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Mesonic Proper-Field. ~
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A method is presented of treating the meson cloud around the nucleon. The meson cloud is described in
terms of the free 6eld operators which coincide, on the world point on the space-like surface, with the usual
6eld operators in the Heisenberg representation. In the second and the third sections, the relation between
the field and its source on an arbitrary space-like surface is studied. The fourth and 6fth sections are con-
cerned with the method of the phenomenological investigation of the meson cloud in our. formalism and
with the treatment of the problem of the multiple production of mesons and the magnetic moment of the
nucleon-meson system. This treatment of the multiple production of mesons is shown to be the covariant
generalization of Sloch-Nordsiecks' method for the multiple production of low energy photons.

l. INTRODUCTION
' "T is well known that the meson theory, based on the
~ ~ quantum Geld theory, has been a foundation for the
study of models'of elementary particles, namely the
kinds of actual particles and their mutual interactions.
The experimental evidence of the creation of x-mcsons
by nucleon-nucleon or 7-nucleon collisions seems to
aGord testimony of the existence of the meson GcM
interacting with the nucleon. This meson Geld gives the
CGect of the Geld reaction on the nucleon. Some of the
difhculties in meson theory have been xesolvcd by
Inodlfy1ng thc IIlodcl 1nto a two-nlcson theory& but thc
problem of the GeM reaction still remains an important
proMem to be investigated.

In quantum electrodynamics the problem of the
Geld reaction has been studied ln detail 1n Tomonaga-
Schwinger's covariant formalism, and it has become
clear that the effect of the Geld reaction plays an in-
dispensable role in the explanation of experimental
results (Lamb-Retherford-shift, etc.).

In the Geld of the meson theory not only are there
many proMems which cannot be solved by rcnormaliza-
tion but, also vaI'ious 1csults depend on thc method of
treating divergences. ' This is probably due to the

~The contents of this paper were briefly reported in Prog.
Theoret. Phys. 6, 426, 628 (195j.), but the publication of the
paper has been delayed,' For example, the C-meson introduced by Sakata in order to
construct a stable electron model does not show any observable
effects in the region of quantum electrodynamics, but it does have
an observable effect in the case of heavy particles. S. Sakata and
H. Umezawa, Prog. Theoret. Phys. 5, 682 (1950).

meson having a heavier mass than the electron, the
coupling between nucleon and meson not being in-
variably weak, the meson cloud having a greater singu-
larity in the vicinity of a nucleon, and so on. Therefore,
in the meson theory, it is probable that the "structure"
of the clenlentary particle will present a problem in the
investigation of its model, and that one of the most
important problems 1n thc theory of thc structure
of elementary particles may consist in the clariGcation
of the relation between the nucleon and the meson Geld

(meson cloud) attached. to it.
In this respect, Heisenberg' has attempted, using the

results of Bloch and Nordsieck, ' to consider the spec-
trum of multiple production of mesons as the difference
between the proper Gelds of the nucleon as it is and as
it should be after the scattering process; and further he
has assumed that:

(I) the "spectrum" of meson cloud can be obtained.

on the classical basis, and

(II) the probability of the emission of mesons is sub-

ject to the Poisson distribution.
In this paper we shall attempt a general formulation

of the quantum theoretical treatment of the meson

cloud. To this end we introduce an operator which

denotes the "spectru. m" of the meson Geld around a
nucleon, i.e., the meson cloud, Without making any re-
strictions on the magnitude of the coupling strength,

' W. Heisenberg, Z. Pbysik 161, 333 (1936); 113,61 (1939).' F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 I'1937).
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the discussions are developed exactly by a method based
on the quantum theory.

To express thIS IDcson spcctruID 1n terms of tlIDc-
dependent operators of the meson 6eld, we shaH use the
Hciscnbcxg representation. The various characteristics
of the meson cloud will be discussed in Secs. 2, 3,
and 4. The discussion of the relation between the
meson cloud and certain phenomena (the multiple pro-
duction of mesons and the magnetic moment of nu-
cleons) is given in Sec. 5.

This trcatIDcnt of the IDultlplc ploductlon of IDcsons
is the covariant generalization of Bloch-Nordsiecks'
method for the multiple production of low energy
photons (and so of Heisenberg's semiclassical method).

A detailed consideration of thc spectrum, i.e., com-
paring the various theoretical spectra with experimental
results and looking for their actual forms suitable to
the explanation of the latter, ctc., are problems for
further investigation.

2. SPECTRUM OF THE MESON FIELD4

In this paper we shall discuss, for simplicity, a zero-
spln Incson 6eldq l.c.

q
a scalaI' ox' pscudoscalax' Md.

Thc LRgI'RIlgc fuIlctlon (111HclscIlbcl'g I'cpl'cscIltR'tioll)
is given by

I:4' (x) 4-'(x')7+= —sS-t (x—x')

I U;„"(x),U;:(x')7=@„,a(x—x').

~„,(x—x') =-,'{1+.(x, x') I ~(x—*'),

S„,4(x—x') = -', I 1+4(x, x') I S(x—x'),

+1 for a (x))a'(x'),
e(x, x') =

—1 for a (x)(a'(x').

(2 &)

A given free meson field U~(x) can be decomposed
into the positive frequency part +Ur(x) and the nega-
tive frequency part UI(x) in the same way as in
Schwinger's paper. s The Fourier components of Ug(x),
are introduced in

Ur(x) = U (k)8(k'+ s') e'"a*~d'k (2.g)

where U; "(x) and f;,(x) are incoming fields which co-
incide in the infinite past with U"(x) and f(x), respec-
tively, and satisfy respective homogeneous free 6eM
equations. Therefore, they satisfy thc following corn-
mutation relations:

(2 1)

where I. , I. are the free parts of the Lagrange densities
of the meson and the nucleon 6elds, respectively, and
I. " is the interaction part between them, which takes
the following forms:

g"$0"fU" — (scalar type), (2.2)

—g"&0,

"/AU�

"/Bx„(vector type). (2.2')

V is an external potential and P, U" are field operators
of the nucleon and the meson, respectively.

