 (criterion 9),

F®=7.789+40.009, f®=0.952-0.005,
f®=—0.00947 (criterion 98).

Although the values of the f listed in Eq. (8) are
referred to as “the best meson fit,” the procedure
followed in obtaining them contains an approximation
which must now be explained. It was assumed that
approximate proportionality of /@ to the square of the
range parameter holds for f @, including tail effect, even
though the proportionality of 6f® to a ¢’ has not been
investigated. Since the standard reference value of f®
with tail which was used here (line F, Table I) was for
C'=99, a’=0.40 a pair of parameters lying close to the
values representing experiment, this approximation can
be expected to be satisfactory. The values of C’, &’
obtained by means of it will be referred to below as
“preliminary.” They have been checked by two other
methods which will be described presently.
(b) approximate best exponential fit,

[O=7810, f©=00922, Ff®=—0.0015

®

(criterion 98); (8.1)
(c) approximate best square well fit,
f®=7.825 [®=0.899, [®=00048
(criterion 98). (8.2)

The values of A are, respectively, 0.0001, 0.028, and
0.087 for the meson, exponential, and square well fits.
The smallness of these values indicates that the data
are not sufficiently accurate to distinguish satisfactorily
among the fits. The entries preceded by == signs such
as £0.010 for @ indicate probable errors (not standard
deviations) and have been calculated from rms residuals
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in the least square work. It is of interest to compare
them with the error in f to be expected for one percent
error in scattering which is shown for comparison in

Table II. With 15 observations of equal weight and a

probable error of ££0.01 in f@, the probable error of
one observation can be expected to be £20.04, and this
number is reasonable if one supposes that the scattering
measurements have an accuracy of one percent and
employs Table II. The approximate magnitude of the
uncertainty in f® can be understood as being the
uncertainty in f(@ at an energy distant 2 Mev from a
reference energy. The distance of 2 Mev is a reasonable
distance since the observations are distributed through
3.3 Mev. The uncertainty of f® is thus essentially
understandable also in terms of a one percent error in
scattering.

The parameters C’, @’ of the Yukawa potential which
correspond to the f-coefficients of Eq. (8) are obtained
in first approximation from Eq. (4) by the use of the
values of line F, Table I for C'=99, ¢’=0.40 as base
coefficients. Equation (4) resulted from the HAB
representations, and thus does not contain the effect of
the tail of the potential. The preliminary values of C’
and ¢’ resulting from Eq. (4) were used, therefore, in
Eq. (3) to compute f© and f®. These tail corrections
were applied with opposite sign to the “‘experimental
fit” coefficients of Eq. (8); thus a virtual chopping off
of the physical tail of the potential was effected. The
coefficients so obtained were used in Eq. (4) to obtain
the final values of the parameters. The results are

C'=93.44me®, o' =0.412¢/mc?,
C'=93.58mc?, o’ =0.412¢*/mc?,

Since these values differed by less than 0.5 percent
from the preliminary results, the calculations of §f©®
and 6f® were not repeated. The ranges agree within
the precision with which they are written for the two
weightings and correspond to a meson mass of 333
electron masses.

An independent method of arriving at the meson
parameters was also used. For this purpose plots of f, E
for ’=0.410 and 0.415 and each of three values of
1/(C’'a?)}t=y (namely, 0.2514372, 0.2511965, and
0.2509653), were compared with an f, E plot made
using the coefficients of Eq. (6). The f values for the
theoretical curves were computed directly from the
material used to obtain the HAB phase shifts and
interpolated (linearly in y, parabolically or bilinearly
in a’) to the desired values of ¢’ and y. Tail corrections
interpolated in Table IV were applied. In each case
the quantity actually plotted was f— (7.79414-0.9643E)
in order that a small variation in values over the energy
range 0-5 Mev would allow a very large scale to be used.
Figure 3 shows the one experimental and six theoretical
curves thus obtained, together with the experimental
points used in the least squares analysis (Tables VI
and VII). The theoretical curves show that a change

(criterion 9)
(criterion 98).

