SECONDARY EMISSION FROM COMPOSITE SURFACES

(b) The energy for enhanced secondary emission
corresponds to the energy required to-liberate an elec-
tron from the filled band to the vacuum. This indicates
secondary electrons originate from the filled band and
that the energy required is the threshold energy of
secondary emission.

(c) The drifting in secondary emission yields noticed
with thicker surfaces may be due to field enhanced
secondary emission produced by positive charges at
the surface of the material.
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A new process for the annihilation of fast positrons is discussed,
in which a positron with insufficient energy to excite or disintegrate
a nucleus by collision, annihilates a K electron of an atom with
subsequent excitation or disintegration of its nucleus. If the
positron energy is close to threshold for the process, competition
from two-quanta annihilation does not occur. The process is of
first order and, apart from the occurrence of negative energy
states, is the reverse of internal conversion. The cross section can
be factored into a cross section for annihilation with emission of
a photon converging on the nucleus times a probability for nuclear
disintegration. In the electric dipole case, the latter is just the
ratio of the photodisintegration cross section to the P-wave
blackbody absorption cross section of the nucleus. The photo-
disintegration cross section is taken from experiment.

The annihilation cross section in light elements has been cal-
culated in the Born approximation using the complete retarded
interaction corresponding to converging spherical waves of electric

I. INTRODUCTION

HE purpose of this note is to discuss a new type
of annihilation process for positrons.! Consider a
positron incident on an atom with less kinetic energy
than would be needed to disintegrate the nucleus. If
the positron annihilates an orbital electron, the energy
released, which is greater by ~2 mc? than the initial
kinetic energy, may be sufficient to produce a nuclear
disintegration in the same atom. A possible competitive
process is the two-quanta annihilation of the positron
in which one of the quanta produces photodisintegration
of a nucleus of the same kind. This competitive process
will not occur, however, if the positron energy is suf-
ficiently close to threshold, since one of the quanta in
two-quanta annihilation must take away a minimum
energy ~mc?/2.
The annihilation-disintegration process may be
described as a transition of an electron from an orbital
state into a vacant negative energy state in the con-

1 A preliminary abstract appeared in Phys. Rev. 83, 238 (1951).

dipole radiation (the nucleus acts as a sink for these waves, in
addition to conserving momentum). For large incident energy of
the positron (>me?) the difference between positive and negative
energy states can be neglected approximately, and the cross
section obtained by detailed balancing from the internal con-
version coefficient. Insofar as accurate values of the latter are
known in the proper energy range for high atomic numbers Z,
the annihilation cross section for very fast positrons can be
obtained to a good approximation for the same values of Z.

Numerical estimates have been made for the disintegration of
Be? with emission of a neutron and also for the disintegration of
U8 resulting in nuclear fission. The total annihilation-disin-
tegration cross sections near the threshold in these two cases are
~107% cm? and ~1073 cm?, respectively. The total cross section
for an annihilation-excitation of In!®® into an activation level for
the metastable state, resulting in the formation of a nuclear
isomer, is found to be ~10726 cm?.

tinuum corresponding to the incident positron, accom-
panied by a nuclear transition from the ground state
into an excited continuum state corresponding to disin-
tegration. The mechanism for the process and the
perturbation that induces the transitions is the complete
retarded electromagnetic interaction between the elec-
tron and the nucleus. Clearly our process would be the
reverse of internal conversion were it not for the negative
energy states. The close relation to internal conversion
will be taken advantage of in the following discussion.

In Section II we show that the annihilation-disin-
tegration cross section (v,q) can be factored into a cross
section for annihilation with emission of a spherical
wave of photons converging on the nucleus (o4,) times
a probability for nuclear disintegration. The latter is
just the ratio of the nuclear photodisintegration cross
section to the maximum (blackbody) absorption cross
section of the nucleus for the photon. In the absence of
an adequate nuclear theory, the cross section for the
nuclear photoeffect is to be taken from experiment. In
Section III we make use of a theorem that for large
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incident energy (>mc?) of the positron, the difference
between positive and negative energy states can be
neglected in the annihilation calculation, i.e., the nega-
tive energy wave functions replaced by positive energy
functions for the same energy. In this limit the anni-
hilation cross section o4, can be obtained by detailed
balancing from the internal conversion coefficient. In
Section IV the cross section o4, is calculated relativis-
tically in the Born approximation using the retarded
interaction corresponding to converging spherical waves
of electric dipole radiation. Finally, in Section V, some
estimates are made of g.4.

