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It is shown that the angular correlation between a conversion electron and any other radiation emitted
in a double nuclear cascade can be obtained immediately if the corresponding correlation with a vy-ray
replacing the conversion electron is known. This latter is known for all cases of practical interest. Specifically,
if the correlation function for y-rays and a radiation « is expanded in Legendre polynomials, the correlation
function with a conversion electron replacing the y-ray is obtained by multiplying the coefficients of each
polynomial P, by a parameter b,. The case of conversion-conversion correlation, in all practical cases, is
obtained from the yv—+ correlation by inserting two factors b,, one for each conversion electron. The coef-
ficients b, are calculated relativistically and numerical results are presented for K-shell conversion for 12
values of Z in the range 10 Z <96 and transition energies from 0.3 mc? to 5.0 me? for ten multipoles (5 elec-
tric and 5 magnetic). It is pointed out that the present results apply in y-electron correlation if the v is a
mixed multipole but the case in which the conversion transition is mixed is not computed. The angular dis-
tribution functions for electrons in a coulomb field undergoing any type of transition are ob*ained in terms
of the relevant matrix elements by the use of the Green function for the Dirac electron in a coulomb field.
It is also shown that the angular distribution function is obtained from matrix elements based on, not the
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scattered wave, but on the time-space reversed scattered wave.

I. INTRODUCTION

N the investigation of the angular correlation between
two radiations emitted by an excited nucleus in
two successive transitions, the directional correlation
involving emission of internal conversion electrons be-
comes important whenever either or both transitions cor-
respond to large conversion coefficients. Thus, the effect
is of primary interest in heavy nuclei,}' low energy
transitions and/or high order multipoles.? An essential
restriction does enter from both the experimental and
theoretical points of view in that it is desirable to avoid
cases in which the intermediate state is long-lived.?
However, this restriction applies only to the second
transition so that, perhaps more often than not, the
first transition may correspond to large internal con-
version. These remarks apply, of course, only to the
practical application of the results given below. So far
as content of this paper is concerned, application of the
results to correlations between conversion electrons and
any other radiation (including another conversion elec-
tron transition) may be made and, for different radia-
tions, the distinction between the cases in which the
conversion electron is emitted first or second is trivial.
We do make the assumption that the intermediate state

* This paper is based on work performed for the AEC at the
Oak Ridge National Laboratory.

! The restriction to heavy nuclei is not very stringent. Con-
version correlation has been experimentally investigated in ele-
ments as light as Br, L. I. Rusenov and Ye. I. Chuykin, Doklady
Akad. Nauk. U.S.S.R. 68, 1029 (1949); also in Sm, C. M. Fowler
(private communication); Hf!8t, A. H. Ward and D. Walker,
Nature 163, 168 (1949) and A. Lundly, Phys. Rev. 76, 993 (1949);
Hg!97, Walter, Huber, and Zunti, Helv. Phys. Acta 23, 697 (1950)
and O. Huber and F. Humbel, Helv. Phys. Acta. 24, 127 (1951).

2 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79
(1951). References to equations of this.paper will be denoted with
the suffix 1.

3 H. Frauenfelder, Phys. Rev. 82, 549 (1951); Aeppli, Bishop,
Frauenfelder, Walter, and Zunti, Phys. Rev. 82, 550 (1951).

is sufficiently short-lived so that hfs and other per-
turbing couplings may be ignored.:*

Although a number of experimental studies of con-
version correlation have been reported in the literature,!
there had been no adequate theoretical treatment of
the problem whereby the results of the experiments
could be interpreted and used for the purpose of iden-
tifying the transitions involved. Previous work is
confined largely to two papers by Gardner.® In the first
of these Gardner discussed the nonrelativistic treatment
of the conversion-conversion correlation. This was
necessarily confined to electric multipoles and omitted
the contribution to final states involving spin flip. The
restriction was also made to ejection of s-electrons only
but this restriction is not essential to the nonrelativistic
limit. In the second paper an extension is made to the
conversion-conversion correlation in which one of the
transitions is a pure magnetic, the other a pure electric
multipole and again the initial electronic states are
s-states. In the #2/¢® approximation considered in this
reference both final states (with and without spin flip)
enter but essential interference terms between them
do not appear. In any case numerical results are not
given. It is of importance to note that while the error
introduced by the nonrelativistic treatment of the
correlation problem is, in general, much smaller than
that arising in the calculation of the absolute conversion
coefficients (since only ratios of matrix elements are
involved in the former) the dependence of the correla-

¢ Compare, G. Goertzel, Phys. Rev. 70, 897 (1946).

5J. W. Gardner, Proc. Phys. Soc. (London) A62, 763 (1949);
64, 238 (1951). The result for electric multipoles, namely that the
FrM(9) functions (see Eq. (2) below) are proportional to | VM2,
where (for the case considered by Gardner) L and M are the
angular momentum quantum numbers of the electron, is also
obtained if the spin is treated in Pauli approximation and a sum
over spins is performed. The essential point here is that the orbital
angular momentum of the electrons corresponds toa good quantum
number. An outline of the formal aspects of the theory was dis-
cussed by M. Fierz, Helv. Phys. Acta 22, 489 (1949).
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tion functions on the multipole index L is also much less
sensitive for the former (for essentially the same reason).
Hence a greater accuracy is required in the correlation
calculation.

A relativistic treatment of the formal aspect of the
problem was given by Ling.® However, the pertinent
matrix elements were calculated using the scattered
wave function instead of the time-space reversed scat-
tered wave function and, as the following shows (Sec.
IIT), the latter is the correct procedure. This part of the
problem was treated correctly by Lloyd.”