From (2.1) we get the following equations of motion:

and' U(k)( —,k„e„&0)and U(k)(k„e„)0) are written with
+U(k) and U(k), respectively, where e is a unit time-
1lkc vcc'tol. As thc IIIRgllltlidc of 'tllc vector +UI'(k)
i.e., +Ur*(k)+Ur(k), represents the number of mesons
with momentum k„, it is convenient to use the positive
frequency parts of the free meson Gelds U"(x, a), which
coincide with U"(x) of (2.4) on a space-like surface ~,
in order to express the number of mesons on the sur-
face cr From (2..4), we obtain such free meson fields
U"(x, a) as follows:

U"(x a) = U;„"(x)+g")"A(x —x')0 "(x')d4x'. (2.9)

(Q x') U"=g"$0"f—=g"0"(x), —

(v.~/». +I )4 = (g"o"U'+ I')4.—
(2.3) U'(x, a) satisfies the homogeneous free equation for

6xed o and

Firstly we shall consider, for brevity, the case of scalar
coupling, If there is no interaction in the remote past,
the solutions of (23) will be as follows:

Q (x, a), P(x', a)74.= —sS.II(x—x'),

I U"(x, a), U&(x', a)7=i'„,h(x —x').
(2.10)

U"(x) UI "(x)+g" ' 6„4(x—x')0"(x')d4x', (2.4)

it (x) =y;„(x)—)tS...(x—x') Ig 0 U"(x')

+V(x') }f(x')dsx', (2.5)
Throughout this paper natural units are used, i.e.~ A=C=1.

and x a,nd IM represent the rest mass of the meson and the nucleon,
respectively. A~ is the hermite conjugate opera, tor of A. A„ is
Aq, A2„A3 and A4=iAO. In particular we may write xo=t. The
formulation in this section is closely related to Heisenberg' s
theory appearing in Ann. Physik 5, 339 (1931).

U (x/a) =—[U (*,~}7..„.= U (*),

using the notation x/a for x on a. Yang and Feldmsn'
have shown that U"(x, a)' can be obtained by the
unitary transformation S from U"(x, a'):

U"(x, a) =S—'(a, a') U"(x, a' )S(a, a'). (2.12)

It follows from (2.12) that

U"(x/a) = I:S '(a) U -"(x)S(a)7.i., (2
4 J. Schwinger, Phys. Rev. 75, 651 ($49).' G. N. Yang and D. Feldman, Phys. Rev. 79, O'E2 (1950).
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with
S(o)=5(o, —~).

Furthermore, they have shown that

(2.14)
nucleon. "In this case, there is the following relation:

+U;„"(x)) o
——0

and so from (2.18) we have:

+U"(x o) =5 '(o)+U;."(x)5(a),

which can be written, by (2.9), as follows:

(2.16)

U"(x o)=+U "(x)+g" t +A(x—x')0"(x')d'x'

(scalar type), (2.17)

0"(x') = [5-'(o)1t;„(x')0"P;„(x')5(o)],i., (2.17')

i85(e)/bo (x) =H'(x)S(o) (2.15)

and that, for various types of meson fields, H'( x) co-
incides with the interaction Hamiltonian in the inter-
action representation in which U"(x) and P(x) are re-
placed by U;„"(x) and P;„(x), respectively. '

Since U"(x, o.) satisfies the homogeneous free 6eld
equation, we can split it into two parts, and from
(2.12), for the positive frequency part, we get

+Uo"(x, o')) =o=(—i)J" +uo"(x, e; x')) od =x' (2.19)

Operators +U" and +I" have forms of nonlinear inter-
actions containing many operators stilly lpl„y and U;„".
From (2.18) and (2.17) we obtain

(1+o(e, x') )
+u" (x, o; x') =og"

}
— }+6(x—x')0"(x'). (2.20)

Similarly, in the case of the vector coupling (2.2'), we

can obtain the corresponding d-spectrum:

+u"(x, a x')

t'1+o(o, x') i 8+6(x x')—
=ig"

} }
0„"(x') (2.20')

2 ) ax„

where +h(x) is the positive frequency part of h(x).
We call this+U(x, o) "the cloud spectrum in the Heisen-
berg representation" (c-spectrum), by which one can
express the number of mesons at x/o. i

As is evident from the definition, 0(x) denotes the
change of the nucleon spin density due to the inter-
action H' between meson and nucleon. This will be
called, in the following pages, the "effective spin"
(e-spin) of a nucleon in the meson cloud. It describes
the nucleon states in the meson cloud and, therefore,
plays an important role in the treatment of the meson
cloud. Now, we introduce+I as follows:

with

0„"(x)=—[5 '(o)P;„(x)0„"P;„(x)5(o')],i.. (2.20")

0(x) is uniquely determined from +Uo(x, o) as will be
pointed out in Sec. 4.

Now, we shall proceed to de6ne the "e-spin with the
forced vibration 0(x)F[e(x)]" of the nucleon, the
oscillation of which is forced by the effect of its past
processes that is described by F[&r(x)] Such a f.orced
vibration of the nucleon may be possible when the
external disturbance is present. (See Sec. 5.) We shall

define "the c-spectrum of a nucleon with the forced
vibration" as follows:

+U"(x, o)—=+U;.„"(x)+(—z) +u"(x, o; x')d4x'. (2.18) [+U, F}(x,, e)

Here+I is an operator in the Heisenberg representation
and is called the "spectrum density" (d-spectrum) with
respect to x' contributing to the meson field at r.

Equation (2.18) means that the c-spectrum at x/&r is
the sum of the contributions of the d-spectrum at all
the points denoted by x' and +0;„.

In the absence of an external potential we shall
denote 5(o), the e-spin and the spectra by So(o), 0(x),
and (+Uo, +uo), respectively. These spectra are related
to the mesonic proper-6eld.

