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Internal Conversion Angular Correlations*
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It is shown that the angular correlation between a conversion electron and any other radiation emitted
in a double nuclear cascade can be obtained immediately if the corresponding correlation with a p-ray
replacing the conversion electron is known. This latter is known for all cases of practical interest. Speci6cally,
if the correlation function for y-rays and a radiation x is expanded in Legendre polynomials, the correlation
function with a conversion electron replacing the y-ray is obtained by multiplying the coefBcients of each
polynomial P„by a parameter b„. The case of conversion-conversion correlation, in all practical cases, is
obtained from the p.—y correlation by inserting two factors 6„, one for each conversion electron. The coef-
6cients b„are calculated relativistically and numerical results are presented for E-shell conversion for 1.2
values of Z in the range 10 ~& Z ~&96 and transition energies from 0.3 mc2 to 5.0 mc~ for ten multipoles (5 elec-
tric and 5 magnetic). It is pointed out that the present results apply in y-electron correlation if the p is a
mixed multipole but the case in which the conversion transition is mixed is not computed. The angular dis-
tribution functions for electrons in a coulomb field undergoing any type of transition are ob'ained in terms
of the relevant matrix elements by the use of the Green function for the Dirac electron in a coulomb 6eld.
It is also shown that the angular distribution function is obtained from matrix elements based on, not the
scattered wave, but on the time-space reversed scattered wave.

I. INTRODUCTION
'

N the investigation of the angular correlation between
~ ~ two radiations emitted by an excited nucleus in
two successive transitions, the directional correlation
involving emission of internal conversion electrons be-
comes important whenever either or both transitions cor-
respond to large conversion coefficients. Thus, the effect
is of primary interest in heavy nuclei, ' low energy
transitions and/or high order multipoles. ' An essential
restriction does enter from both the experimental and
theoretical points of view in that it is desirable to avoid
cases in which the intermediate state is long-lived.
However, this restriction applies only to the second
transition so that, perhaps more often than- not, the
6rst transition may correspond to large internal con-
version. These remarks apply, of course, only to the
practical application of the results given below. So far
as content of this paper is concerned, application of the
results to correlations between conversion electrons and

any other radiation (including another conversion elec-
tron transition) may be made and, for different radia-
tions, the distinction between the cases in which the
conversion electron is emitted first or second is trivial.
We do make the assumption that the intermediate state

* This paper is based on work performed for the AEC at the
Oak Ridge National Laboratory.

'The restriction to heavy nuclei is not very stringent. Con-
version correlation has been experimentally investigated in ele-
ments as light as Br, L. I. Rusenov and Ye. I. Chuykin, Doklady
Akad. Nauk. U.S.S.R. 68, 1029 (1949); also in Sm, C. M. Fowler
(private communication); Hf'", A. H. Ward and D. Walker,
Nature 163, 168 (1949) and A. Lundly, Phys. Rev. 76, 993 (1949);
Hg"', Walter, Huber, and Zunti, Helv. Phys. Acta 23, 697 (1950)
and O. Huber and F. Humbel, Helv. Phys. Acta, 24, 127 {1951),

2 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79
(1951).References to equations of this, paper will be denoted with
the suSx 1.

'H. Frauenfelder, Phys. Rev. 82, 549 {1951);Aeppli, Bishop,
Frauenfelder, Walter, and Zunti, Phys. Rev. 82, 550 {1951).

is sufficiently short-lived so that hfs and other per-
turbing couplings may be ignored. ' '

Although a number of experimental studies of con-
version correlation have been reported in the literature, '
there had been no adequate theoretical treatment of
the problem whereby the results of the experiments
could be interpreted and used for the purpose of iden-
tifying the transitions involved. Previous work is
con6ned largely to two papers by Gardner. ' In the first
of these Gardner discussed the nonrelativistic treatment
of the conversion-conversion correlation. This was
necessarily confined to electric multipoles and omitted
the contribution to 6nal states involving spin Qip. The
restriction was also made to ejection of s-electrons only
but this restriction is not essential to the nonrelativistic
limit. In the second paper an extension is made to the
conversion-conversion correlation in which one of the
transitions is a pure magnetic, the other a pure electric
multipole and again the initial electronic states are
s-states. In the e'/c' approximation considered in this
reference both Anal states (with and without spin Aip)
enter but essential interference terms between them
do not appear. In any case numerical results are not
given. It is of importance to note that while the error
introduced by the nonrelativistic treatment of the
correlation problem is, in general, much smaller than
that arising in the calculation of the absolute conversion
coefficients (since only ratios of matrix elements are
involved in the former) the dependence of the correla-

' Compare, G. Goertzel, Phys. Rev. 70, 897 {1.946).
5 J. W. Gardner, Proc. Phys. Soc. (London) A62, 763 (1949);

64, 238 (1951).The result for electric multipoles, namely that the
pr~{rS) functions {see Eq. {2) below) are proportional to

~

Fssr s,
where (for the case considered by Gardner) L and M are the
angular momentum quantum numbers of the electron, is also
obtained if the spin is treated in Pauli approximation and a sum
over spins is performed. The essential point here is that the orbital
angular momentum of the electrons corresponds to a good quantum
number. An outline of the formal aspects of the theory was dis-
cussed by M. Fierz, Helv. Phys. Acta 22, 489 (1949).
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tion functions on the multipole index L is also much less
sensitive for the former (for essentially the same reason).
Hence a greater accuracy is required in the correlation
calculation.