In the following we give a completely relativistic
treatment of the conversion correlation problem. Since
the pertinent matrix elements (Egs. (41) and (43)
below) are exactly those which arise in the conversion
coefficient calculation? the numerical results are given
for just those cases previously considered. In particular,
we consider conversion from the K-shell only (without
screening) although the extension to other shells is
almost immediate once numerical values for the matrix
elements become available. It is planned to make this
extension in the near future. The form in which the
numerical results are given is as follows: If the cor-
relation between a vy-ray and any other radiation % is
known and is expressed as an expansion in Legendre
polynomials, the correlation with a conversion electron
replacing the <y-ray is obtained by multiplying the
coefficients of each Legendre polynomial P,(cosd®) by a
coefficient b,(Z, k, m, L) (Eqs. (46) and (48)) where Z,
k are as in reference 2, mw=e, m refers to the parity
(electric, magnetic respectively) and the multipole is a
(pure) 2% pole. For conversion-conversion correlation
(Sec. V(c)) we multiply the coefficients in the y—+y
correlation function® by 8,(Z, k1, 1, L1)b,(Z, ks, w2, Ls).
The prescription just given also applies when the
x-transition is a mixed one [ Sec. V(e)] involving super-
position of different angular momenta. Corresponding
results for the case in which the conversion transition
is mixed” could also be obtained from the formalism
given below but we do not give any numerical results
for this case.

As indicated, and as would be expected, the con-
version correlation is not only parity dependent but is
also dependent on the physical parameters Z, k. This
is in contrast to the y—+ correlation, for example, and
so far as physical parameter dependence is concerned,
it is in contrast to the nonrelativistic electric multipole
conversion correlation.®® The dependence on physical
parameters enters here because of the presence of more
than one final state (there are two for initial electron
angular momentum j=1%) and the fact that these final
states are physically different (linearly independent
radial functions). The dependence on physical param-
eters, and on parity as well, is a property of the angular

¢ D. S. Ling, Ph.D. dissertation (University of Michigan, 1948).

7S. P. Lloyd, private communication.

8 D. R. Hamilton, Phys. Rev. 58, 122 (1940). See also D. S.

Ling and D. L. Falkoff, Phys. Rev. 76, 1639 (1949); W. Arnold,
Phys. Rev. 80, 34 (1950).
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distribution functions FpM(d9) [Eqs. (2) and (25)]
which describe a Dirac electron undergoing a transition
in a (coulomb) field between specified states and cor-
responding to a prescribed direction of motion at large
distances. Up to a certain point [Egs. (25) and (26)],
the formal treatment given below applies as well to the
angular distribution function for a number of other
problems: emission of B-particles with coulomb effects
included, ejection of photoelectrons, pair formation, etc.

II. GENERAL FORMALISM

We consider a double cascade in which a nucleus
makes a transition from a state of angular momentum
J1 to an intermediate state J emitting radiation 1 of
angular momentum L; and then emits radiation 2 of
angular momentum L, in going to a final state J». This
cascade is designated by J1(ZL1).J (Ls)J 2. The components
of Ji, Ly, J, Ly, J» on an arbitrary quantization axis are
my, My, m, Ms, ms respectively with the usual conser-
vation rules applying. Selecting the direction of the
second radiation as the quantization axis, and with &
denoting the angle between radiations, the angular cor-
relation function can be written in the form?®

W@)= 3 [Cmy/ 127 PFLMi(8)

mimmsg

X[Cmaty" 27 PFL,M(0), (1)

where Cmia;/1P17 is the vector addition coefficient!®
and Fr;Mi(¥) is the angular distribution function for
radiation <. It will be noted that the dependence on Jy,
J, Jais entirely contained in the C-coefficients. Since we
are interested only in the angular dependence of W,
multiplicative factors in the Fr™ independent of the
magnetic quantum numbers are irrelevant and will be
discarded, from time to time, in the sequel.

For an electron in a final state described by a wave
function ¥(r,f) the Fr™ is obtained from the radial
Dirac current per unit solid angle:

F M) =rT,= —r*(V1a,T) (2)

with »—o0 , and with a summation over final spins and
an average over initial spins implied. The dagger in Eq.
(2) means hermitian conjugate. For a transition induced
by a time-dependent perturbation JCie~%*!4-3C;*¢?** we
have!!

(3Co+-301e— )T =10/ 3t 3)

wherein 3Co is the Dirac hamiltonian for an electron in
a coulomb field and we have emitted the conjugate
term, as usual, since it will make no final contribution.
The current in (2) is then calculated from the perturba-
tion solution of (3).

9 D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950).

10 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935), Chapter III. There
denoted by (J1LymiM1|J1LiJm). See Appendix C.

1 Throughout we use relativistic units: z=m=¢=1. In the
following kmc? will be the energy released in the nuclear transition.
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An alternative, and completely equivalent procedure
is the following: We introduce the fourier transform
Y(E, r) according to

W(r, f)= f WE, De—FdE @)

then (3) becomes
(‘,}CO_E)‘p(E: I')= _C‘Cl‘l/(E— k; I')"—>—“3(’,1¢i(E17, I') (33')

where the replacement indicated by the arrow intro-
duces the initial state wave function ¢; with total
energy E;, consistent with the perturbation solution to
solution to first order in 3C;. Then if the Green function
solution of (3a) is used to obtain the current, the result
is the same as given by Eq. (2).*2 That is,

FM(@)=—r{la) (2a)

with r—,

A. The Green Function'®
We wish to solve Eq. (3a), that is

(E—=V+ea-p+RyY=001¢, ®)

where V is a central field (V=—aZ/7) and the initial
state ¢, is specified, by the use of the Green function
for the operator on the left-hand side of (5). The most
convenient procedure is to obtain the free-particle
Green function and then make the appropriate modi-
fications in the radial functions. With

(E+ e p+B)GO(r, 1) =8(r—1)1,
where I is the (4X4) unit matrix, we have

eiplr—r’|
GO(r, 1) =— (E—B+ia- V)Z———~ (6)

7|r—r'|

In (6) the V operator acts on r and p= (E?—1)3, In (6)
we use the familiar expansion

eiplr—r’|
=ip 3 l(prs)jpr) Ym(@ Y™ (r), (7)
dr|r—r'| im
where the order of the arguments in spherical harmonics
is immaterial, and %, 7, are the spherical hankel func-
tions of the first kind and spherical bessel function
respectively.

J 1
a'V=p1¢Tr(—+—)+Plo’rP3K/1’ (8)
or r

“and py, ps are the matrices operating in Dirac (p) space,

01 1 0
P1=( ), P3=ﬂ=( )
1 0 0 —1

12 The proof of this equivalence in the nonrelativistic case is
given by H. A. Bethe, Ann. Physik 4, 443 (1930). The generaliza-
tion to the relativistic case is almost immediate. See E. Greuling
and M. L. Meeks, Phys. Rev. 82, 531 (1951).