(+Uo, +uo) are obtained by replacing 5(&r) by So(o)
respectively in (2.16) and (2.17). When we restrict
ourselves to the case in which one nucleon and no
mesons exist in the remote past, the c-spectrum at a
definite time is called the "c-spectrum of the single

7%e can expect that when the interaction between the meson
and the nucleon is switched off on a surface 0, mesons are emitted
according to the spectrum amplitude +U(x/o). This was pointed
out by Professor Tomonaga,

0'

+U;„"(xo)+g")t +A(xo —x)0"(x)F[o (x)]d'x

(scalar coupling), (2.21)

' 8+6(xo—x)
+U;."(xo)+g" 0„"(x)F[o (x)]d'x

BXp
(vector coupling). (2.21')

(2.21), (2.21') also satisfy the homogeneous free equa-
tion of the meson field. From (2.19), we obtain

['UoF }(xo e))-=o

=(—i), t +uo"(xo, ; x)F[ (x)]d'x) =o. (2.22)

More generally we use the notation [AF } for the opera-
tor in which the e-spin 0(x) of the nucleon with the
meson cloud contained in the operator A is replaced
by 0(x)F[o(x)]. Making the surface o. flat, and using
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the relations

0"(x)=— t 0"(k)e" d'k

following forms (making the surface o fiat):

gs „(0"(k)*0"(k)) =i
{X(o)) =i =—

~

=
d'k

2 ~ E(E—kp)'

(scalar coupling}, (2.28)

FLo(x)$= ) F(b)e'"dk,

E= (k'+ s—s)&,

k„—= (ki, ks, ks, kp=skp),

K„=(ki, k—,, k„sK),

(2.23)

we 6nd after some calculations the following relations:

g' p E„Eo
{ill'( )) = =— (0„"(k)"0„"(k)) = d'k

urn=0 2 E(E kp)s
" " m=0

(vector coupling), (2.2g')

which implicitly depend on 0 through the variable ko.
Finally we will examine the relation between S(o)

and Sp{o),when an external fieM PVf is present. When
we denote S{o)as follows as the power series of V(x):

g t. 0"(k)F(b)
3'Up "F}(xp, a) =+U;."(xo)+- "~

2~ KP{k)+kj

S(o)=Sp(o)+Sr(o)+

then it is easily seen that

(2.29)

e'~~pe'isis'+Pi'd'kdb (scalar coupling), (2.24)

g p(iE„)0„"(k)F(b)
+Up"F}(xo a)=+U "( )+- '

2& KP(k)+bj
Xe'x'pe'&'&p&+'&'d'kdb (vector coupling), (2.24')

where 3 is the time of the Rat surface 0. and

b(k) —=kp —E. (2.25}

Here, let us introduce the number operator of mesons.
Since U(xp, o) satisfies the homogeneous free field equa-
tion, the "number operator" X(o) of this meson field

on the surface cr is defined as follows:

2 f 8+U "(x, o.)
S"(o)—=—

~ (+U(x, o))* da„
0 BXp,

~Ã."(k)d'k. (2.27)

Using (2.26) and (2.26'), the expectation value of

(2.27) for the state of a nucleon can be written in the

As seen in (2.24) and (2.24'), kp is the energy transfer
on 0 of the nucleon with the meson cloud, and so

0(ir, kp) and b(k) depend on the state of the nucleon
on the surface o through the variable kp. Now, +Up" (xp, o)
can be obtained as the particular case of (2.24), (2.24')
in which F(x)= I and. so F(b) = 8(b). It will then be

g l. 0"(k)
+Up"(xp o) =+U; "(xp)—— '

2& E(E kp)—
Xe'x*pe "x "&'d'k (scalar coupling), (2.26)

ol
g t.sEA"(k)

+Up"(xp, o) =+U; "(xp)——
I

2& E(E kp)—
Xe'x Pe 'lx "»'d'k (vector coupling). (2.26')

V(o; x/o')
—= sL&+e(a, x)3Sp '(a')lt'-(x) V(x)4'-(x)Sp(a') (2 3~)

is the external disturbance acting on the nucleon with
the meson cloud. Using these relations, we can obtain
the connection between+U"(x, o) and+Up"(x, o).

Here we remark that for the state 0'0 in which there
exist one nucleon and no mesons, we have the relation

Sp(~)+p='. +p, (2.32)

(where the notation =.
'

means the equality of both
sides except for a constant phase factor). under the
assumption that the interaction between the meson and
the nucleon is adiabatically switched on and switched
off at o = —~ and o =+~, respectively. '$

In our formalism which constantly makes use of the
Heisenberg operator, the transition probabilities are

' x and p are the masses of the bare meson and the bare nucleon
respectively, and so they diGer from the observable masses ~,b
aild gob'.

~=&ob ~prsq P =gob ~n.

b„and 5 are the self-energies of a nucleon and a meson, re-
spectively, which are obtained in Sec. 3. Their values are in-
finite in the usual quantum field theory. Masses appearing in the
6-functions and the spectrum +I are not (I~,b, p b) but (x, p) in
the present formalism, which divers from the usual renormaliza-
tion formalism in which masses appearing in the 6-functions are
(It,b, p,b), and in which (8, 8 ) appears in the interaction terms.
Considering the success of the usual mass renormalization in per-
turbation procedure, it is expected that the (5, 5 ) of the (g, p)
appearing in the 6-functions cancels the inhnities which originate
from the self-energies, although a general proof independent of the
perturbation procedure has not yet been given. If so, the infinities
of the constant phase factor in (2.32) will be calcelled. Such a
renormalization procedure with the use of (5, 8 ) in the d-
functions is now being investigated.

f iVoip added in, proof This problem wi.—ll be discussed in de-
tail by H. Umezawa and S. Kamefuchi, Prog. Theoret. Phys;
(to be published).

S„(o)=Sp(o) t dx, dxs dx„(—s)J„ J„
X V(o, x,/o. ,)V(oi, xs/os) V(o i, x /a ), (2.30)
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obtained in the following way. In general, the state of
the system can be represented by the numbers m&, e2, ~ ~ ~

of the mesons with the momenta k~, k2, . Then, the
average number of mesons is given by

E(o)= &i I 1V(o) li)
=E&plS '(o)lv&&vlS(o)if@'-(o, v)

with

1V; (o) = —2zJ +U; *(x)LB+U; (x)/Bx„jdo„

and
&v'IE;. (o) Iv)=E;.(o, v')8„, ,

.

because E;„(o) is diagonal in this representation. The
coeKcient I(vlS(o) Ip)l' of X; (o., v) in (2.33) is to be
interpreted as the probability that the state on the
surface 0- is found in e. Thus, we And that the transition
matrix between the states i and v is given by

&v I S&o) I
p). (2.34)

3. RELATION BETWEEN THE MESONIC
PROPER-FIELD AND THE SPECTRUM

We shall discuss in more detail the relation between
the mesonic proper-6eld and the c-spectrum as de6ned
above.