A relativistic treatment of the formal aspect of the
problem was given by Ling. ' However, the pertinent
matrix elements were calculated using the scattered
wave function instead of the time-space reversed scat-
tered wave function and, as the following shows (Sec.
III), the latter is the correct procedure. This part of the
problem was treated correctly by Lloyd.

In the following we give a completely relativistic
treatment of the conversion correlation problem. Since
the pertinent matrix elements (Eqs. (41) and (43)
below) are exactly those which arise in the conversion
coefficient calculation' the numerical results are given
for just those cases previously considered. In particular,
we consider conversion from the E-shell only (without
screening) although the extension to other shells is
almost immediate once numerical values for the matrix
elements become available. It is planned to make this
extension in the near future. The form in which the
numerical results are given is as follows: If the cor-
relation between a p-ray and any other radiation x is
known and is expressed as an expansion in Legendre
polynomials, the correlation with a conversion electron
replacing the 7-ray is obtained by multiplying the
coeKcients of each Legendre polynomial P,(cos8) by a
coeflicient b, (Z, k, x, 1.) (Eqs. (46) and (48)) where Z,
k are as in reference 2, m = e, m refers to the parity
(electric, magnetic respectively) and the multipole is a
(pure) 2n pole. For conversion-conversion correlation
(Sec. V(c)) we multiply the coeKcients in the p —p
correlation function' by b, (Z, k&, 7rt, L,i)&.(Z, 4, ~~, L2).
The prescription just given also applies when the
x-transition is a mixed one [Sec. V(e)] involving super-
position of diferent angular momenta. Corresponding
results for the case in which the conversion transition
is mixed~ could also be obtained from the formalism
given below but we do not give any numerical results
for this case.

As indicated, and as would be expected, the con-
version correlation is not only parity dependent but is
also dependent on the physical parameters Z, k. This
is in contrast to the y —y correlation, for example, and
so far as physical parameter dependence is concerned,
it is in contrast to the nonrelativistic electric multipole
conversion correlation. ' ' The dependence on physical
parameters enters here because of the presence of more
than one final state (there are two for initial electron
angular momentum j=-', ) and the fact that these final
states are physically different (linearly independent
radial functions). The dependence on physical param-
eters, and on parity as well, is a property of the angular

D. S. Ling, Ph.D. dissertation (University of Michigan, 1948).' S. P. Lloyd, private communication.
D. R. Hamilton, Phys. Rev. 58, 122 (1940). See also D. S.

Ling and D. L. Falko8, Phys. Rev. 76, 1639 (1949); W. Arnold,
Phys. Rev. 80, 34 (1950).

distribution functions Pr~(t't) [Eqs. (2) and (25)]
which describe a Dirac electron undergoing a transition
in a (coulomb) field between specified states and cor-
responding to a prescribed direction of motion at large
distances. Up to a certain point [Eqs. (25) and (26)],
the formal treatment given below applies as well to the
angular distribution function for a number of other
problems: emission of P-particles with coulomb effects
included, ejection of photoelectrons, pair formation, etc.

II. GENERAL FORMALISM

We consider a double cascade in which a nucleus
makes a transition from a state of angular momentum
J» to an intermediate state J emitting radiation j. of
angular momentum Lj and then emits radiation 2 of
angular momentum L2 in going to a 6nal state J2. This
cascade is designated by A(I.t)J(1.2)J2. The components
of J», L», J, L2, J2 on an arbitrary quantization axis are
m», M», m, M2, m2 respectively with the usual conser-
vation rules applying. Selecting the direction of the
second radiation as the quantization axis, and with 8
denoting the angle between radiations, the angular cor-
relation function can be written in the form'

gl(tie) —Q [C M Julia J]2p My'(y)
m]mm2

X[C~m, ~~2J'2]'p in'
&(0) (1)

where Cm»M»~'~'~ is the vector addition coeKcient"
and Fr.,~'(t't) is the angular distribution function for
radiation i. It will be noted that the dependence on J»,
J, J2 is entirely contained in the C-coefdcients. Since we
are interested only in the angular dependence of 8',
multiplicative factors in the Fl,~ independent of the
magnetic quantum numbers are irrelevant and will be
discarded, from time to time, in the sequel.