13 Appendix A contains a discussion of the sign convention and
representation used throughout this and subsequent sections.

while o-matrices operate in Pauli space. Of course,
products of p- and e-operators imply direct products.
In (8)

=—p3(o-L+1), L=—irXVv. 9)

Noting that we can write the unit matrix in e-space in
the form (Appendix A),

I=3% xyix™ (10)

we have the result

YY) L= x#Ox () (1)

where x.* is the Pauli central field spinor (Appendix A)
and the sum over « includes only /, —/—1. From (6),
(7), (11), and (A11) we obtain for »>7":

Gu W/ (E=1)=—ip 3 I () fuco (") x: (1) e ()

= G22(0)/(E+ 1)

(12)
G12(°) = G21(°) = P2 Z S(’f)hl(—x) (P")
Ky

X f10 (Br ) x— (1) e (1').

It is very convenient to write Eq. (12) in a form such
that each term (x, u) is expressed in terms of field-free
Dirac eigenfunctions in the angular momentum repre-
sentation. These are

—iS()(E—1/E+1)¥z30 (pr) x—c*(x)
(ibx" = ( . 13
® 2100 (P7) xa (1) ) (1)

Retaining the notation ¢,* for standing waves (spherical
cylinder function z;=34;) and using &* for outgoing
waves (z;="h;) we find by changing « to —« in the first
column of G©, thus simply reordering the terms, the
result for »>7#'

GO(r,r)=—ip(E+ DX ¢+ (r).  (14)

To obtain the Green function for the coulomb field,
we replace ¢ and ¢,* by coulomb field solutions which
differ from (13) only in that z; is replaced by Dirac radial
functions with exactly the same normalization.!*1® It
is convenient for comparison purposes and later iden-
tification of radial matrix elements to use the same
radial functions used before.?'® These latter differ by a
factor —S(x)(p(E+1)/7)? from the former. Thus, we
write, in accord with previous notation,

— i fex
o)
8eXi*
for the standing wave solution of the Dirac coulomb

1 M. E. Rose, Phys. Rev. 82, 389 (1951).
15 M. E. Rose, Phys. Rev. 51, 484 (1937).

(15a)
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field and

Bys(r) = ( 4 “x””") (15b)

Fuxut

for the outgoing wave solution. Specifically, the nor-
malization is such that r—c

(E-1)\}
o)== (F=2) Limjecotortoo,

(E+1)\? (1)
pt)=—(E=) 509 Limjuo(pr+2),
where

and 6,(Z) is the phase defined in reference 15. The
irregular coulomb field solutions are defined so that
fe and g, have the asymptotic behavior (16) with ji(se
replaced by %(x. The definition of A, is unchanged.
Finally, the desired Green function is, for »>#'

G(r, V)=—mi Y BHr)DH(r'). an
K
The Green function for 7<#' is
G, t)=—mi ¥ ®H(r)B (1)) (18)
ki

but the hermitian conjugate operation applies only to
the spin-angular spinors x..*.

B. The Angular Distribution

The solution of (5) which has the required asymptotic
behavior, that of an outgoing wave, is

)= f 3G (x, )3T, (19)
Using Eq. (17) the asymptotic form of ¢ is
Vo= —7i Y BA(x) (BH(r) 501 ¥1). (20)

Here, and in the following angular brackets designate
scalar product formation over spin and configuration
space. More explicitly, Eq. (20) may be written in the
form

eipr

1
2

2 ¢S (1) (D () |31 [ ¥

v ok

Yo=1m

—iS(k) (BE—1)}p~tx ¢ exp[— mi(l(—0)+1)]
“( )

(E+D}p~Hx+ expl —3mi(l(0)+1) ]
1)

The angular distribution function, which is the current

per unit solid angle in the radially outward direction for
a specific initial state and for large 7, is

FiM(3)=—r*y| pro:|¥)
=Y T e GebS()S(K)

X (' |Ca | a* (| 31| )
X {S(x) exp{mili(x")—1(—x)]}
X (x| 7] x—s*)
—S()exp{Fmili(—«)—1(k)]}
X (x| 07| )}

This represents the angular distribution function for an
initial state of specific magnetic quantum number, 7,
say. What is evéntually required is the average of (22)
over 7. However, in order to avoid confusion of notation
we retain the symbol Fr¥ for both angular distribution
functions and rely on the context to make the meaning
clear. Also, in Eq. (22) and in the following, the
logarithmic term in the phases A, and §, can be dropped
since it is clear that it cancels out in the expression for
F™,
From Appendix A we find

(22)

(= | e | xe*) = — (s’ | X =)
=— (0t | %) = (x| o X)) (23)
and we note that
S(') exp{Fmili(—«)—U(x)]}
=—S(k) exp{3milI(x)—U(—x)]}. (24)

Further, we consider a definite magnetic quantum
number, 7, for the initial state ¥;so that uy=u'=M-r.
Then, averaging over 7,

FM(9)=—1 Y, e 25 (k)

Xexp{gmill(— ") = 1) (', M+7[ 50| i)*
Xty MA47]3C1 [ i) O MH | 3M+7). (25)
Using the definition (AS5), (A1), and Appendix B we find
(k| 306) = LU+ D QU+ 1) 6| /o 1) T
X Col O 6 C i i'(— Yri—pbet
XW(UK), Uk'), 4, 7’5 v3) ¥, (cosd), (26)

where j=|k|—3%, //=|«'| =%, and W is a Racah coef-
ficient.1®

Combining the results (25) and (26) one obtains the
starting point for calculating the angular distribution
functions F ™ for any interaction involving an electron
in a coulomb field with the direction of motion specified

16 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).
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asymptotically with reference to an arbitrary axis of
quantization.