II. FACTORING THE CROSS SECTION

Although the annihilation-disintegration process is a
radiation process of the first order in the sense of per-
turbation theory, it can be thought of as occurring in
two steps because of the factorization of the cross
section previously mentioned. This is quite similar
to the case of internal conversion in which the nu-
cleus is treated as a source of diverging electro-
magnetic waves. For simplicity we assume that only
electric dipole radiation is involved. Since the absolute
square of the matrix element of the perturbation is the
same for a given process as for the statistically reverse
process (assuming the same normalization), we shall
substitute for our matrix element, the appropriate
matrix element for the reverse process, which is simpler
to calculate because of the connection with internal
conversion. The reverse process is this: the nucleus in a
dissociated continuum state makes an electric dipole
transition to the ground state; an unobservable electron
in a continuum negative energy level absorbs the nuclear
radiation, going to the K-shell and leaving behind an
unoccupied negative energy state (positron). The matrix
element of the perturbing energy is

1l = [wmvar=—e [ @+awpar @)

. where « is the Dirac matrix vector, ¥y is the Dirac
function for an electron in the K-shell, ¥; is the Dirac
function for a free electron in a negative energy state
(normalized in unit volume), and ® and A are the
electrodynamic scalar and vector potentials repre-
senting diverging waves of electric dipole radiation
coming from nuclear sources of transition charge and
current densities '

o= e(x,*xie-*iw t+ XfX.'*ei“’ t)’
1= (el/2M3) (x*Vxi— x:Vxs*)e 9! 4-c.c.

Here x; represents the ground-state nuclear wave
function and x; the wave function for the dissociated
nucleus. For simplicity we represent the nuclear transi-
tion as if only one nuclear particle of charge ¢ and mass
M were involved. The electric dipole case is obtained
by taking x; and x; to represent S and P states. Pro-

0
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ceeding by well-known methods,?? the solutions for the
retarded potentials are found to be

®(r)=WMyido(r), Ao(r)=(r—2—ikr™1) cosfeir=ut),

A.(1) =WE15A;(I), A (1)= —ikr—lgithr—od) 3

W= N,=0, Em;F fdr’ x7r’ cost'x;,

where the conjugate complex terms have been dropped
as noncontributing to the radiation process. Here
k=w/c and P;; denotes the nuclear electric dipole
matrix element. The scalar and vector potentials in (3)
are just the usual expressions for an electric dipole
oscillating in the z direction at the origin in the con-
ventional gauge, the power radiated being 4w*|Mts:|2/3c3.
The use of the conventional gauge avoids the complica-
tion of singularities at the origin.* Inserting (3) in (1),
one obtains for the annihilation-disintegration cross
section (for one K-electron)

Gaa= (2/10) |Myi|?

< 2>'Pm @

where v is the velocity of the incident positron and p,
the density per unit energy of the final states of the
dissociated nucleus. Equation (4) is averaged over the
initial spin states of electron and positron, and also over
angles between the incident direction of the positron
and the direction of the oscillating dipole.

The cross section ¢4, for annihilation of the positron
and orbital (K) electron, with emission of a spherical
wave of electric dipole radiation converging on the
origin (center of the nucleus), is normalized to one
photon passing per unit time through a sphere about
the origin. The previous expression for |H;/|? can be
used if |I;|2 is replaced by 3%/4k%. The number of
final states per unit energy corresponding to one photon
emitted per unit time is 2/2wh, since there are two
photon states with different polarizations allowed in the
elementary cell of area 2«7 in the energy-time phase
space. Hence for one K-electron

Gag= (2 T12) (37 44Y)

fdnbff(—" edo—ea,A)Yi

><<I f Ayt (—edo—ea, AW 2>(2/21rﬁ). 5)

The nuclear matrix element It;; enters the cross section
for the nuclear photoeffect in the case of an electric

2H. M. Taylor and N. F. Mott, Proc. Roy. Soc. (London)
A138, 665 (1932). The electric quadrupole case is here worked
out in detail.