(&)
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in @’ produces a rotation in the curves, while a change
in y translates the curves up or down, and that the
rotation and translation is very nearly linear in ¢’ and
y, respectively, for the small changes illustrated in the
figure. It is of interest to compare Figs. 6, 7, and cogent
material of BTE, where K,, E plots with similar
properties are used. The slope of chords drawn to the
theoretical curves between 0 and 3.5 Mev was used as
a measure of the rotation and with that of the experi-
mental curve to determine the value of a’. With this
value of ¢/, linear interpolations at several energies for
constant values of y were carried out on the graph to
give several points on a curve with the experimental
value of ¢’ but with the values of y used in plotting the
theoretical curves. The experimental value of y was
then interpolated. The results of this analysis are:

C'=93.11mce?, o =0.412¢*/mc2. (10)

DESIGNATION OF POINTS:

X RAGAN, KANNE | TASCHEK 30
OHEYDENBURG, LITTLE®
SHEYDENBURG , HAFSTAD , TUVE'S
OHERB, KERST, PARKINSON , PLAINS!
©BLAIR, FREIER, LAMPI, SLEATOR ,WILLIAMS32_|

02

OF =

£-(7.7941-9643€)

.02 |— DESIGNATION OF CURVES
"] —-=d=0410
—em=d=0415

.03 . ——FIT TO'EXPERIMENTAL POINTS I
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o i 2 3 4 S
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Fi6. 3. Theoretical values of f— (7.79414-0.9643E) for a’=0.41
and 0.415 with vi, vz, ¥3 having the values 0.2514372, 0.2511965,
and 0.2509653, respectively, us E, together with the least squares
fit to data of Eq. (6), criterion (9&), and experimental points
as designated.

The close agreement between Egs. (9) and (10) is
satisfying, but is not to be taken as an indication of the
precision of the present determination of the meson
parameters. If one puts the probable errors of Eq. (8)
into the first of Egs. (4), an uncertainty in &’ of 0.002
results. The scatter of the experimental points on Fig. 3
gives visual evidence of this uncertainty, as well as one
in 4. The probable errors give an uncertainty in y of
5X 1075, which is actually larger than the spread in the
three values of y obtained from Eq. (8) .and in the
graphical analysis, and is of the order of that which
one might expect from the scatter (though somewhat
smaller). As the most precise result of this analysis,
therefore, the value of y may be stated as

¥=10.251124-0.00003.

Assuming this value of y and letting the uncertainty
in C’ be determined, therefore, by that in o/, the
parameters resulting from this analysis are

C'=934+x1me?, o' =041240.002¢2/mc?. (11)
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TasrE VIIL Values of f; for meson potential with parameters
Co' =89.648, a¢’ =0.42, y,=0.2514667, and coefficients for finding
change in f with changes in ¢’ and y.

E(Mev) fo at az as
0.2 7.977 —11.350 275.5 —694
0.4 8.169 —10.889 277.4 —691
0.6 8.361 —10.436 279.2 —685
1.0 8.743 — 9.538 282.9 —673
1.4 9.122 — 8.679 286.7 —668
1.8 9.498 — 8.013 290.1 —662
2.2 9.872 — 7.033 293.7 —052
24 10.057 — 6.640 295.3 —647
2.6 10.242 — 6.212 297.2 —641
3.0 10.611 — 5.418 301.3 —640
4.0 11.526 — 3.467 310.3 —623
5.0 12.427 — 1.593 319.3 —610
6 13.315 0.158 327.5 —581
7 14.185 1.861 336.3 —578
8 15.056 3.523 344.6 —561
9 15.900 5.122 353.0 —547
10 16.684 6.613 359.8 —533
12 18.399 9.628 377.1 —512

14 20.012 12.457 392.6 —494
16 21.601 15.216 407.7 —470
18 23.142 17.757 422.4 —453
20 24.674 20.305 436.9 —433
22 26.181 22.778 451.0 —417
24 27.657 25.171 464.8 —399
26 29.120 27.536 478.1 —369
28 30.571 29.656 492.1 —358
30 32.000 31.909 513.0 —350
32 33.418 34.273 5189 —312
36 36.203 38.342 544.1 —308
40 38.923 42.445 568.6 —269

From Eq. (8.1), the parameters of the best fit expo-
nential well, if the potential of the interaction is written
as — Be /%, are, approximately,

B=214me, b=0.251¢%/mc (11.1)

- The square well depth, D, and range, , are determined
from Eq. (8.2) to be about

D=12.60 Mev, r=0.919¢*/mc?, (11.2)
D.=13.50 Mev. (11.2))

The square well depth, D,, given in Eq. (11.2") includes
the Coulomb potential inside the well. The correction
from D of Eq. (11.2) has been made by Eq. (11) of
BTE. A corresponding range correction, which is small,
has not been made. These results agree well with those
of BH and of Jackson and Blatt.