III. RELATION TO SCATTERED WAVE

The result (21) for the wave function describing the
outgoing wave has a rather interesting physical inter-
pretation. In fact, we show in this section that the
radial current, summed over spins of initial and final
states, can be calculated from the square modulus of
matrix elements of the perturbation 3C; between the
initial state and a “final” state ¥, where ¥, is not the
scattered wave but is the time and space reversed
scattered wave. Thus, ¥, has the asymptotic behavior
of a plane wave plus an incoming wave rather than a
plane wave plus an outgoing wave.l” This is the point
which was overlooked in previous work.518

In order to demonstrate the result just stated we
carry out the sum over p in Eq. (21). Since, as the
Green function (17) shows, the sum in question is of the
form 3, x*(r)x**(1’), which is invariant under rota-
tions in spin and configuration space, we can choose the
direction of r as the quantization axis for the present
purpose. Then since

x(0)= ([k| /4mP[ =S J+ixy; p==%3

27)
=0; pHFEES
we obtain from (21)
1e%Pr
Yoo=—— 2 (| k[ /4m)teit
1 K
X (@] 30| W) A+ (D 5 [ WA}, (28)

where the spinors A, are

o L
4 exp[ —3ri(l(— k) +1
r=| TE = exp[ —3mi(l(—«) )], 29)

—x335(k) exp[ —3mi(l(k)+1)]

and A_ is obtained by changing x;! to x37* and multi-
plying by S(«)ps. Since

—i exp[ —§mi(l(— k) +1]=S(k) exp[ —37i/2(()+1)],

and (k) =1(—«)+S(x), we can write (28) in the form
Yo=Y+ Y-

o= ~ (b x| expl — ()]
K% 1 7 D )
- X{(®[3C[¥i)Dy (30)
18P
Y= 3 (4] ] e exp[ — 3G+ 1)]

Ty &

XD H |30 ) D

17 This result is well known for the nonrelativistic problem (see
N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions
(Oxford University Press, New York, 1933), p. 258). For noncentral
potentials a proof is given by W. Rarita and J. Schwinger, Phys.
Rev. 59, 556 (1941).

18 M. Fuchs, Ph.D. dissertation (University of Michigan, 1951).

and D, are the Dirac plane wave spinors for the mo-
mentum along the quantization axis with 4+ and —
corresponding to spin “up,” spin “down,” respectively :

—p/(E+1) 0
D= ? D_= ?/(-%‘i‘ 1) . (31)
0 1

If in (30) we write the sum of matrix elements as a
single matrix element, that is

ipr

Y= (4|50 ¢¥i)—D. (32)
4y

then
®y=—i 3 (4m|k|)le e exp[Fmil(—x) B2,
®_=—i 3 (4| |)leidx exp[Fmi(l(x)+1) I,

We now compare with the scattered wave which has
the asymptotic behavior: plane wave plus outgoing
spherical wave. For a fixed spin direction specified by o

Yoo’ = ZK(L}W] KI )%em"
Xexp[3mi(l(K) = (o+3) (1+S()) I, o==x3. (34)

To this we apply the space and time reversal operators
I's (B times space inversion) and I7 (io» times complex
conjugation). Then

ITIS(bKU = (__ >a+%—x(bx—o'.

Noting that | x| =1(k)—1(S(x)—1) we obtain

Ipl o= 2 u(4 | k| )2~ exp[§mil(x) Jo, (35a)
Ipl gse =2 «(dm| k| )2e i
Xexp[3mi(l(—x)+1)]®2  (35b)
Comparing with (33) we see that
S =—Ipl s, ®_=TIplgPslt. (36)

Thus, except for a spin reversal, the wave functions
¥;(=®,) which are used in calculating the current are
the time and space reversed scattered wave. For the
current summed over final spins the spin reversal is
irrelevant. However, the effect of time and space
reversal is to change the sign of the coulomb phase
shifts &, (Eq. 16(a)) in the final results and this is not an
irrelevant change.

IV. APPLICATION TO K-SHELL INTERNAL
CONVERSION

For the K-shell (or L; shell, for example) we have
¥;=y¢_;" and 7==+1. The radiation fields in a con-
venient gauge have been given elsewhere.? Discarding
an irrelevant multiplicative factor ([2/xL(L+1)])
throughout, we discuss the magnetic and electric con-
version separately.
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(A) Magnetic Conversion
For a magnetic 2 pole we have
(ku|5eym| —17)=(kp| p1(o- LY L2) | —17)
=i[Ry'(x_¢|e- LY M| x_17)
=R (xéo- LY LM x17) Je

where in the notation of reference 2, Eq. (17,), has
been introduced for the radial matrix elements and the
final state in the R’ integrals is described by the single
index x. In (37) L acts on Y™ only. This latter fact
enables us to conclude that

37)

(x#lo- LY 2™ xam)=—(x~[o- LY .| x_17).  (38)
Equation (38) together with (A.9) yields
(x-o- LY M| xa)= (k= 1) (x| Vi x-17).  (39)

However,
ViMy = (4m) VM xy = (4m) 7 i Car, P+, (40)
where k=L, —L—1, and j=|&|—%. Finally,
(xulseym| —1ry=i(4m) *Car, " Hi(k—1)
X (Rs'+ R4 )e(8¢,— 2+ 8c,£41)
=Cu-"4Q(x, L, m), (41)

where the last factor in the first equality, contains
Kronecker deltas.

(B) Electric Conversion

Here we evaluate the matrix element
(ku|3€1¢| —17)= (k| prhr_s(re- v+ Lo,) VLM
+iLY M| —17)  (42)

and the spherical hankel functions, which appear ex-
plicitly, have argument k7. Using

re-V=0,(t-V4ic- tXV)=0,(8/dr—a-L)
Eq. (42) becomes
(ku|3Cre[ —17)
=iL[Ri+Ro— Rs+ R (x| VL | x—17)
—i(k+1) (Rs+Ra)e(x | ¥ 2| x-17)
=i(4m) "I Co PH[ L(R1+Re— Rs+Ry)
— (k1) (Rs+R) Je(6, 6 —1-1)
=CuQ(k, L, ¢), (43)

where the notation (13;) has been introduced.
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(C) The Angular Distribution for K-Shell
Conversion

In terms of the Q-coefficients defined by (41) and (43)
the F ™ may be written formally for either parity.
From (25) and (26)