For an electron in a final state described by a wave
function 4'(r, t) the Fr,~ is obtained from the radial
Dirac current per unit solid angle:

with r—+~, arid with a summation over 6nal spins and
an average over initial spins implied. The dagger in Eq.
(2) means hermitian conjugate. For a transition induced

by a time-dependent perturbation Ate '"+Kt*e'"' we
have"

(3)

wherein Xo is the Dirac hamiltonian for an electron in
a coulomb field and we have emitted the conjugate
term, as usual, since it will make no final contribution.
The current in (2) is then calculated from the perturba-
tion solution of (3).

' D. L. Falkoft and G. E. Uhlenbeck, Phys. Rev. ?9, 323 (1950)."E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935), Chapter III. There
denoted by (J&1&m&M~~ X~I&Jml. See Appendix C.

"Throughout we use relativistic units: k=m=c=1. In the
following kmc~ will be the energy released in the nuclear transition.



An alternative, and completely equivalent procedure
ls thc following: Wc lntI'oducc thc foul lcx' tl Rnsfox'IQ

$(E, r) according to

4'(r t) = iP(E r)e ''d—E

then (3) becomes

(Xo—E)P(E, r) = —3'.ig(E—k, r) + X—iiP—,(E;, r) (3a)

where the replacement indicated by the arrow intro-
duces the initial state wave function iP; with total
energy E;, consistent with the perturbation solution to
solution to 6rst order in X',I. Then if the Green function
solution of (3a) is used to obtain the current, the result
is the same as given by Eq. (2)."That is,

F~~(&)= r'(F ~.—4) (2a)
with r—&~.

A. The Green Punctionl3

We wish to solve Eq. (3a), that is

(& I'+a —p+P)4=&8', (s)

where V is a central-field (V= —nZ/r) and the initial
state iP; is specified, by the use of the Green function
for the operator on the left-hand side of (5). The most
convenient procedure is to obtain the free-particle
Green function and then make the appropriate modl-
6cations in the radial functions. Kith

(8+a p+P)G "&(r, r') = b(r —r')I,

where I is the (4&(4) unit matrix, we have

~sul ~-~'l

G&oi(r r ) (E P+ie. 7) (6
4or/r —r'f

In (6) the V' operator acts on r and P= (E' 1)'*. In (6)—
we use the familiar expansion

~iyl r—x'j

while cr-matrices operate in Pauli space. Of course,
ploducts of p- Rnd e-operators imply dlI'cct px'oducts.
In (8)

E= —po(e L+1), L= i—rXV' . (9)

Noting that we can wi'ite tile uiiit iilati'ix iii Et sp-ace ln
the form {Appendix A),

Z Fi"(r)Fi"'(r')I.=Z x."(r)x."(r') (ii)

where x„& is the Pauli central field spinor (Appendix A)
and the sum over a includes only f, —i—1. From (6),
P), (11),and (A11) we obtain for r) r':

Gii"'/(& —1)= &P 2 h—«.)(P&)i«&(P&')x "(r)x " (r')

Gioi i=Going i= —P P S(r)h« „){Pr)

&&i«)(P&')x- "(r)x "(r').

It is very convenient to write Eq. (12) in a form such
that i:ach term (~, p) is expressed in terms of field-free
Dlx'Rc clgcnfunctlons 1Q thc RQgulRl HloIQcntum x'cpx'c-

sentation. These are

(—&S(&)(E—1/E+1) 's«-.) (Pr) x-."(r)&
4."()=l (13)

s«)(P&)x "(r)

Retaining the notation p."for standing waves (spherical
cylinder function si=ji) and using p„l' for outgoing
waves (si= hi) we find by changing a to —ii in the first
column of G&'&, thus simply reordering the terms, the
result for r&r'

To obtain the Green function for the coulomb Geld,
we replace @.& and p„I' by coulomb Md solutions which
differ from {13)only in that si is replaced by Dirac radial
functions with exactly the same normalization ""It
is convenient for comparison purposes and later iden-
tlflca tlon 0'f 1'Rdlal Inatx'lx clcments to usc thc sRIQc
radial functions used before."'These latter diGer by a
factor —S(~)(P(X+1)/or)& from the former. Thus, we
write, in accord with previous notation,

and pi, po are the matrices operating in Dirac (p) space,

(0 iq ~1 0 q

&1 O) &0 —1) ( &f.x-."i—
~."(r)=

l( g„x.~ )'2The proof of this equivalence in the nonrelativistic case is
given by H. A. Bethe, Ann. Physik 4, 443 {1930).The generaliza-
tion to the relativistic case is almost immediate. See E. Greuling
and M. I.. Meets, Phys. Rev. 82, 531 I'1951).

Appendix A contains a discussion of the sign convention and
represents, tiog. used throughout this and subsequent sqctiorls,

for the standing wave solution of thc Dirac coulomb

"M. E. Rose, Phys. Rev. 82, 389 (1951).
@M, E. Rose, Phys. Rev. 51, 484 {1937).