First, we consider intuitively the energy of the inter-
acting meson and nucleon to be composed of the fol-
lowing three parts:

(1) The kinetic energy E of the free meson 6eld
(meson cloud) which is given by

t- 8+U*(x, o) 8+U(x, o)
E (o')=

~&i

8+U*(x, o) 8+U(x, o.)

+~'+U*(x, o)+U(x, o) dv
x/a.

Taking account of the properties +U; ) p
—-0, we see

that the term U;„(x) in U(x, o) does not contribute to
E""(o) for the state %(m=0). From (3.3), we obtain,
by means of commutability of O(x) and +U(x, o) for

t g'0*(k)O(k)
(Exxn (o)) — f d 4$

X(E—kp) „p
(scalar coupling). (3.3")

(3) The kinetic-energy E"(o) of a free nucleon
P(x, o), which is

8
E"(o)= I) y(x, o)p, P(x, o)

~&i

+pP(x, o)P(x, o.) dv, (3.4)
z/|r

where f(x, o) =S '(o)P;„(x)S(o) and g(x, o.) satisfies
the individual free field equations.

We shall 6rst discuss, under the approximation of
Bloch-. Nordsieck, the total energy obtained by the
above intuitional consideration. The approximation
tha, t cr-spin and ~-spin matrices are regarded as c-
number unit vectors and O(k) is treated as the change
of these classical vectors corresponds to the treat-
ment of Bloch-Nordsieck' and Lewis-Oppenheimer-
Wouthuysen. '

In this case it is easily seen from (2.23) and (2.24)
that ko is equal to the energy transfer Ey Eq of the
nucleon. Introducing the nucleon mean velocity v
= (vv+ v, )/2, as in the Bloch-Nordsieck paper, we may
write

kp Ep E,= (v——, y ——q) = (v. k),

and, therefore,

1 fig(qlo(k) I p) IP

~(o) —
~l dk JfE(k)dpk

2" X(E—(v k))'
ES, k d'k (3.2)

(scalar coupling). (3.5)
Thus, we obtain

(2) The interaction energy E "between a nucleon,
the meson cloud +U(x, o), and the fluctuation field 1 ) lg(qlo(k)lp)l'

U(x, o), which, taking account of the Hermitian char- E (o) —
~ d'k (scalar coupling). (3.6)

aeter of 0(x), is given' by 2& (E (v k))'—

fE""(o)= g O„(x) I+U(x, o)++U*(x, o) I dv
J

1 zlg(ql o(k)l 1)l'
(vk)dk. (3.7)

2~ I (E (v/k))'—g f—o-*, '(x)O,"(x)dx ),
z/a

&vector coupling).
Lewis, Oppenheimer, and Wouthuysen, Phys. Rev, 73, 127

(3.3') @948),

f Now, in the nonrelativistic and classical approxima-
E""(o)= g, O(x) I+U(x, o)++U*(x, a) }dv tion, as the nucleon suGers the recoil —k from the

meson of momentum k, we obtain the following lanetic
(scalar coupling), (3.3) energy:

E"(o.) —Jf(v k)$(k)dk
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Adding to this the interaction energy E""(o) and free
meson energy E (o), the total energy E(o) will be as
follows:

I g(p+110(l ) I p) IE—EtL+~+Ets tl- dk
2" It(E —(v lr))

(scalar coupling). (3.8)

Equation (3.8) agrees exactly with the self-energy ob-
tained by Bloch-Nordsieck' and Pauli-Fierz" by a
canonical transformation.

It cart easily be seen that the energy of the mesort
rtttcleort system is given exactly by E=E"+E"+E".

The total energy of the meson-nucleon system is, in
the Heisenberg representation,

(vector coupling), (3.11)

1 8 8
T«"(x)=- 4(x)V 4(x)+4 (x)y. 0 (*),

2 BS4 854

1 cIU"(x) BU"(x)
I."= =— +s'U" (x) U"(x)

2 8sp Bxp

(3.12)

(3.13)

cj U"(x) cjU"(x)
+L"(x)

BS4 8$4
(scalar coupling), (3.10)

44 (x)=' (AU"(x) q BU"(x)
+g"il'04"~

I
+I."(x)

BX4 I ctx4

(x)dv — T m(x)dv ~ T n(x)dv (3 9) On the other hand, the canonical transformation S(o.)
requires the following replacement:

BU(x, o)-

it U(x/rr) Bx„

BU(x, o)
+rt„e,g(x, o)0,$(x, o)

BXp

(scalar coupling),

(vector coupling),

(3.14)

(vector coupling).

cIP(x/o) et/(x, o)gm„(re. )U(x, o)OiP(x, o)j,t (scalar coupling),
+

8$lt 8XP BU(x, o)
grt„(ny) Op((x, o)

(3.15)

From (3.14) and (3.15), it is clear that —
I J'T44" (x)dv}

is equal to E""+E".Using the zero-point energy Ep,
it is easily shown that

field operators U and U* can also be treated in a
similar manner.

+U+ (positive frequency parts of & charged meson
fields U+(xp, a)) are introduced as follows:

(3.16)
where

Ep = s~ —+a(x—x')
Bx4~

—
I T44"(x)dv} =E +Ep,

(3 17)
U (xsam 0'):+Uj~ (xp)+ ( $)~~ +I (xp~ 0' i x)d x (3 18)„„'=2J

If the zero-point energy is subtracted by the vacuum-
subtraction method, J'T44(x)dv—, (3.9), coincides with
E +E"+E""obtained by intuitional consideration. "
The fact that we must not neglect E "means that the
cloud and the nucleon cannot be considered separately.
(The usual intuitive picture of the meson cloud is not
valid in this sense. )

It is noteworthy that E and E " are determined
only by the c-spectrum, since 0(x) is calculated from a
given spectrum +U(x, o) as shown in the next section.