3 A more rigorous discussion than the one given by Taylor and
Mott has just been published: N. Tralli and G. Goertzel, Phys.
Rev. 83, 399 (1951).

4+S. M. Dancoff and P. Morrison, Phys. Rev. 55, 122 (1939).
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dipole transition. This cross section may be written
o= (27/hc)(2mhe) | My:|*pn, (6)

where the radiation potentials are normalized to one
photon per unit volume and the normalization of the
dissociated states is the same as in (4). Assuming the
nucleus to act as a blackbody, the maximum absorption
cross section for a photon of 2! pole radiation would be
(214-1)7k2 or 3wk for electric dipole radiation. Com-
bining Egs. (4), (5), and (6) we obtain

Oaa=0aq* (0 pn/37k72). )

From the definition of o, it is clear that the nucleus,
in addition to conserving momentum in the annihilation
process, acts as a sink for the annihilation radiation. The
ratio op/3mk~? represents the probability that an
incoming photon will cause a photodisintegration of the
nucleus. Hence the cross section g.q can be factored as
mentioned in the introduction.

III. THE CROSS SECTION IN THE HIGH ENERGY
LIMIT RELATED TO THE INTERNAL
CONVERSION COEFFICIENT

In the limiting case of positron energy greatly in
excess of mc?, it is possible to obtain the annihilation-
converging photon cross section o,, directly from the
internal conversion coefficient. This result will be seen
to follow from a theorem which was first used by
Solomon® to relate the cross section for one-quantum
annihilation of a very fast positron with a K-electron
to the cross section for the photoelectric effect in the
K-shell. The theorem may be stated in general form as
follows: In a radiation process involving the annihilation
of a free positron with a bound electron, provided that
the positron energy is large compared to mc?, the nega-
tive energy state solutions of the Dirac equation may be
replaced by positive energy solutions for the same
energy, and the cross section will be the same as for a
corresponding process involving the capture of a free
electron of the same energy as the positron into the
same bound state. The theorem is readily seen to be
valid in the Born approximation, i.e., if plane wave
functions are used to represent the continuum states.
That the theorem cannot be strictly true for a finite
nuclear charge seems evident from the lack of sym-
metry with respect to the nuclear charge in the two
processes which are compared. Nevertheless, in the
particular application made by Solomon, the theorem
proves to be much more accurate for large values of the
atomic number Z than would be expected from the
Born approximation, since the condition Ze?/#v<1 is
not fulfilled.® The substantial error incurred through
the use of plane wave functions appears to be nearly
the same in the two related processes in spite of the

5 J. Solomon, J. phys. 6, 114 (1935).
8 This has been pointed out by J. C. Jaeger and H. R. Hulme,
Proc. Cambridge_Phil. Soc. 32, 158 (1936).
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lack of symmetry with respect to the nuclear charge. In

‘view of this result, we may expect the theorem to have

greater accuracy in the present application than would
be anticipated on the basis of the Born approximation.
It follows, then, that for positron total energy
E>mc?, the cross section g4, must be approximately the
same as for capture of a free electron of energy E into a
vacancy in the K-shell, accompanied by the emission of
a spherical wave of electric dipole radiation converging
on the nucleus. The latter is precisely the statistical
reverse of an internal conversion process, and ¢4, can
thus be obtained in this limit from the internal con-
version coefficient by using the principle of detailed
balancing. According to the latter one must have

PeWaqg= PqWic- (E>> mcz)’ (8)

where w,, is the transition probability per unit time
corresponding to gaq, Wi is the transition probability
per unit time for the reverse process (internal con-
version), p. is the number of electron states per unit
energy per unit volume, and p, is the number of photon
states per unit energy per unit time. Taking into
account both spin directions of the electron and both
polarization directions of the photon, one obtains

pe=pE/mcl® and pg=1/rh. ©)