,
= ~P Z hi{Pr)A){P«)I'i"(r) Fi"*(r') (7)

4orlr-r'~

where the order of the arguments in spherical harmonics
is immaterial, and h~, jq are the spherical hankcl func-
tions of the 6rst kind and spherical bessel function
respectively.

(8 1)
n v= pio;l —+- l+pio„p,E/r'{g)

iar r)
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sfvX ."—')

e "(r)= I

& g.x."

per unit solid angle in the radially outward direction for
a speci6c initial state and for large r, is

J'"~ (+)= r'(—4 I I I~.IV)
t'15b&

pp(E —1)&' .
f*( )=—

I I Limj«-)(Pr+A)

pp(E+1) &
'

g (~)= —
I I s(s) Limj«. )(pr+A. ),

(16)

for the outgoing wave solution. Speci6cally, the nor-
malization is such that ~—+~

=s g g s'I ~ ")S(K)S(a')
Klj P f4

X &~'~'13''II1t'&*&~~l&IIA'&

X {S(s)exp{-s'Irs[l()I') —)I(—)I)g}

&&(x""'I~. I x-.")

—S(a')exp {sIs i[l(—x') —l(s)j}

a„=3„(z)—3„(z=0) (16a)

and g„(Z) is the phase defined in reference 15. The
irregular coulomb 6eld solutions are de6ned so that
f„and g, have the asymptotic behavior (16) with j)1+„)
replaced by h~(y„). The de6nltion of 6„ ls unchanged.

Finally, the desired Green function- is, for r&r'

G(r, r') = ~s Q e„~(r)e—„»(r').

The Green function for r&r' is

G(r, r') = ~s Q—e."(r)e„»(r')

but the hermitian conjugate operation applies only to
the spin-angular spinors x+„I'.

4 (r) =
~

«G(r, r') 3('I(r') 1t'(r').

Using Eq. (17) the asymptotic form of )P is

~s Z e'."( )&er""(r') I3CII4'&

B. The Angular Distribution

The solution of (5) which has the required asymptotic
behavior, that of an outgoing wave, is

This represents the angular distribution function for an
jnitial state of speci6c magnetic quantum number, v-,

say. What is eventually required is the average of (22)
over v. However, in order to avoid confusion of notation
m e retain the symbol Ii I,~ for both angular distribution
functions and rely on the context to make the meaning
clear. Also, in Eq. (22) and in the following, the
logarithmic term in the phases d„and 8, can be dropped
since lt ls clear that lt caIlcels out ln the expression for
p M

From Appendix A we find

(x-. "'I
I x.")= —(x ."'I x .")

= —(x""'Ix.")= (x""'I~. l x-.") (»)
and we note that

S(s') exp {-',i).i[l(—K') —l()I)]}
= —S()c) exp {sIs s[l().') l( K)7}— (—24).

Further, we consider a definite magnetic quantum
number, Tv fol' tlM iliitlR1 s'tate IP; so 'tllRt p= p =M+ 7.
Then, averaging over 7,

Pi Si(I')) = —S Q ev(av —av')S(S)

&(exp{,'Ics[l( )—I') l(—x)j&)I—', )if+7
I
3(',

I I )p,.&*

&&& *~+.I3(' l4'&(x" "Ix.™T)
Using the definition (AS), (A1), and Appendix 8 we find

space. Mole explicitly, Eq. (20) lliay be wi'1tteli 1I1 t11e )("Q I(v) I(v')vg t T'v( )v+v —)1+v+v''
form

XW(l(s), l(x'), j, j'; &-',) y„s(cosy)„

— g .'a s(.) (e„ (r')
I
3(., I y, &

I
—SS(s)(E—1)'p-'X „~ exp[ —-,'Tci(l( —s)+1)jqx{

(~+1)'p-:x.' exp[—s~s(~(s)+1)3

The angular distribution function, which is the current

sivj '=
I
a'I —

sv and ~ is a Racah coef-
6Clent

Combining the results (25) and (26) one obtains the
starting point for calculating the angular distribution
functions Fl.~ for any interaction involving an electron
in a coulomb 6eld with the direction of motion speci6ed

"G. Racah, Phys. Rev. 62, 438 (1942); 63, 36'/ (1943).
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asymptotically with reference to an arbitrary axis of
quantization.