FLM(lg) =—7 Z (_ )v+%—M—r+x+x's(K)
X et @) exp{Frill(— ') —1(x)]}
XL +1) Q)+ 1) [ o' | /(20 +1) T
X Carr LHIC 37 L3 Co 1) Ue")w
XWQ)IK)75"; vi)Q* (K, L, )
XQ(k, L, m)V,%(cosd). (44)

Using (B.3) the sum over = may be performed and with
8(Z=0)=217[1(1+S))— | x| ] we obtain for electric
multipoles

2L
FLM(d) = Z (_)MC1~1LLVCM_MLLV

=0

X (@4w(2v+1))~1,'V,%cosd) (45)

where » takes on only even values (C*2*=0 for » odd)
and

u(u+1)—2L(L+1)b )
2L(L+1)(2L+1)
=L*|Q(L, L, o) |*W*(L, L, L—3%, L—%; »3)
+(LH1)?2|Q(—=L—1, L, ¢)|?
XW*L, L, L+3, L+3; v3)
—2L(LA1)Re[ (¢22Q(L, L, ¢))*eid-11
XQ(—L—1,L,e) WL, L, L+%, L—

35 v5),

(45a)

The angular distribution function given by (45) differs
from that for emission of electromagnetic radiation®!?
only in the factor b,'(¢) and the two become identical
(aside from a trivial normalization factor) when 4,/=1.
We normalize to by (e)=1 and using (B.6-8) we obtain
for b,(e)="b,'(e)/bJ' (e)

v(v+1)

b,(e) =14
2L(LA-1)—v(r+1)
L |L4+-14T,|2
X ,  (46)
2041 L(L+-1)+| T, |?
where

¢®2 [L(Ry+Ro)— (2L+1)Rs— RyJxr.
T,= . (463.)
e®-1-1 [Ri+Ro+2Ry J——r1

19 Biedenharn, Arfken, and Rose, Phys. Rev. 83, 586 (1951).
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For magnetic multipoles the allowed «-values are
—L, L+ 1. Using (B.4, 5) we find
2L
FLM(l?) ___Z(_)MCI_ILLVCM__MLLV
0
X (4w (2v+1))~%,(m) V,%(cosd)  (47)

and for the b, normalized to by=1 we have

v(r41)
by(m)=1+
2L(LA+1)—»(»+1)
L(L+1)  [1=Tu|?
X ) (48)
2041 LH14-L|Ty|?
where _
€L (Ry'+ Ry Yy 41
T= (48a)

€L (R4 Ry )x—1 ‘

It is of interest to recognize that for y-rays, spin %
particles and for spinless particles as well, the M-de-
pendence of the angular distribution functions, when
expanded in Legendre polynomials, is entirely contained
in the vector addition coefficient (—)MC pr— 2%, Tt is
for this reason that the simple parametrization given by
(45) and (47) is possible. This would not have been
possible if any other expansion, powers of cos?$ say,
had been employed. It is evident, Sec. V, that these
remarks also apply to the angular correlation function
W(»9).20

V. THE ANGULAR CORRELATION
A. Special Cases of Conversion Correlation

It is clear from the foregoing that the prescription
given in Sec. I applies; namely, if the Legendre poly-
nomial expansion of the correlation between a y-ray
and a radiation « is

Wy @)=Y A(y—2)P,(cos?)  (49)

then the correlation function for a conversion electron
and radiation x is [see (c) below],

Wo—o(®)= g b,4,(y—x)P,(cosd). (49b)

In (49) %v,, is the smallest integer of the set Ly, Lo, J
(or J—3%) if J is integer (or half-integer). The order in
which the transitions occur is contained solely in the
coefficients 4, and we observe that the correlation
J1(L1)J (Ls)J2 s the same as the correlation Jo(Ly)J (1) 1.
In (49a, b) it is to be understood that the y-ray is a
pure 2% multipole. Then b, is obtained from (46) for
electric or from (48) for magnetic conversion transitions.
See, however, (¢) below.

20 This result is implicitly contained in S. P. Lloyd, Ph.D. dis-
sertation (University of Illinois, 1951).

We consider the following correlations:

(a) Conversion-Gamma Correlation

Then in (49b) A,(y—x)=A4,(y—v). The y—~ cor-
relation has been quite extensively studied. For the
most practical case that the y-rays are emitted with the
lowest angular momentum allowed by angular mo-
mentum selection rules, that is

Li=|J—Ji (Js£T); Li=1 (J;=J) (50)

Lloyd® has given a tabulation of A4,(y—v) for all
transitions up to 24 pole-2° pole. In Lloyd’s tabulation
the normalization is A¢=1. For cases not covered by
(50) the 4,(y—1v) may be obtained for L;<2, L,<2
from the tabulation of Falkoff and Uhlenbeck® and of
Hamilton.? A useful form for W,, is (see Appendix B
and reference 19)

Wy—y(@) =N 3 C1_J1EvCy_ Iolw

v=0

X W(]JL1L1, VJ]_)W(]JLsz, VJz)Py(COSl?) (51)
where, with the normalization factor
N=(=)"v"22L+1)(2L41)(2T+1),

the coefficient of Py is equal to unity. The tabulation of
the coefficients 4, for cases not covered by (50) can
then be extended considerably using Racah function
tabulation of Biedenharn.?

(b) B-Conversion Correlation

The coefficients 4,(8—~) have been given® for the
five pure B-invariants up through second forbidden
transitions in the approximation Z=0. The case Z0
has been considered in the approximation Z/137v <1 by
Fuchs.!® A calculation without this approximation could
be carried out using the results of Sec. II but this has
not yet been done.

(¢) Conversion-Conversion Correlation

After the first conversion transition has taken place
the half-empty K-shell will be filled very rapidly by
x-ray emission or emission of Auger electrons. In fact
the measured widths of x-ray lines shows that this
filling-up time is much smaller than the intermediate
state lifetime in any practical correlation experiment.?*

2t S, P. Lloyd, Phys. Rev. 83, 716 (1951).