The series expansions of f with the coefficients of
Eq. (6), (8), (8.1), and (8.2) are plotted in lower part
of Fig. 1 up to 4 Mev with the experimental points
included. The various sets of coefficients give essentially
indistinguishable curves which fit the data equally well.
It is of interest, therefore, to see how well a theoretical
curve fits the higher energy data. In order to obtain
the values of f needed for the meson well, an interpo-
lation formula was obtained:

f=fotai(a’—ao)+ aa(y—yo)+ as(a’—a") (y—y0), (12)

where a1, as, a3 are functions of E and are given in
Table VIII. Linear interpolation in E is quite accurate.

HULL, BENGSTON, AND BREIT

The basic values of f, designated f, in Eq. (12), were
computed for C’'=89.648, a'=0.420, and corrected for
tail effect from Table IV. The f, are also given in
Table VIII. The values of a,’ and y, to be used are
a’'=0.420 and y,=0.2514667. Accuracy of the order
of 0.01 in f is expected if (¢'—ao’) and (y—7y,) are
~0.01 or less. Equation (12) with Table VIII may find
more general application than in the present analysis.
For use in converting experimental data to f values,
there are also presented in Table IX values of C¢?/7y
and qo/n—2Iny. Equation (7.6) of BCP is then used
with the experimental Ko, and this table to give f values.

For the exponential well, the value f®=1.2X10-5
taken from the analysis of Jackson and Blatt was used
together with the coefficients of Eq. (8.1) to plot the f
curve at higher energies. The coefficients of Eq. (8.2)
were used to plot the square well curve, and the plot
was discontinued before the contribution from f®
became significant, since f®>0 for this well, and the
curve had already begun diverging strongly from the
experimental data at 20 Meyv.

The f curves to 30 Mev corresponding to the param-
eters of Egs. (11), (11.1), and (11.2) together with the
linear fit of Eq. (7) and the available experimental data
are shown in the upper part of Fig. 1. The data of
Dearnley, Oxley, and Perry®® have not been used be-
cause it is understood that the later work of Rouvina?
at the same laboratory and using the same general
method has a much higher accuracy. The correction to
the phase shift of May and Powell,?® the necessity of
which has been noted by Jackson and Blatt,' has been
used in preparing the graph. The other data plotted
consist of work by Meagher,* Panofsky, and Fillmore,*
Faris and Wright,® Zimmerman and Kreuger,® Mather,”
Wilson and Creutz,® Wilson,®® Wilson, Lofgren,
Richardson, Wright, and Shankland,* and Cork.? For
the value at 10 Mev by Wilson, the analysis of Peierls
and Preston?® was used. The values of f for the other
two points of Wilson et al. were taken from Jackson
and Blatt. The interpretation of Cork* was used for
other values given by him.

Points at energies below ~7 Mev do not favor any
one of the potentials. Only the values of Rouvina

% Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1949).