III. RELATION TO SCATTERED WAVE

The result (21) for the wave function describing the
outgoing wave has a rather interesting physical inter-
pretation. In fact, we show in this section that the
radial current, summed over spins of initial and final
states, can be calculated from the square modulus of
matrix elements of the perturbation K~ between the
initial state and a "anal" state fr where f~ is not the
scattered wave but is the time and space reversed
scattered wave. Thus, Pi has the asymptotic behavior
of a plane wave plus an iecomieg wave rather than a
plane wave plus an outgoing wave. "This is the point
which was overlooked in previous work. ' "

In order to demonstrate the result just stated we
carry out the sum over p in Eq. (21). Since, as the
Green function (17) shows, the sum in question is of the
form P„x„'(r)x,"t(r'), which is invariant under rota-
tions in spin and conhguration space, we can choose the
direction of r as the quantization axis for the present
purpose. Then since

~."(0)= (I ~ I/4~) *I —S(K)~'+'X-
(27)

=0; pQ%g

we obtain from (21)
ze"'"

and D~ are the Dirac plane wave spinors for the mo-
mentum along the quantization' axis with + and-
corresponding to spin "up, " spin "down, " respectively:

—P/(&+1)
0D+=

0

0
P/(E+ 1) (31)0

If in (30) we write the sum of matrix elements as a
single matrix element, that is

then

y, =&c~lx, iy, )—D,
4+r

(32)

To this we apply the space and time reversal operators
Is (P times space inversion) and Ir (ia2 times complex
conjugation). Then

C'+= —
& &,(4ir

I
li)rle '~" exp[-', riot( «)]—c„.-**,

(33)
,(47rl i~I)'e '~ exp[-', vari(l(~)+1)]C„—l.

We now compare with the scattered wave which has
the asymptotic behavior: plane wave plus outgoing
spherical wave. For a fixed spin direction speci6ed by a

~...=Z.(4-1 I)-:e'"
I

Xexp[-', vari(l(i~) —(o.+-', )(1+S(K))jC„, o=a-,'. (34)

Z(l I/4~)'o""
( )~+l —.C, —~

K

xI&~ 'Iilk')~++&~. 'I ~ill'&~-I (2g) N, t,„g th, t I, I t(,) (S(,) 1) w, ,b„;„
where the spinors A~ are

x~' expl —l~i(~( —~)+1)]
8+1 (29)

—y;lS(~) exp[ ——',vari(l(i~)+1) 7

IrI&P,.'=Q, (4m'~ ~l) '*e '~" exp[i2iri7(a)/C„—l,

IrIsk- '=P„(4~1~I )'e

(35a)

Xexpp7ri(t( i~)+1)—jC„l (35b).

Comparing with (33) we see that
and A is obtained by changing x to z; ' and multi-
plying by S(ic)p3. Since 4+= —IrI&P.,—1, 4 =IrIsp, . (36)

—i exp[ —2iri(l( —ir)+1)=S(i~) exp[ '2'/r2(—l( —)i+~1)j,
and t(ic) = l( i~)+S(K), we can wri—te (28) in the form
4-=4'++4-

ze'""
P(4irl ill)le'~ exp[ ——,'-eral( —~)1

47'.r
x(c.'l~ I &.)D.,

(30)

g(4~I. I)-'e*' exp[——',~i(t(.)+1)j
47t r

x &C.
--:l~,

I p,)D
"This result is well known for the nonrelativistic problem (see

N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions
(Oxford University Press, New York, 1933),p. 258). For noncentral
potentials a proof is given by %. Rarita and J. Schwinger, Phys.
Rev. 59, 556 (1941).

"M. Fuchs, Ph.D. dissertation {University of Michigan, 1951).

Thus, except for a spin reversal, the wave functions
Pi(=4~) which are used in calculating the current are
the time and space reversed scattered wave. For the
current summed over final spins the spin reversal is
irrelevant. However, the eRect of time and space
reversal is to change the sign of the coulomb phase
shifts 8„(Eq. 16(a)) in the final results and this is not an
irrelevant change.

IV. APPLICATION TO K-SHELL INTERNAL
CONVERSION

For the K-shell (or Ir shell, for example) we have
P,=—P i' and r=&-', . The radiation fields in a con-
venient gauge have been given elsewhere. ' Discarding
an irrelevant multiplicative factor ([2/irI-(I.+1)])
throughout, we discuss the magnetic and electric con-
version separately.
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(A) Magnetic Conversion

For a magnetic 2L pole we have

(«@lani"I —1r&=(«pl p, (e LYr, )I —1r)

=iLRp'(x-'l~ LYzMI x-i'&

—R '(x„ l(r LYJ,MI x ')]„(37)
where in the notation of reference 2, Eq. (17i), has
been introduced for the radial matrix elements and the
final state in the E' integrals is described by the single
index «. In (37) L acts on Yr,M only. This latter fact
enables us to conclude that

(x."l~ LY~Mlxi'&= —(x-."I~ LY~Mlx-i'& (38)

(C) The Angular Distribution for X-Shell
Conversion

In terms of the Q-coefficients defined by (41) and (43)
the FL~ may be written formally for either parity.
From (25) and (26)

p M(g) —
& P ( )v+~~ M —v+v—+v'g(«)