2 L. C. Biedenharn and M. E. Rose, Oak Ridge National Labo-
ratory Report No. 1098 (1951).

2 D. L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 334 (1950).

2 A, H. Compton and S. K. Allison, X-Rays in Theory and Ex-
periment (D. Van Nostrand Company, Inc., New York, 1935); also
R. M. Steffen, Helv. Phys. Acta 22, 167 (1949). If this were not
so the initial electronic states would be different for the first and
second conversion transitions and the probability amplitude for
the double transition would be composed of two parts correspond-
ing to two choices for the order of emission of the K-electrons.
Then (reference 6) there would be a cross term between the two
modes by which the cascade could take place. The evidence cited
shows that this cross term is exceedingly negligible.



12 ROSE, BIEDENHARN, AND ARFKEN

o

T T T T T

ELEGTRIC DIPOLE 20
0.5

&
b
L L L e
o b Lo g ey by

@

L

0
PR SO NN UM TN SO NN NN TN NS AU T NUN S O SO T
6 76 . 36 70

ol

o

]

Fic. 1. by coefficients for electric 2l-pole transitions versus &
(transition energy in mc? units). The attached numbers refer to
the value of Z.

Also, the filling-up time is much shorter than the
precession period corresponding to the hfs interaction
of the nucleus and a single K-electron. Therefore it
follows that the conversion-conversion correlation func-
tion is

Wed®)=3 b)) Ay —)Pucost)  (52)

y=0

where b,(1) refers to the first conversion electron emitted,
etc.

(d) Conversion-Alpha Correlation

Such a cascade would be of interest in the case of a
few heavy elements. The correlation function is

W a0)=Z OB =) Picosd), ()
where "
b5(e) = — CooBlr/Cy_ 0>
= 2L(LAD)/[2LLA D=+ D]

This applies when the a-particles are emitted with
essentially a single orbital angular momentum.

(53a)

(e) Mixed Transttions

The case in which the conversion electron transition
is not pure could be calculated along exactly the same
lines as the pure transitions discussed, (Sec. IV). These
would involve new coefficients, different from the b,.
However, if the nonconversion transition is a mixed
one, the conversion transition pure, then (49b) still
applies. However the 4,(y—v) must take into account
the fact that a superposition of different angular mo-
menta are emitted in one of the transitions. For corre-
lation with both transitions mixed the coefficients have
been given by Lloyd? to first order in ¢, where € is the
ratio of intensities of electric 2L+ pole to magnetic 2%
pole. For one pure v and one mixed v the coefficients
(with no neglections) are given by Ling and Falkoff®

for a mixture of electric quadrupole and magnetic dipole
and a pure dipole or quadrupole. For a correlation with
a pure conversion transition of multipole index Z; and
either parity and a mixed vy-transition in which the
radiation field is electric 2%2*! and magnetic 222 the
correlation function is

Wea(8) =1 (1+ &)1 5% B,(Ly, 7){ €4, (y— )

y=2

+ A4, (y— ) exy,(Lo) 4, } P,(cosd). (54)

The. choice of == sign in the cross term depends on
whether the mixed transition occurs first or second
but note that, in the absence of a reliable nuclear model,
the sign of € is undetermined. However e is real.?® The
A4,¢™ are the coefficients for the pure 272! electric,

LI B S B S S NN N L B R R I M NN I B
L MAGNETIC  DIPOLE 1

o8

08|
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0.2
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70 2.0 30 EX 5
k

F16. 2. Same as Fig. 1 for magnetic 21-pole transitions.

22 magnetic radiations correlated with a pure y—2%t
pole. The normalization is always 4=1. Of course, for
pure radiations the 4, are parity independent and the
indices e or m merely serve to indicate whether one uses
Ly+1 or Ly (respectively) for the multipole index for one
transition along with L; for the other. The quantities x
and y,(L) are defined by Lloyd.?* The coefficients 4,
are given in Lloyd’s tables? but 4, corresponds to the
correlation Jy(L1)J(Le+1)J Ly and these are not
included in reference 21. The required coefficients
(4,9(y—17)) can readily be obtained from the tabu-
lated ones. In the transition to J-+ L.

Ao=[TJ(La—2)=3(La+1)J44' /T (Lo+1). (55a)

The superscript ¢ has been dropped and Ao refers to
the correlation involving Jo=J4Ls+1 as given in
reference 21. For the transition to J— L2

Ag=[J(Ly—2)+4Lo+ 114"/ (J+1)(Lt+1)  (55b)

with A, referring to a transition to J—L,—1. If
L.,=1, (dipole-quadrupole mixture),

Ay=—=2Q2J+5)A4/T; Jo=J+1 (55¢)

or
Ay=—20QT=3)AL")T; To=T—1.

% S, P. Lloyd, Phys. Rev. 81, 161 (1951).

(55d)
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The above correction factors cover the vast majority
of experimentally realized cases.?® For correction factors
for correlations involving quadrupole-octupole mixtures
or higher multipoles in cascade with quadrupoles or
higher (L:22), reference should be made to the Racah
function tables.?

(f) Triple Correlations

For a triple cascade in which three radiations are
emitted successively the procedure for converting from
a standard correlation, say y—+y—+, to one in which
one or more y-rays are replaced by conversion electrons
is just the same. One inserts a factor b, for each con-
version electron. Consider, for example, a triple cascade
in which the correlation between only the first and
third radiations is observed. The correlation function
with conversion electrons replacing either the first or
third or both first and third y-rays is obtained by
inserting ,(1) or 5,(3) or b,(1)d,(3), respectively, in the
y1— s correlation:

Woa1=vs(8) =3 4,P,(cosd).
y=0

Designating the cascade by J1(L1)J(Ls)J'(L3)J 2, where
L refers to a pure 222 pole y-ray, we have 37, =mini-
mum of [ Ly, Ls, J (or J—%), J' (or J’—%)7]. The coef-
ficients A, are given elsewhere.?”

B. Results

From Egs. (46) and (48) it is obvious that for both
electric and magnetic transitions all the coefficients

L L s B L B B DO SN AR A B B

ELECTRIC QUADRUPOLE

Fi1G. 3. Same as Fig. 1 for electric 22-pole transitions.

b, (v>2) are readily obtained from b; by
v(r+D[L(L+1)—3]
3[2L(L+1)—»(v+1)]

26 According to M. Goldhaber and A. W. Sunyar, Phys. Rev.
83, 906 (1951), multipole mixtures should occur only for Le=1
(i.e., magnetic-dipole plus electric quadrupole). If Ly=1 and/or
J=1 or 3/2, v»=2 and only the coefficient A, enters so that
(55a, b) give the complete correction factor to Lloyd’s tables in
this case.