Since the free electron states are normalized in unit
volume, the incident flux is v=¢?p/E and o, is given by

(10)

where £=E/mc>>1. Equation (10) is probably a good
approximation even for large Z. Now w;, represents the
number of electronic transitions per unit time from the
K shell to the continuum induced by a nuclear electric
dipole radiating one photon per unit time; i.e., just the
internal conversion coefficient for one K electron. A
relativistic calculation of the internal conversion coef-
ficient in the Born approximation, due to Dancoff and
Morrison,* gives in the high energy limit

Oaq= THA(E?— m?c*) w; 22w (h/mc)2E 2wy,

wi =23 (£>1) (11

where a=¢?/#c. Equation (11) is independent of multi-
pole type and order. Substituting (11) into (10) one finds

oag=mo(Z/E)*(&/mc  (E>1). (12)

Hence, if the Born approximation is used, Eq. (5) of
the preceding section must reduce to Eq. (12) in the
limit of very fast positrons. Equation (12) is accurate
only for low atomic numbers (Z<137) because of the
use of the Born approximation. The Z? dependence of
0aq 1S to be contrasted with the Z% dependence of the
cross section for ordinary one-quantum annihilation. In
the latter process the emitted photon, which goes to
infinity, is represented by a plane wave and the nucleus
serves only to take up momentum ; in the former process
the emitted photon is represented by a spherical wave
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converging on the nucleus and, in this case, the nucleus
takes up momentum and absorbs the energy of the
photon. Equations (10) and (12) are not quite adequate
for our purposes, since the positron energy is not always
greatly in excess of mc?, being restricted to values close
to the annihilation-disintegration threshold to avoid
competition with direct disintegration and two-quanta
annihilation.

IV. CALCULATION OF THE CROSS SECTION
FOR INTERMEDIATE ENERGIES

Assuming that Z<137, we proceed to a direct evalu-
ation of Eq. (5) in the Born approximation—i.e., using
plane waves for the continuum eigenfunctions. The
matrix element to be calculated is

Hy'= —e(30/449)} f UM Aot ad Ydr,  (13)

where ¥, and ; are given in transposed form by

V7= (1a®) Y —LiaZ cosh, —LiaZ sinfeit, 1,07/,

(ms)r=3
| . )
= (ra®) "} —}iaZ sinfe~¢, JiaZ cosf, 0, 1]e~"'e,
(ms)/=—%
4
2\ I _ _ SN~
e (E-I—-mc) 10, cp: ’ c(patipy) ——
2E B E4mc®  E+mer
(ms)i=%
(15)
E+-me®\ T —c(pa—ipy) cp. |
2E B E+mc*  E+4mc?]

(ms)i=—3.

Equations (14) give the Dirac eigenfunctions for an

“electron in the K shell neglecting o22%=(Z/137)?; the
effect of screening can also be neglected (a= #2/me®Z).
Equations (15) give the eigenfunctions for a free electron
in a negative energy state normalized in unit volume.
The propagation vector K= p/#, the momentum p and
the energy E in Eq. (15) all refer to the positron instead
of the negative energy electron. On substituting (3),
(14), and (15) into (13) and carrying out the matrix
multiplications neglecting small terms of order aZ, one
obtains for (m,);=%

H;/"= —ieG(E){cp.(E+mc?)~Y(J+ikL)—1I},
(ms)r=3% (16)
= —ieG(E) {c(patipy) (E+me?) " (J+ik~'L)},

(ma)y=—%
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where
G(E)=[(3%/4k)- (1/ma?)- (E+mc*/2E) T,

I= der——le——r/a+zkr—-zK.r’