So far we have considered only the real field operator
+U"(x, o), but the charged meson field with complex

' W. Pauli and M. Fierz, Nuovo cimento 15, No. 3 (1938).
"Thus, strictly speaking, in order to determine the binding

energy of the stationary state of the A nucleons system, we must
take into account not only the kinetic energy 8"(A) of the A
nucleons and the interaction energy E "(A), but also the kinetic
energy Z (A) of the meson cloud,

When the interaction is of the form g($0+PU
+gO PU*), we get

+u+( xpo/; x) =ig+A„t(xp x)0 (x),

+Q (xp/o. ; x) =ig+dl, .i(xp —x)0+(x).

4. AN EXAMPLE OF THE SPECTRUM

(3.19)

Since it is very difficult actually to calculate the
exact c-spectrum from the present quantum field theory,
we must solve the problem by using suitable methods
of approximation in various cases.

Here we shall give an example in which the d-

spectrum and the e-spin of a nucleon in the meson cloud
can be obtained from the given c-spectrum.

Let us consider the pseudoscalar meson with pseudo-
vgctor coupling under the strong coupling approxima-



tion. In this case the interaction is given by.'

I.;.= —g( +U+ ~-U*+2-~.P)D(*), (4.1)

in the meson cloud are uniquely determined by the
following relations:

F(k)= t D(x)e—'~'dv (4.2)

where D(x) is a spherical symmetric function repre-
senting the extended source. The I'ourier component of
D(x) is

go(*)= Cl —")Up(x/o)

(scalar coupling)

g—BO„( x)/8 x„=~—z') Up(x/o)

(vector coupling)„'

(4 7)

and if we use ro, as the radius of the source, then we
may write as follows:

F(k) =1 for k 1/(4s)'rp,
)

F(k) =0 for k~ 1/(4n-)'r p

(4 3)

Under the condition of the strong coupling (zg))rpe,
rp~&&1) we get in the zeroth-order approximation the
following meson field:"

U+(x/o)}„=p——(g/Ss. )(e'+ie') gr adK( x)e
'kp'

U'(x/o) } p
——(g/4r2l) e' gradE(x) e '"' (4 4)

where

E{x)= "D(x')expI —K[r—r'( I/[r —r'~ dv.

We can obtain the source 0(x) by means of (4.7):
e'+ie'

I

(K'—kp') dk '
F(k) eikpxp

2K (2.)
0+(x)) p=—

(4.5)
e'

r (E'—kp') dk
OP(x) } I F(k) erk~z~

2K (2 )

where e'(i= 1, 2, 3) is such a q-number as to make the
interaction Hamiltonian diagonal.

+Up(x, rr) can be obtained from (2.26') as follows:

+Up+(x, o)) p

i )(e'Wie', k) (K'—kp') F(k)

2 " 2 E' 2K(K—kp)

+Up {x,o) can be determined by means of (2.26), (2.26'),
and the Fourier representation of 0(x) and 0„(x).Such
+Up(x, o) . is obtained by replacing exp(ikp3) aild.

k& exp(ikpi) in the Fourier repres'entation of U(x/cr) by
(E'—kp')/2K(K —kp) exp fiExp —i(E—kp)iI (for the
scalar coupling case) and K„(E'—kp')/2E'(K —kp).exp IiExp —i(K—kp)iI (for the vector coupling case),
respectively, where t is the time on the Bat surface 0.

5. TREATMENT OF SOME PHENOMENA
BY THE SPECTRUM

It is, of course, not possible to observe directly the
meson cloud, and so its physical properties must be
found in the correlated phenomena. In this connection
we have considered, in Sec. 3, the self-energy of the
nucleon, which is rather an inadequate phenomenon
for our consideration in spite of its immediate relation
to the cloud, since its contribution is already contained
in the experimental mass. To Gnd out the nature of the
proper 6eld experimentally, therefore, we must put it
under the disturbance of external 6elds. Vfe may take
up here the multiple production of mesons and the
anomalous magnetic moment of the nucleon, discuss
the relations between the spectrum of the proper 6eld
and these two phenomena, and re-examine along these
lines the various theoretical results so far presented.

(1) Multiple Production of Mesons (Covariant
Generalization of the Bloch-Nordsieck

Method)"

The process of the production of mesons is described
by the transition from the mesonic vacuum state %0
to the state %(e) with m mesons. Introducing an operator

W"(xp)—= L+U (x )]"/ei" (5 1)

+Up'(x, o)) p

y eiX~x~+t', (K—kP) t0

(2s)'
(4.6)

the state %(rrp= n) is given by W„*(xp)+p. (Taking into
account the change of the normalization factor"
II;(2E;) in (5.8)).

I
(e', k) (K' —kpP) F(k)

2 " 2& E' 2E(K—kp)

y esXpap+i(X —k0) to

(2pr)'.

Thus, if the meson field Up(x/o) is obtained, by
whatever means it may be, the e-spins of the nucleon

~%. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942).

"After completion of the work, we have received Phil. Mag.
42, 244 (1951) in which W. Thirring and B. Touschek describe a
method of treatment of this problem, similar to the method of
this paper.

"P(kq, ~ ~, h„), in which there are e mesons with momenta
h;(i= 1, ~ ~, I) is equivalent, apart from the constant phase factor
exp(f~kix0) (x0 ls a given space-time point) i to

(ki, ~ ~, t„i1I;(2E;)&W(xp)*%'p.

This fact is taken into consideration when we use (S.i) and (5.8)
below.

» Of course, the Fourier transformation of W"(x0) with respect
to x0 corresponds to the creation operators of 6nal mesons with
the given momenta kl, ~ ~, k .
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Then, the transition matrix element for the produc-
tion of e mesons on the surface 0 is equivalent to the

,following matrix element between 4'p* and +p. [See
(2.34)j:

S"(xp/o) from T:

S"(sp/a) = (—i)"+' dxp dx„dydx„+&

S"(xp/o) =(W"(xp)S(o)) p.