KK tV

Xe'&~~ ~'i exp{ ', rri—[l( «'—) t(—«)]}

XL(2i(«) y 1)(2t(«')+1)
I
««'I /x(2 v+1)]'*

L~g7C L$7 C L(K) l(K )v

XW(l(«)l(«') jj', v-,')Q*(«', L, ~)

XQ(«, L, ir) Y„'(cosi7). (44)

However,
2L

YI. x-i'=(4 ) 'Yz, x =(4 ) *Q-CM "'x; +' (40) F (~)=Z(—) Ci—i""CM-M""
V=O

where «=L, L 1, and j—= I«—
I

—-,'. Finally, X (4~(2v+1)) &b.'Y.'(cos8) (45)

(«p I
Ki I

—1r)= s(4~) ~cM l&(«—1) where v takes on only even values (Cppzz" =0 for v odd)
andX (Rp'+R4'), (b„, i+b„,i+,)

zz
Q( L ) (41)

p(p+1) 2L(L+1)
V

2L(L+1)(2L+1)

=L'I Q(I., L, e) I
'W'(L I. I, 'L 'v-')—-——

+(L+1)plQ(-L —1, L, e) lp

XW'(L, L, I.+ '„L+,', v-,')--

Equation (38) together with (A.9) yields
Using (B.3) the sum over r may be performed and with

(x „"Io"LYrMI xi')=(« —1)(x„ I Yr, x,') (39) b, (Z=O)=-,'~I -,'(1+5(«))—
I «I] we obtain for electric

multipoles

where the last factor in the erst equality, contains
Kronecker deltas.

(B) Electric Conversion

Here we evaluate the matrix element

lr&=(«pl pih& i(re p+Lpv )Yl.

+pLY.Mh.
I
-1.) (42)

and the spherical handsel functions, which appear ex-
plicitly, have argument kr. Using

re V=o,(r V+ie rXV)=o.,(a/Br —e L)

Eq. (42) becomes

(«p I
Xi'I —1r)

=iLI R,+R,—R,+R4]„(x„~lY,M
I x, )

—i( +1)(R+R).(x.'I Y Ix-')
=i (4x)'CM, z *''[L(Ri+Rp Rp+.R4)—

—(«+1)(Rp+R4)].(b„,z+8., z i)

—=CM z»Q(«, L, e), (43)

where the notation (13i) has been introduced.

—2L(L+1)ReL(e'~'Q(I-, L, e))*e'~

XQ(—L—1, L, e)]W'(L, L, I.+ ', , L——', ; v-', ). -
45a

The angular distribution function given by (45) differs
from that for emission of electromagnetic radiation'"
only in. the factor b„'(e) and the two become identical
(aside from a trivial normalization factor) when b„'=1.
We normalize to bp'(e) = 1 and using (8.6—8) we obtain
for b„(e)=b,'(e)/bp'(e)

( )
b„(e)= 1+

2L(L,+1)—v(v+ 1)

I L+1+2'.
I

'
X (46)

2L+1L(L+1)+I
T.l'

where

e"'~ LL(Ri+Rp) —(2I+1)Rp—R4]~-z,
(46a)

LRi+Rp+2R4].= z i

' Biedenharn, Arfken, and Rose, Phys. Rev. 83, 586 (1951).
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For magnetic multipoles the allowed ~-values are
I.—, L+ 1. Using (B.4, 5) we find

2L

p M(p) p ( )Mc LLvc LLv

0

X (4x(2v+1)) 'b„(m) Y„(cos8) (47)

and for the b„normalized to bo
——1 we have

We consider the following correlations:

(a) Conversion Ga-mma Correlation

Then in (49b) A„(y—x)—=A„(y—y). The y —y cor-
relation has been quite extensively studied. For the
most practical case that the p-rays are emitted with the
lowest angular momentum allowed by angular mo-
mentum selection rules, that is

v(v+1)
b, (m) =1+

2L(L+ 1)—v(v+1)

L(L+1) i
1—T~

i

'
X

2L+1 L+1+LI2-I'
where

e*"+' (Rg'+ R4')„=i+i
T-= .e"-& (R3'+R4')„

(48)

(48a)

(J,WJ); I.,=1 (J,=J) (50)

Lloyd" has given a tabulation of A„(p—p) for all
transitions up to 2' pole —2' pole. In Lloyd's tabulation
the normalization is Ao= i. For cases not covered by
(50) the A, (y —y) may be obtained for Li&~2, L2& 2
from the tabulation of Falkoff and Uhlenbeck' and of
Hamilton. ' A useful form for W» is (see Appendix B
and reference 19)

It is of interest to recognize that for p-rays, spin ~

particles and for spinless particles as well, the M-de-
pendence of the angular distribution functions, whey.

expanded in Legendre polynomials, is entirely contained
in the vector addition coefficient (—)~Csr sr~~". It is
for this reason that the simple parametrization given by
(45) and (47) is possible. This would not have been
possible if any other expansion, powers of cos'8 say,
had been employed. It is evident, Sec. V, that these
remarks also apply to the angular correlation function
W(8)."