36 R. E. Meagher, Phys. Rev. 78, 667 (1950).

37 R. R. Wilson and E. C. Creutz, Phys. Rev. 71, 339 (1947).

38 R. R. Wilson, Phys. Rev. 71, 384 (1947).

3 Wilson, Lofgren, Richardson, Wright, and Shankland, Phys.
Rev. 71, 560 (1947).

# R. E. Peierls and M. A. Preston, Phys. Rev. 72, 250 (1947).

“ The figure displaying agreement of data with theory in the
paper just quoted refers to Jackson and Blatt’s work for the
theory used. Since the power series expansion given by Jackson
and Blatt is not supposed to apply at such high energies, and
since in the present work the employment of higher powers of E
than the third was found necessary, there is some difficulty in
understanding this statement. The curve drawn in Cork’s paper
differs only slightly from the f curve obtained by use of phase
shifts tabulated by HAB for a’=0.40, C’'=99 and could have
been ascertained by substituting these phase shifts in the formula
for f and applying a small correction for differences in values of
potential well parameters.
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indicate a slight preference for the Yukawa and expo-
nential wells. The preference is not definite, but the
value at 5.86 Mev from the measurements of Zimmer-
man and Kreuger® also appears to favor the longtailed
potentials. It seems that some additional work at
energies in this vicinity might be helpful in distin-
guishing between the phenomenologically postulated
‘potentials. At the higher energies, the values of Cork?
and that of Panofsky and Fillmore* definitely favor the
longtailed potentials.

APPENDIX A

The justification for employing simple iteration in
determining “best values” of potential well parameters
will now be given. The complete problem with allowance
for the entrance of 9f®/9f @, 9f®/3f® in the answer
will be considered, and it will then be shown that the
effect of these quantities is insignificant. It is convenient
to use the simplified notation

f(O) = l; Emaxf(l) =m, Emaxzf(z) =n, E/Emnx': X

In/dl=11, On/om="mny (A-1)
E..x=maximum energy.
The least squares equations are
{(A+n?) (IHmx+nx>—f))y=0 (A2)

{(x+nmx?) (+max+nx*—f))=0,

where { ) indicates a weighted mean. These equations

are conveniently referred to the best quadratic fit

(Zo, mo, 1o) for the same relative weights. For this
{o+mox+nep—f)=0
{ox+mox+nox— fxy=0
ox®Fmox+noxt— fa?)=0.

(A-3)

Introducing A=I—1,, u=m—m,, v=n—mny one ob-
tains

%(lo‘i“)\, mo—}— [.L) —Ny— V= 0
{(A4+n2?) (N pr+ra?))=0
(w4 1ma2) N+ px+v22))=0.

The A, p, v are relatively small. The approximation
corresponding to the iteration procedure described in
the text is obtained by setting #i, #,=0 in Eq. (A-2).
The solution of the modified equation will be called
U, m',n'. To introduce N'=1I'—Io, u'=m—my, v'=n—n,,
there results a way of obtaining (N, u’, »") as the
solution of

(A-4)

n(lo+N', motu', no+v)=0
N4 wx+va%=0
Nt pw'a24v'x%)=0.

On expanding #(ly+\, mo+p) in Eq. (A-4) in a Taylor
series and neglecting quadratic and higher order terms

(A-5)
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one obtains

A= (@)@ — (PPl (%) — (#*)(x%)]
[ () — (@} +*) 1}/ D
p= {(@)#?) — () mala)(wh) — ()2 ]
+nu (@Y —(x)]1}/D  (A-6)
v={(a")— P+ () — (@)x?) ]
+nm (%) — ()" 1} /D,
with
[rt0—n(lo, ma) ID= () — (*)+ 2 () () — (%]
2, (@) @")— (") Q0 (A7)
Q=n[{x®y— ()" I+ 2npm (x)(a")— (a?)a®) ]
+rn’[(27) = ()] (A-8)
The N, u’, v’ are obtained by setting #;=#,,=0 in these
relations. If the measurements have equal weights and
are distributed uniformly in the range 0<x<1, these
formulas reduce to
A=(1/72—n,/240+n.,/60)/D
pu=(—1/124n,/60—4n.,/45)/D (A-9)
v=(1/12—ny/724+n./12)/D
[no—n(ly, mo) ID= —1/1241:/36— 1,/ 6—n2/240
+n1m/30—4n,2/45.  (A-10)
For the approximate best quadratic fit to data with one
of the weightings that has been tried in a preliminary

way f©=7.789, f®=0.938, f®=—0.0049, and Enax
=3.5 Mev the values are ly="7.79, m¢= 3.3, ny= —0.060.

TasLE IX. Quantities for computing f from phase shifts.