Ke have the following relation:

(5 2)
Xdxgg+up(sp/O' I sy)+up(xpl 0'g i xp) ' ' '

X+up(xp, r y
' x )V(o'; y)+up(xp, 0'p' x +y) ' ' '

i Sp '(o)W"(xp)S(a)
ba(x)

=+up(xp, a', *)Sp '(o)W"-'(xp)S(a)
X+up(*p, a. i, x.), (5.5)

m=o

where o' is a certain surface later than o, V(o'; x) is

+V(a' ~ x)S —&(a)W~(x )S(a) (5 3) where we have eliminated Sp(pp) by the use of the
relation (2.32). By mes, ns of (2.22), we obtain, there-
fore, from (5.5),

Sp '(o) W"(xp)S(a))

oo m2 a

P ~ P I dx)
j=0 my=0 m;=0J

Xdxm&dyzdxmz+1' ' 'de&'dy&dxmj+1' ' 'dx&

up(xp& a'
& xy) up(xp& ag

& xp) ' ' ' up(sp, am' —1; xmas)

X V(omz& y&)+up(xp& ap&
&

smz+1)

X+up(*p, om; —1; xm, ) V(am,", y, )"up(xp, oa, , xm, +1)

X+up(xp, o. , ; x„)) p. (5.3')

p {&+p(o, x) }LSo '(o)4'-(x) V(x)4 -(x)Sp(a) j*/'

V(o', x) means the external interaction acting on the
nucleon accompanied by the meson cloud.

The solution of (5.3), which ha, s the zero initial value
for o = —~ (u) 0), is given as follows:

S (xp/~)

2 (—i)""[('f7o)"V(+f7o)"-}(x./ ), (5 6)
m=0 m=0

where we have used the notation [A ~Ap A „}
—=[A~[Ap[ [A~q, A }} }. Equations (5.5) and
(5.6) show that the production of mesons is described

by the iteration of the spectra, the vibration of which is
influenced by the effect of the meson-production in
the preceding processes. Equation (5.5) shows that
+up(xp/o' x ) has a physical meaning which may corre-
spond to that of Heisenberg's q-matrix. "Moreover, we

may say that (5.6) is the quantum theoretical relation
which corresponds to the Heisenberg's classical treat-
ment of the multiple production of mesons4 based on
the classical meson spectrum which has been brieQy
explained in Sec. 1.

The probability that e mesons are produced is given

by

This solution can be easily obtained by the following
consideration: From (5.3), we can get"

dw„= {g(2E,dk, ) } ~
S(k~, , k„)

l

', (5.7)

i T= {a+u(xp, o'; X)+V(o', X) }T,
bo(x)

T=Q u"Sp '(o.)W"(sp)S(o.)),
n=0

T(o +~)= l. —

(5.4)

Thus, we get Sp '(o)W"S(a) as the uth-order term
with respect to a+up(xp, o. ; x) in T. We may also see,
from (5.4), that T has the form of the S-matrix with
the interaction @+up+ V. Of course, we can. see directly,
without using (5.4), that (5.3') satisfies Eq. (5.3).Thus,
when we restrict ourselves to the approximation of the
6rst order with respect to V(x) (though we can also
treat similarly the case of the higher order), we obtain

s"(sp/~) =— s(kg, , k„)e'z"*dkg dk. , (5.8)
J

4(y) V(y)4 (y) —= o(f)e""d'i (5.9)

where S(kq, , k„) is the matrix element of S"(xp/ pp)

responsible for the process under consideration.
Equations (5.5), (5.7), and (5.8) will afford a starting-

point for our discussion of the multiple production of
mesons. This is an exact relation obtained by the quan-
tum 6eld theory and is valid for any magnitude of the
coupling strength between meson and nucleon fields.

Now, we shall investigate the relation (5.5) in detail.
We introduce p(l) as follows:

"a is a constant introduced, from the dimensional consideration. "W. Heisenberg, Z. Physik 120, 673 (1943}.
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Then, using (2.24) and (2.24'), we obtain, from (5.6):
(1, ~ e}S(k„., it„) = II P )& g (0(k )0(k ) 0(k.)p(l)0(k.~,) 0(k ))

i=i (2K;) a =0 (perm)

(—1)" b(bi+ .+b„+lp)d4l
X (5.10)

b~ (b,+i+ . +b„)(b,+bi+ +b,) (bi+ b2) bi

(j., ~ ~ ~, ~}

where P means the summation over all permuta-
(perm}

tions of the group (ili, ~, lt ) and b;—=b(k,). From
(5.9) it is seen that l„=(I, ilp) is the energy-momentum
transfer of the nucleon accompanying the meson cloud
during the scattering process by the external potential
I"(y).

In (5.10), 0(k) is defined by

0(k) —=
0(k) (scalar coupling), (5.11)

iK„O„(k) (vector coupling). (5.12)

Equation (5.10) gives the intuitive picture of the
multiple production of mesons: the meson-production
is caused by the oscillation of the e-spin of the nucleon
with the meson cloud in the external potential. Now,
in order to compare the exact formulas (5.5) and (5.10)
with the approximate result of Bloch and Nordsieck,
we examine (5.10) under the following conditions, which
are satisfied in the Bloch-Nordsieck case:

(1) 0(k,)(i=1, 2, , ii) and p(l) are commutable
with one another.

(2) The nucleon with the meson cloud before and
after the scattering due to the external potential p(l)
can be assumed to be in the states ( )" and ( )',
respectively. We denote 0(k), b(k) in the states ( )'
and ( )" as 0(k)', b(k)', 0(k)", and b(k)", respectively.

Under these approximations it is shown below that
mesons are produced according to the Poisson dis-

tribution.
In rewriting (5.10) it is convenient to use the fol-

lowing relation:

(1.2. '. 5)
1/bi(bi+br) (bi+ +b.)

(perm)

= 1/bib' b„) (5.13)

and so we obtain

~
~ ~ ~

~ ~ ~ ~ ~ ~

(i, 2, ",~) 0(k,)' 0(k.)'p(l)0(k~, )" 0(k. ,)"0(k.)"(—1)"—.