V. THE ANGULAR CORRELATION

A. Special Cases of Conversion Correlation

It is clear from the foregoing that the prescription
given in Sec. I applies; namely, if the Legendre poly-
nomial expansion of the correlation between a y-ray
and a radiation x is

vm

W (g) Q P C Llr lvC L2L2v

XW(JJL,L, ; vJi)W(JJL2L2, vJ2)P„(cos8) (51)

where, with the normalization factor

E= (—)s' ~'(2Li+1)(2L2+1)(2J+1),

the coeKcient of Po is equal to unity. The tabulation of
the coeKcients A„ for cases not covered by (50) ca,n
then be extended considerably using Racah function
tabulation of Biedenharn. "

(b) P-Conversion Correlation

The coeKcients A„(P—y) have been given" for the
five pure P-invariants up through second forbidden
transitions in the approximation Z=O. The case Z40
has been considered in the approximation Z/137' «1 by
Fuchs. ' A calculation without this approximation could
be carried out using the results of Sec. II but this has
not yet been done.

W~, (8)=P A„(7—x)P„(cos8) (49a)
(c) Conversion Conwrsio-n Correlation

then the correlation function for a conversion electron
and radiation x is )see (c) below],

vm

W, ,(6)=Q b„A„(y—x)P„(cosd').

In (49) -', v is the smallest integer of the set L,, L2, J
(or J——,) if J is integer (or half-integer). The order in
which the transitions occur is contained solely in the
coeKcients A „and we observe that the correlation
Ji(Lq) J(Ls)J2 is the same as the correlation J2(+)J(Lq)Jq.
In (49a, b) it is to be understood that the y-ray is a
pure 2~ multipole. Then b„ is obtained from (46) for
electric or from (48) for magnetic conversion transitions.
See, however, (e) below.

' This result is implicitly contained in S. P. Lloyd, Ph.D. dis-
sertation (University of Illinois, 1951).

After the first conversion transition has taken place
the half-empty E-shell will be 6lled very rapidly by
x-ray emission or emission of Auger electrons. In fact
the measured widths of x-ray lines shows that this
Ailing-up time is much smaller than the intermediate
state lifetime in any practical correlation experiment. '4

"S. P. Lloyd, Phys. Rev. 83, 716 (1951)."L.C. Biedenharn and M. E. Rose, Oak Ridge National Labo-
ratory Report No. 1098 (1951).

2' D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 334 (1950).
24 A. H. Compton and S. K. Allison, X-Rays in Theory and Ex-

perimentt

(D. Van Nostrand Company, Inc. , New York, 1935);also
R. M. Steffen, Helv. Phys. Acta 22, 167 (1949). If this were not
so the initial electronic states would be different for the first and
second conversion transitions and the probability amplitude for
the double transition would be composed of two parts correspond-
ing to two choices for the order of emission of the K-electrons.
Then (reference 6) there would be a cross term between the two
modes by which the cascade could take place. The evidence cited
shows that this cross term is exceedingly negligible.
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It will be noted that for cascades in which v„=2 the
sign of the anisotropy, W(8) —1, is reversed as com-
pared to the p-ray case for the low energy electric dipole
conversion electrons but is the same for other cases.

The authors are indebted to Dr. C. L. Perry, Mr.
Carl Perhacs, and Mrs. N. Dismuke of the Mathe-
matics Panel, Oak. Ridge National Laboratory, for
performing the computations.

APPENDIX A. SIGN CONVENTIONS,
PROPERTIES OF THE SPINORS
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Throughout we use the Condon-Shortley" de6nition

of the spherical harmonics Y~ . This divers by a phase
FrG. 5. Same as Fig. 1 for electric 2'-pole transitions.

Only lower Z values shown.

I.IIO
I I I I I I I I I I I I I I I

energy approach a common value with increasing I. is
clearly evident from the results which show a decreasing
sensitivity, so far as energy dependence is concerned,
with increasing I.. The limit Z=O, for magnetic multi-
poles only, also gives a photon correlation; that is,
b.(m)=1 for all v. The electric multipoles have the
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FIG. 7. Same as Fig. 5 for electric 2'-pole transitions.

(—)~ from the de6nition adopted in reference 15. We
also use the well-known result that

J+Lf
Fr~PI. ~'= Q L(2L+1)(2L'+1)/4m (2m+1)]&

v=f L—L'(

LL'wc~, LL'vyM+Af' (A 1')

Fro. Sa. Same as Fig. 5 for the higher Z values and on
an enlarged scale.

opposite Z-dependence; that is, they increase with
decreasing Z (except for L= 1 and k ~&1) and for L~& 2
the values of the b2 coeKcients as given lie between
unity and the Z= 0 limit:

LL(L+ 1)—3jL(L+1)k'+4L)

1.Oee

18
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Fxo. 7a. Same as Fig. 5a for'electric 2'-pole transitions.