E(Mev) Co?/n (go/7) —2In(n)
0.2 0.76448 1.50563
0.4 1.649211 2.06980
0.6 2.411586 2.42936
1.0 3.695285 2.90232
1.4 4.776889 3.22223
1.8 5.728617 3.46426
2.2 6.588139 3.65899
2.4 6.990691 3.74377
2.6 7.377889 3.82192
3.0 8.112484 3.96199
4 9.767629 4.24472
5 11.233633 4.46489
6 12.563461 - 4.64522
7 13.789206 4.79795
8 14.932039 4.93042
9 16.006798 5.04737

10 17.024373 5.15207
12 18.919171 5.33339
14 20.663649 5.48683
16 22.288750 5.61983
18 23.816065 5.73719
20 25.261372 5.84222
22 26.636624 5.93726
24 27.951095 6.02404
26 29.212215 6.10389
28 30.425987 6.17784
30 31.597390 6.24668
32 32.730549 6.31110
36 34.895729 6.42867
40 36.944136 6.53387
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In the approximation n=constm? which takes into
account the principal variations of # one has #,=0,
nm=—0.037, and n,2/45 is quite negligible. All terms
in 7, are seen to be sufficiently small to allow neglect
of all but first-order effects in #,. With this under-
standing and distinguishing quantities for the approxi-
mation I/, m/, »’ by primes throughout, one obtains
D'/D=1-n,=1.036, A\/N'=0.9928, pn/u'=0.9976, »/v'
=1. For the relative weights corresponding to the best
quadratic fit under discussion the /', m’, n’ type of best
meson fit to data gives f(©=7.780, f1=0.954, f®
=—0.00935 which yields A'=—0.008, u'=0.056 so
that the correction factor to the I, m/, ' type of
solution arranged to obtain the I, m, n type is 1+e
with e=—0.0024(0.016/0.94)= —4X 1075 for m’, i.e.,
f® which amounts to a 0.004 percent correction in the
range parameter. The effect on /@ is a correction of the
order —0.00006 in a total of 7.8 and is also of no
interest. By employing the representations of the f@ in
HAB and taking into account #; one estimates for the
numbers under discussion that #,/7:22—18 so that 7,
gives the main effects.

In the aforementioned estimates the effect of second-
and higher order derivatives of #, has been neglected
consistently for the complete problem corresponding to
(I, m, n), and its approximation corresponding to
(', m', n'). Since these terms are small and since the
difference in the two solutions, as considered, is negli-
gible, the corrections for the second- and higher order
derivatives may be considered as being practically
identical and for the condition under discussion the
corrections are of no practical interest.

In the more general case of arbitrary weights one has

NN = 14m (22— {a2)at)/B—B/8]
+nm(a/B—7/0), (A-11)
w/w'=14ni(e/y—B/8)

Fnn[ (22— () /v —~/8],

HULL,

BENGSTON, AND BREIT

where

a= (x)(x)=()x%), B=(e)Na’)— (o)
v = (o)) — (&), b= (x)*—(2*).

Substitution into these formulas for the fit discussed
earlier in this Appendix employing values of the (x%)
which correspond to the relative weights employed in
the least squares adjustment of the f®; there result
appreciably larger effects than in the estimates making
use of uniform weighting. The values obtained by
means of Egs. (A-11), (A-12) are as follows

AN =0.9494, u/u'=0.9802.

(A-12)

While larger than in the first estimates, the difference
between the complete and approximate solutions is
seen to be smaller than many other uncertainties in
the determination of f©, f®_ f@,

The best linear fit corresponds to I=I+)\",
m=mo+ "', n=ne+v"=0 with

N @492 =0, N @) )y () =0,

It follows from these relations and the result of setting
n1, 1 in Egs. (A-6), (A-7) so as to obtain X', p/, v’ that

)\/I/)\I= Ml’/ﬂ’= _no/vl= V”/V’,

which implies that difference between the values of
I, m, n for the best quadratic and linear fits are propor-
tional to corresponding differences between the best
quadratic fit and any other fit with a preassigned f®.
According to the elementary relation for proportions
this also implies that differences of /, m, n for two fits
with arbitrarily assigned f® from the linear fit are
proportional to each other. This fact follows directly
from the least squares linear equations for the three fits.
It gives a useful rule for avoiding repetition of similar
calculations.