17)
J= f drr=1 cosfe~r/atikr—iK.1,

L= f drr—2 cosfle=rletikr—iK.x,

The integrals are readily evaluated by using the
familiar expansion of ¢/¥* in terms of Legendre poly-
nomials and spherical Bessel functions, together with
the addition theorem for the Legendre functions. The
evaluation of the radial part of the last integral requires
some care at the lower limit. Both £ and | K] are very
much greater (~137) than a™!; hence e~/ plays the
role of a convergence factor in the integral and ¢ appears
in the final result only through the normalization factor
for the K shell wave function. This accounts for the Z3
dependence of o,, which was noted in Sec. ITI. The
integration gives ,
I[=—4x(BP—K%), K=|K[>a, E>a,
J+ik" L= —4m cost’ Kk~1(k*— K%,
where 6’ denotes the polar angle of K—i.e., the angle
between the incident direction of the positron and the
direction of the oscillating dipole. |Hy” |2 is averaged
over spins and also over the angle §’. Neglecting the

K-shell binding energy we set k= (E+mc?)/hc. After
some elementary calculation it is found that

Fog= w2/ MOV (B 26+3)- (1) (1)1
‘ (19)

(18)

This reduces to Eq. (12) in the limit £>1. Because of the
use of the Born approximation, Eq. (19) is accurate
only for Ze?/hiv<1. The effect of replacing the plane
wave functions (15) by the exact Coulomb wave func-
tions for the continuous spectrum would be to decrease
the cross section. The order of magnitude of the cor-
rection to Egs. (12) and (19) can be seen from the
reverse process: internal conversion in the K shell of
electric dipole radiation. The Born approximation
formula* for the conversion coefficient, when compared
with the results of numerical calculations” with con-
tinuous spectrum Coulomb functions, is found to be too

"large in the case of the heaviest elements in the energy

region of interest (a few Mev) by about a factor of two.
It is to be noted that the interaction between the in-
cident positron and the orbital electron has been ignored,
in accordance with an approximation customarily
followed in the theory of creation and annihilation
processes.®

7H. R. Hulme, Proc. Roy. Soc. (London) A138, 643 (1932);
B. A. Griffith and J. P. Stanley, Phys. Rev. 75, 534 (1949); Rose,
Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79 (1951).

8 W. Heitler, The Quantum Theory of Radiation (Oxford Univer-
sity Press, London, 1936 and 1944), p. 198.
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V. CONCLUSION

Consider the application of formulas (7) and (19) to
the disintegration of Be® with emission of a neutron.
The binding energy of the neutron is 1.67 Mev® and
the cross section for photodisintegration has been
measured!® in the neighborhood of the threshold. If the
positron has an energy E of 2.85 mc? and a two-quanta
annihilation process! takes place, one of the photons
must carry away a minimum energy of 0.59 mc? and the
greatest energy that the other photon can have is just
barely in excess of the Be® threshold. Accordingly,
possible competition from two-quanta annihilation
cannot occur for energies E<2.85 mc?. No direct disin-
tegration of the nucleus without annihilation is possible
for positron energies £<4.26 mc® Guth and Mullin’s
calculations® of the photodisintegration cross section of
Be?, based on a potential well interaction between the
neutron and residual nucleus, show that the important
transitions at low energies are electric dipole in char-
acter. Hence formula (19), developed for the elec-
tric dipole case, is directly applicable. For E=2.6
mc?, Eq. (19) gives: 064,=3.1X1072° cm? "The ex-
perimental photodisintegration cross section op, is
6X10~8 cm? at hw=3.6 mc®. From Eq. (7), cu=1.7
X 10~% c¢m?, and this must be doubled, because of the
two electrons in the K shell, to give a total annihilation-
disintegration cross section of 3.4X10735 cm? Nearer
to the threshold (E= 2.3 mc?), the total cross section is
6.9X107% cm?