The representation of the Dirac matrices is defined by
(5) and n= p~o where

ir i—ijq

I i+ij —ir )

1.00—
I I I I I I f f I I I i I I I I I I I0 1.0

FxG, Q, $g,rye @s Fig. 1 for magnetic 2'-pole transitions. &x) =2~xi ~ (A.2)

in terms of the cartesian unit vectors i, j, k. The Pauli
spinors introduced in (10) are such that
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(I I

(A.7)~,XKl'= P X„l',

1 ~ (A.S)L'x„'= l(z) (l(a)+1)x„&=z(a+1)x„&,

(A.9)

(A.6)

(~ &+1)x."=—~x.",

(r/r) ~x."—=e.x."=—x-.". (A.10)

of X LEq. (9)j.
2~
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Kq K)0
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combining two or more of the oPerations indicated in (2L+1)Cppzz"W(LLL im
—L+ ,'; v—-,')

(8.2). The Racah coeKcients are introduced in the
foregoing by the following:

= [(2L—1)(2L+3)O'Cp 'p +'"

Cmimg ~ ~Cm1+m2m3 aild
XW(L 1L+—1 L——', L+ ,'; v-,'-) (8.5)

=Qz(2I+ 1)'(2g+ 1)vCmpmp1p11 Cmimp+mp11 14

XW(iiipse 4i p'P).
(2L—v) (2I.+v+ 1)

W'(LLL ,'L,——--'„1-',)=(8.3)
(8 6)

We also use

(2L+1)Cppzi"W(LLL ,'L —,';—v-,'—)—
(2L+1—1)(2I.+2+ v)

W'(LLL+ ,'L+ ', ; -v-,')=- (8.7)
4(L+1)'(2L+1)'

—(2I 1)C L 1 I 1v— —

XW(I.—1 L 1L——', L—', ; v-,'), —(8—.4)

v(v+1)
W'(LLL+ ,'L——,';-v-,') =

4I.(I.+1)(2L+ 1)'
(8.8)
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The thermodynamic theory of the transverse adiabatic thermomagnetic eRects is extended; and the
final complete set of thermodynamic relations among all thermomagnetic eRects is summarized.

1. INTRODUCTION
' 'N a previous paper' various thermomagnetic' effects
- - were analyzed by the methods of irreversible thermo-
dynamics, which provides a framework whereby any
thermomagnetic coefficient, when once defined, may be
expressed in terms of a set of six independent constants
of the material, called the "kinetic coeKcients. "It was
shown that, in addition to the Bridgeman relation,
there exist further relations among the thermomagnetic
coefficients. Because of the complexity of the formulas
for the thermomagnetic coefficients in terms of the
kinetic coefficients, these predicted relations could only
be given implicitly in (I), and only the limiting forms
for small fields were given explicitly. In a recent paper, '
however, Mazur and Prigogine have shown that a
particular inversion of the fundamental equations
greatly simplifies the resultant formulas and allows the
new relations to be obtained in explicit form. Moreover,
the adiabatic Hall and Nernst effects were specifically
excluded from the analysis in (I) because, as will be
seen, the analysis of these effects requires an extension
of the methods there employed. Here again Mazur
and Prigogine' have considered the problem and have

' H. B. Callen, Phys. Rev. 73, 1349 (1948), hereafter referred
to as (I}.

2We abandon here the rather cumbersome division of the
effects into thermomagnetic and galvanomagnetic eRects, and we
simply use the first term to imply all such eRects in a magnetic
field.' P. Mazur and I..Prigogine, J. phys. et radium 12, 616 (1951).

R,= (potential gradient) v/II, (eI,),
with the conditions that

dT/dX= Q„=I„=O.

(2.1)

(2.2)

Here H, is the magnetic field, taken in the Z-direction;
eI, is the longitudinal electric current (e being the
electronic charge); eI„ is the transverse electric current;
Q„ is the transverse heat current, and T is the tempera-
ture.

Although Eqs. (2.1) and (2.2) seem at first to provide
a quantitative definition of the adiabatic Hall coefIi-

given a treatment of these effects, which is valid for
metals. The general theory of these effects will be given,
and the final complete set of thermodynamic relations
among all thermomagnetic e6ects will be summarized.

I wish to acknowledge here my conversations with
Dr. Mazur and Professor Prigogine, in which the
clarification of these problems was jointly evolved.

2. THE DEFINITION OF THE ADIABATIC EFFECTS

For definiteness we shall Grst consider the adiabatic
Hall effect. This effect concerns the appearance of a
transverse potential gradient when a longitudinal elec-
tric current Qows perpendicularly to a magnetic Geld.
The appropriate boundary conditions are that no longi-
tudinal temperature gradient nor any transverse cur-
rents of either heat or electricity may exist. The
adiabatic Hall coefficient E is then