27 Arfken, Biedenharn, and Rose, Oak Ridge National Labora-
tory Report No. 1103 (1951).

by(m)—1= (bo(m)—1) (56)

(w=e or m), so that only bs need be tabulated for each
multipole.

In Figs. 1-10 the coefficients b are given as functions
of k for 12 values of Z in the range 10-96 for ten multi-
poles: L=1-—5 electric and L=1-—5 magnetic.?®
Figures 5, 7, and 9 give the b, coefficients for electric 23,
24 and 2% poles for the smaller Z-values and these
coefficients for the same multipoles and for the larger
Z-values are given in Figs. 5a, 7a, and 9a on an enlarged
scale. The lowest k-value for which computations could
be made is k=0.3(Z<78) and k=0.5(Z>78).

For smaller & values, in the electric case, extrapolation
toward the threshold can be made with the aid of the
nonrelativistic limit:

bo(e)= LIL+1)/TLL+1)~3], (az<1, k<L), (57)

For the magnetic transitions the “nonrelativistic” limit
is Z, k dependent.5 Experience with the corresponding
limits for the conversion coefficients? indicates that
this limit may be somewhat less reliable in the magnetic
case. As an additional guide in extrapolation we can
use the fact that W (&) >0 by definition. From this it is
possible to conclude that for both electric and magnetic

transitions
—2<bL1; L=1

1028 05(); L>1.

Compare Egs. (46) and (48). The fact that the non-
relativistic limit (for electric multipole) is an upper
(L>1) or a lower (L=1) bound is a more useful extra-
polation aid for the electric than for the magnetic
transitions.

The high energy limit can be obtained by using the
Casimir approximation® (asymptotic forms of the radial
Dirac functions are used). Then one finds immediately
that ba(w)=1(r=e or m) and thus all b,(w)=1. This
implies that at high energies the conversion electrons
give the same correlation function as the corresponding
cascade with a photon replacing the conversion electron.
The fact that the two limits; nonrelativistic and high

(57a)

LN S R S B Ay I BN SR N IR S R RN BN B |

MAGNETIC QUADRUPOLE J

F1G. 4. Same as Fig. 1 for magnetic 22-pole transitions.

28 The numerical results from which the curves of Fig. 1-10
were obtained are given in Rose, Biedenharn, and Arfken, Oak
Ridge National Laboratory Report No. 1097 (1951).
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F1G. 5. Same as Fig. 1 for electric 23-pole transitions.
Only lower Z values shown.

energy approach a common value with increasing L is
clearly evident from the results which show a decreasing
sensitivity, so far as energy dependence is concerned,
with increasing L. The limit Z=0, for magnetic multi-
poles only, also gives a photon correlation; that is,
b,(m)=1 for all ». The electric multipoles have the

T T T T T T T T T T T T T T T T
ELECTRIC 2% POLE

1080[—
1040}— —

88
1030~ 3
1020~ g,
1.010}— ﬁ¥"; ~

[ e T T T T T O R R s
5 10 15 2.0 25 30 35 4.0 45 50

Fi1c. 5a. Same as Fig. 5 for the higher Z values and on
an enlarged scale.

opposite Z-dependence; that is, they increase with
decreasing Z (except for L=1 and k< 1) and for L>2
the values of the b, coefficients as given lie between
unity and the Z=0 limit:
12L
by(Z=0)=14

C[L(LA-1) = 3TL(LA1)E+4L]

1.0 20 30 40 50

Fic, 6, Same as Fig. 1 for magnetic 2%pole transitions.

It will be noted that for cascades in which v,,=2 the
sign of the anisotropy, W(d)—1, is reversed as com-
pared to the y-ray case for the low energy electric dipole
conversion electrons but is the same for other cases.

The authors are indebted to Dr. C. L. Perry, Mr.
Carl Perhacs, and Mrs. N. Dismuke of the Mathe-
matics Panel, Oak Ridge National Laboratory, for
performing the computations.

APPENDIX A. SIGN CONVENTIONS,
PROPERTIES OF THE SPINORS

Throughout we use the Condon-Shortley™ definition
of the spherical harmonics ¥ ;. This differs by a phase

O T T T T T T T T T T T T 1T T T T T 1T
1180 b2

ELECTRIC 2° POLE

1160

1140

1120

* 1100}

1080]

1.060f

1.040)

1.020)

T
5 10 15 20 25 30 35 40 45 0
k

1000l

F1G. 7. Same as Fig. 5 for electric 2%-pole transitions.

(=)™ from the definition adopted in reference 15. We
also use the well-known result that

L+-L
Y MV M= %

v=|L—L’|
XCOOLL’VCM_M,LL’VYVM+M’.

[@L+1D)@L'+1)/4r(2+1) ]
(A1)

r T 1 1 T T T T T T T

ELEGTRIC 2* POLE

Fi1G. 7a. Same as Fig. 5a for'electric 2%-pole transitions.

The representation of the Dirac matrices is defined by
(5) and a= pyo where

( k
o=
i+

in terms of the cartesian unit vectors i, j, k. The Pauli
spinors introduced in (10) are such that

i—ij

-k

oexyT=27x;". (A.2)
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The discussion of the Dirac spinors (types (¢) and
(6)15) is unified by the introduction of « the eigenvalue
of K [Eq. (9)]:

Wk)=k, k>0
“ =1, x<0 A4

so that , which is a nonvanishing integer, specifies both
7 and I. Then the Pauli central field spinors are

XK”=ZT Cu-—'r fl(K)%iX%TYl(x)u_T (AA-S)
with the properties (capital letters in (A.6-10) designate

operators)
o= (k] =5 (e[ +3)xe, (A.6)
Joxeh= uxe, (A.7)
- D=0 U0+ Dxe = x(x+1Dxe#,  (A8)
(o L+1)xe= — kxi#, (A.9)
(/1) oxF=0rxet=— X (A.10)

LA L LA A N s B S B p

MAGNETIC 2% POLE

Fic. 8. Same as Fig. 1 for magnetic 2%-pole transitions.