~ =0 t - i b, (b, +b, )'(h'+ '+b ')(b +', +. +. ) .)"() ,„""+)")b")„„,
0(ki)' .0(k„)' (0(ki) "0(k,)' 0(k„') ) (O(ki) "0(kg)"0(ki)' 0(k„)'

~ ~ ~

bg'b2' . .b„' E bg"b2' b„' by"bg" ba' ~ b„'

0(ki) "0(ki)". 0(k )"
+ +(—1)" p(l) (5 14)

b /lb II
b

fl

where

b' b
II

b

0(k;) 0(k;)' 0(k;)"
(5.16)

g' 1 p 0(k) y
'

»(1)-=-—
I

~
l
=~(»' —&(k)" (5»)

2 K E b(k) )
In (5.18) the three-fold integration in momentum space
is to be performed in such a way as to satisfy the energy
momentum conservation law. (5.17) and (5.18) show
that the multiple production of mesons is caused by
the change of the state of the nucleon accompanying
the meson cloud (spin, r-spin states, etc.). (5.18),
which has been obtained under the conditions (1) and

(2), agrees with the Bloch-Nor dsieck and Lewis-
Oppenheimer-%outhuysen formulas for multiple pro-

~ dk; ( 0(k,)q'
d -= II l& l l(l)l',

~i 2K, E b;
(5.17)

which is integrated over k, (i=1, 2,
'.

) to give

n

~.=(1/~') ~»(l)dk Ip(l) I', (5.18)

which denotes the momentum distribution of the dif- with
ference of two spectia in states ( )' and ( )", and so is
equivalent to (o,z—r, ),) appearing in Bloch and Nord-
sieck's paper.

Then we obtain from (5.15) and (5.8),
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duction of bosons. In fact, by substituting the approxi-
mate spectra" into (5.19) we can show that in the case
of scalar or pseudoscalar meson ffelds (5.18) gives the
same results as obtained by Lewis, Oppenheimer, and
Wouthuysen" (see Appendix). Therefore, (5.5) and
(5.11), from which (5.18) has been obtained, can be
regarded as the generalized formulas of the Bloch-
Nordsieck result.

According to (5.18), the probability for the produc-
tion of m mesons due to a nucleon (a)-nucleon (f) colli-
sion is found to be, under the conditions (1) and (2)
(Poisson distribution),

(e) 1
I gg (Q)dQ.=o (e.) N. ! J

1 9 ng

I gS,(k)dk . (5.18')

A detailed account of this case, in which the conditions
(1) and (2) (Poisson distribution) are fulfflled, (therela-
tion between the energy spectrum of produced mesons
and the e-spectrum of the meson field around a nucleon' )

will be given in the Appendix.

(2) Magnetic Moment of the Nucleon

The magnetic moment of the nucleon may also be
interpreted as a phenomenon which expresses the
effect of the meson cloud around it."It is obtained by
computing the corrections due to the mesonic inter-
action of the operator

1
M= —

~' Lr&& J]dv,
2~

and for the case of a charged spinless meson Geld, J is
given by J J n+ J m+ J mo

J~"= k&Mv. (1 ~~)4—'

J„~=ie{(8U*/Bx„)U (BU/Bx„) —U*I, (5.20)

J "=—eggO+PU —egPO PU*

p= 1, 2, 3. (vector coupling)

The mesonic correction of the moment M arising
from the mesonic current J is given by

(M")=- LrX( I"(x))]de. (5.21)

"Such an approximation leads to the erroneous nuclear forces,
i.e., the ratio of exchange to ordinary forces becomes very small.
R. Serber and S. M. Danco8, Phys. Rev. 63, 143 (1943).

'9 While, by expressing the charge distribution p around the
nucleon in terms of the spectrum, the problem of neutron-electron
interaction is more easily treated than that of the magnetic mo-
ment, the information obtained from the former is restricted; i.e.,
it gives only the depth of the equivalent square well (symmetric
static part of the cloud).

The external magnetic Geld exerts on the meson cloud
the following effects: (1) the scattering of mesons, and
(2) the pair creation and annihilation of mesons, by
which the current due to the 'meson cloud is disturbed
and then returns to its original stationary state. In a
manner similar to the self-energy case, J can be
written in terms of the free meson Geld, i.e.,

(J„"(x))=ie(BU*(x, o)/8 x„U( xo)
—aU(x, )/ax„U'(x, )), , (5.21)

where the terms U~U+, U~U denote the scatter-
ing effects, and U+ U, +U~U denote the pair
creation and annihilation, respectively. Actually, M
has a nonvanishing value even for the spinless meson,
due to the fact that the positively and negatively
charged parts of the meson cloud have their respective
angular momenta. In the weak coupling theory, for
instance, the perturbation calculations show that the
contribution from M and, M " is of the same order
of magnitude as the nucleon current. "

By the same argument as in the deriva, tion of (3.3),
the magnetic moment due to the current J " is found
to be

(M"")=l~e( ~Lynx(o+(~)o(*, )

—0—
(x) U*(x, o))]de . (5.22)

x/e

It is worth noticing that M and M "can be uniquely
determined in this way by the given e-spectrum+ U(x, o.) .

(M +M"") has the same magnitude but opposite
signs for proton and neutron, due to the different signs
of electric charge of the meson cloud. "Remembering
that the existence of a small difference in the anomalous
magnetic moments of the proton and the neutron has
been experimentally confirmed, we may say that the
nucleon current contributes slightly to its magnetic
moment.

The magnetic moment M" due to the currgnt J" is
determined by the behavior of r3- and o.-spins in the
meson cloud; that is, it is given by the expectation

~' From the Case's results for the anomalous magnetic moment
of the nucleon, the meson cloud is supposed to spread over a con-
siderably wide region around the nucleon. According to Brueckner,
on the contrary, to explain the isotropic angular distribution of the
mesons produced by y-rays it is desirable that the cloud should be
closely bound to the nucleon. In the problem of the meson cloud,
therefore, it is very important to look for a consistent model which
satisfies the above two requirements. Recently, an example of
such a model has been suggested by Y. Fujimoto and H. Miya-
zawa, who attempted to explain the isotropic angular distribution
of produced mesons by assuming the existence of isobar energy
levels of the cloud, an extension of which satisfies the requirement
of the magnetic moment. Y. Fujimoto and H. Miyazawa, Prog.
Theoret. Phys. 5, 1052 (1950).

"This point has been proved, including the cases of higher
order approximation, in the perturbation calculation. Y. Taka-
hashi, Prog. Theoret. Phys. 6, 624 (1951).
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values of"

But, in general, it is not always possible to calculate
5{s(1—rs)y} from a given spectrum. Therefore, we
have to be content with the following intuitive and
rough estimation: From an intuitive model, we shall
estimate M" as follows.