The relation between x.* and the Q;# introduced in
Eq. (41) is

Xt = (=) A8 (— 0 s,

where S(x) =sign of x.
For the spherical cylinder functions (Eq. (7)),

d 14«
(’_'l‘“—) Ziwy(pr)=pS(K) Zy—ny(pr). (A.11)
dr’ 7

APPENDIX B. SOME PROPERTIES OF THE VECTOR
ADDITION AND RACAH COEFFICIENTS!

Repeated use is made in Sec. IT and III of various
symmetry relations for the vector addition and Racah
coefficients. For convenience these are listed below. We
consider the vector addition coefficient Cmimems?1727, In
the notation used we omit ;3 (the z-component of js)
or, in general, the third subscript since in all cases it is
the sum of the first two. Then,

L L L L B B I
ELEGTRIC 25 POLE

LI I I |

10—

1.00}

5 10 5 20 25 30 5.0

x

35 40 a5

Fic. 9. Same as Fig. 5 for electric 25-pole transitions.
Comymat = (— ) itHr=i5C _uy g iiseis
= (= )it i isCgmy 21178
= (=)™ (275+1)/ (252+1) JICrmy —myts
= (=) 2rm[(255+1)/ (251 1) PC —mgmyBsi2it

=(— ) z'1—i3+m2[(2j3+ 1)/(2j1+ 1)]%Cm2 —mgl293d1,
(B.1)

S I B O A

ELEGTRIC 25 POLE

T T T 1717 T]

F1G. 9a. Same as Fig. 5a for electric 25-pole transitions.
The Racah coefficients obey the following symmetry
relations:

W (abed; ef) =W (badc; ef ) =W (cdab; ef)

=W (achd; fe)=(— )t/ —=W (ebcf ; ad)

= (— )=t (aefd; bc) (B.2)
and all the other relations which can be obtained by

.Q[lll‘llllmen‘nw}zﬁpéuslll[IIVI__

Fic, 10, Same as Fig. 1 for magnetic 25-pole transitions.
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combining two or more of the operations indicated in
(B.2). The Racah coefficients are introduced in the
foregoing by the following:

Cmyme?172iCmy4momg? 1374

= ZJ(2J+ 1)%(2]“— 1)%Cm2m37.27'3JCm1m2 +m3i1]7‘4

XW (j1jejajs; 37)-  (B.3)
We also use
(LA 1)Cu W (LLL~3L—; v})
= (2L—1)Col 1 I~
XW(L—1L—-1L—-%L—-%;v%), (B4)

PHYSICAL REVIEW

VOLUME 85,

CALLEN

(QLA+1)Cot W (LLL—~} L+}; v})
=[(2L—1)(2L+-3) JiCo 1kt

XW(L—~1L+1L—% L+3;v%) (B.S)
and

(2L—»)2L+»+1)

WLLL—3% L—1%; v})= B.6
( 2 2 Vz) 4L2(2L—|—1)2 ( )
2L+1—v)(2L+2+
WALLLA} L3 vh) = ) LY
A(L+1)2(2L+1)?
v(v+1)
WLLL+% L—3%; vb) = . (B.8)
AL(L+1)(2L+1)
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A Note on the Adiabatic Thermomagnetic Effects
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The thermodynamic theory of the transverse adiabatic thermomagnetic effects is extended; and the
final complete set of thermodynamic relations among all thermomagnetic effects is summarized.

1. INTRODUCTION

N a previous paper! various thermomagnetic? effects
were analyzed by the methods of irreversible thermo-
dynamics, which provides a framework whereby any
thermomagnetic coefficient, when once defined, may be
expressed in terms of a set of six independent constants
of the material, called the “kinetic coefficients.” It was
shown that, in addition to the Bridgeman relation,
there exist further relations among the thermomagnetic
coefficients. Because of the complexity of the formulas
for the thermomagnetic coefficients in terms of the
kinetic coefficients, these predicted relations could only
be given implicitly in (I), and only the limiting forms
for small fields were given explicitly. In a recent paper,?
however, Mazur and Prigogine have shown that a
particular inversion of the fundamental equations
greatly simplifies the resultant formulas and allows the
new relations to be obtained in explicit form. Moreover,
the adiabatic Hall and Nernst effects were specifically
excluded from the analysis in (I) because, as will be
seen, the analysis of these effects requires an extension
of the methods there employed. Here again Mazur
and Prigogine® have considered the problem and have

1H. B. Callen, Phys. Rev. 73, 1349 (1948), hereafter referred
to as (I). '

2We abandon here the rather cumbersome division of the
effects into thermomagnetic and galvanomagnetic effects, and we
simply use the first term to imply all such effects in a magnetic
field.

3 P, Mazur and I. Prigogine, J. phys. et radium 12, 616 (1951).

given a treatment of these effects, which is valid for
metals. The general theory of these effects will be given,
and the final complete set of thermodynamic relations
among all thermomagnetic effects will be summarized.
I wish to acknowledge here my conversations with
Dr. Mazur and Professor Prigogine, in which the
clarification of these problems was jointly evolved.

2. THE DEFINITION OF THE ADIABATIC EFFECTS

For definiteness we shall first consider the adiabatic
Hall effect. This effect concerns the appearance of a
transverse potential gradient when a longitudinal elec-
tric current flows perpendicularly to a magnetic field.
The appropriate boundary conditions are that no longi-
tudinal temperature gradient nor any transverse cur-
rents of either heat or electricity may exist. The
adiabatic Hall coefficient R, is then

R,=(potential gradient),/H,(eJ ), 2.1)
with the conditions that
dT/dX=0Q,=7J,=0. 2.2)

Here H, is the magnetic field, taken in the Z-direction;
eJ. is the longitudinal electric current (e being the
electronic charge) ; eJ, is the transverse electric current ;
Q, is the transverse heat current, and T is the tempera-
ture.

Although Egs. (2.1) and (2.2) seem at first to provide
a quantitative definition of the adiabatic Hall coeffi-