M" (e/2p) P,

where eI' is the average value of the charge of a nucleon
in the meson cloud. Making a transformation (3.14),
(3.15) and calculating in the same way as in the self-

energy case, we get

e = pdv = e 8 U+x, o Bx4+U+x, o.

m=0

—r)+U+(x, o)/Bx4 U+(x, o) I

—{r)
—U—

(x o)/Bx4 +U (x, o)

—r)+U-(x, o)/Bx4
—U—

(x, o)}],(,dv . (5.23)
m=0
'a=a

Further rewriting gives the expression

apparent proton and I'=0 for an apparent neutron
and so M"=0. Here it is to be remembered that, since
(4.5) is merely a leading term in the strong coupling
theory, e does not vanish in the higher approximations.
Therefore, we expect that the next approximation may
give a nonvanishing and small M".2'

APPENDIX

Under the conditions (1) and (2), the relation be-
tween the most probable number of mesons and the
c-spectrum of the meson field around a nucleon can be
obtained from (5.18').

If we make the assumptions

Ed X.(k) =f(a)g(k),
KEXb(k) =f(b)g(k),

(A.1)

where the function f depends on the nucleon variables
only and g on the meson variables only, m„will be
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e =e S+k —S k dk

n

(5 24) w„= pn{/(I, {) (ns{)s
kg=0

The average value of the charge of a nucleon in the
meson cloud is obtained by the relation

rdk
(t'(a))" u(b))"' ' —g(k) (A 2)

& z
eP= eg —e

where e& is the total charge of the nucleon-meson sy
(e& ——e for an apparent proton and e&

——0 for an app
neutron).

For the spectrum (4.5) given in Sec. IV, we can calcu-
late M from (5.21) and obtain the result, for the
system of a nucleon and no meson,

with

dr =f(a)/[J(a)+f(b)], ds=f(b)/[f(a)+f(b)] (A 4)

(5.26) The most probable number n of emitted mesons is
determined by the following relation

(M ) o= —2eg'es/12(mrs),
m=1

[erX es]= es.

(5 25) For the large value of n, the above expression with the
summation over I can be replaced by

stem.
arent (2x)" f(a)+f(b) " {dkw„g(k), (A—.3)

d "1d "2 ~ K

For the spectrum (4.5), we get, from (4.6) and (5.22),

(M"") =o= eg'es/12(4m. rs). (5.27)
n=i

Adding (5.26) to the above expression (5.27) we obtain

(M~"+M~) e
———eg'es/12(mrs) (for (4.5)), (5.28)

which is exactly the result obtained by Pauli and Dan-
coff. Equation (5.28) has opposite signs for proton and
neutron since the vector e3 has opposite signs for them.
For the spectruni (4.5), we find e =0 and P= 1 for an

ss 6{~s(1—rs)y} means 0(x), where 0= z(1 r3)y—

w„+r 27r f(a)+f(b)
I

dk "+'„—g(k)
Ã R d1 dg E

pdk
g(k) 1. (A.5)

~ x
Now, let us consider the case in which the spectrum
+U has the asymptotic form

+U(k)-K&/K'* (A.6)

"In fact, Pauli and Dancoff obtained —ee3/2p for M" (see
reference l2).



UMEZA WA, TAKAHASH I, AND KAMEFUCH I

~dk
(k)&E ZKi &&max

Il'(2 V+3) I"
= (47r). 2nq+sn (A g)

I'(2eg+3e+1)

where e ax is the maximum energy transfer from the
nucleons to the emitted mesons and n will be

f(a)+f(b) pdk
n 2n.

I
—g(k)

d,«d, "~ ~ E
t-dk

)
—g(k) (A.9)

in the high energy region. Then

1V(k) ~ E", g(k) ~ E"+'. (A.7)

Therefore, it follows from Dirichlet's formula that

Recently, Fermi'4 has presented a new theory of the
multiple production of mesons based on statistical con-
siderations. His method consists in assuming that the
meson cloud is so rigidly attached to the nucleon that
an external disturbance is rapidly transferred to the
whole cloud. As a result of this assumption, the proba-
bilities for multiple production of mesons are determined
only by the statistical weight, i.e., the magnitude of
volume in phase space. Fermi's idea is, therefore, essen-
tially different from our theory in which probabilities
are determined essentially by the cloud spectrum itself.
However, the result of his theory is reinterpreted in
terms of the c-spectrum theory in the following way.
Translating his theory into ours, it is easily found that
Fermi's assumption

m 0 volume in phase space

is equivalent, in our theory, to assuming that

iV(k) is independent of E,
When f(u) behaves as

f(a) "(~-*)", (A.10)
i.e.,

from (A.S), (A.9), (A.4), and (A.1), we get the result (A.14)

(2 @+3+@)/(2a+4) for q) (A.15)Q~(e .„) ',(A. 11)
for q= —~3.emax log emaxpl 1.e.)

n~ loge n~ emax )

f(~)" (~-*) '

Under these approximations, the spectrum (p=0,
~
32 g

IIves
~

I

1
From (5.34) and (5.36) we obtain, by means of (5.29),

(A.17)
which agrees with the result obtained by Lewis et al.
in the case of the scalar meson with scalar coupling.
The spectrum (p=0, q= —-,') gives

emax )

which is the result obtained by them in the case of
pseudoscalar meson with pseudovector coupling. Fur-
ther, from the-spectrum

+U(k) =F(k)(e k)/E'(p=0, g= —-', ) (A.12)

obtained in Sec. 4 from the strong coupling theory of
pseudoscalar meson with pseudovector coupling, it
follows

cV(k)dk ~ dk//E, (q= ——,'), (A.18)

we obtain, in high energy region, the following result:

n ~ emax'. (A.19)

which is Fermi's result.
Apart from the above assumption, it may also be

interesting to discuss the statistical probability factor
in connection with its Lorentz invariancy. Assuming
that the number of mesons in the Lorentz invariant
volume element dk/E of phase space is independent of
momentum k, i.e.,

n ~ emax ~ (A.13) F.. Fermi, Prog. Theoret. Phys. 5, 570 (1950).