A larger cross section is expected in heavier elements
because of the Z* factor, although this is partly com-
pensated by having larger values of £ An interesting
case would be the annihilation-disintegration of ura-
nium, resulting in nuclear fission. Photofission in
uranium has been investigated near the threshold by
Haxby et al.’* who found a cross section (o) of
3.5%X 10727 cm? for vy-rays of energy 6.3 Mev, produced
by bombarding fluorine with protons. The same value of
hw would be obtained in an annihilation of a positron
of total energy E=11.5 mc* (taking account of the
K-shell ionization energy). Since £>1, we first apply
the high energy formula (12) which is independent of
multipole type and order. The result for the total
annihilation-disintegration cross section is 5X10~%
cm? Although the energy is high the large value of Z
makes the Born approximation very unreliable. A
better result is obtained by using formula (10) together
with an accurate value of the internal conversion coef-

9R. C. Mobley and R. A. Laubenstein, Phys. Rev. 80, 309
(1950); A. O. Hanson, Phys. Rev. 75, 1794 (1949).

10 Russell, Sachs, Wattenberg, and Fields, Phys. Rev. 73, 545
'(1948); Snell, Barker, and Sternberg, Phys. Rev. 80, 637 (1950);
unpublished results of E. Segré and L. G. Elliott. .

1P, A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 361 (1930);
H. A. Bethe, Proc. Roy. Soc. (London) A150, 129 (1935).

2 E, Guth and C. J. Mullin, Phys. Rev. 76, 234 (1949).

13 Haxby, Shoupp, Stephens, and Wells, Phys. Rev. 59, 57
(1941); Arakatu, Vemura, . Sonada, Shimizu, Kimura, and
Kuraoka, Proc. Phys.-Math. Soc. Japan 23, 440 (1941).
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ficient calculated with continuous spectrum Coulomb
functions. We assume the transition to be electric dipole
in character.!* Using the tables of Griffith and Stanley,”
one finds that the internal conversion coefficient for
Z=92 and hw=12.3 mc* and for one K electron is given
by : w;=1.64X107% This is smaller by a factor of 2.39
than the Born approximation value.* On substituting
into Eq. (10), and thence into Eq. (7), doubling to take
account of two K electrons, and increasing the result
by fifteen percent for the contributions from L, M, and
higher shells, we obtain a total cross section for the
annihilation-disintegration process of 2.5X1073L cm?
for positron energy E=11.5 mdc>.

One may also consider a process in which the nucleus
is excited instead of being disintegrated. The nuclear
excitation might be detected, for example, by the forma-
tion of a nuclear isomer.!® Miller and Waldman!® have
located the principal activation state for the In''s
isomer at 1.04 Mev above the ground state. In their
experiments the nuclear excitation was produced by
bremstrahlung from a monoenergetic electron beam
incident on a gold target. From the observed over-all
cross section and Guth’s calculations!” on the brem-
strahlung isochromat, they have estimated the cross
section for production of a metastable level by a photon
of 1.04 Mev to be of the order of 1072 cm? In con-
sidering. the activation of In!'®* by positrons, one sees
that no direct excitation of the 1.04-Mev level® is
possible for positron energies E<3.04 m¢? and that the
same level cannot be excited in a two-quanta anni-
hilation if E<1.77 mc?®. An annihilation-excitation of
the type considered in this paper can take place if the
positron has an energy E=1.10 mc? Assuming the
transition to be electric dipole in character and applying
formula (19), one obtains for ¢,, the value 1.12X10~2¢
cm? Since Ze¢*/hv=0.86, the Born approximation is
unreliable. The K-shell electric dipole internal conver-
sion coefficient for Z=49 and hw=1.04 Mev is too large
in the Born approximation by a factor of 2.2, according
to the tables of Rose, Goertzel, ef al.” A comparable
error is expected in the stated value of 4. Taking
an=10"2 cm?, correcting roughly for the Born ap-
proximation and doubling ‘to take account of two K
electrons, one obtains a total annihilation-activation
cross section in In'® of 3X10~% cm? Although this
cross section is much larger than those previously cal-
culated, the process can only take place if the positron
has just the right energy (within a fraction of an electron
volt).

14 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948); J. S.
Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).

15 This was suggested to us by P. R. Bell.

16 W, Miller and B. Waldman, Phys. Rev. 75, 425 (1949).

17 E. Guth, Phys. Rev. 59, 325 (1941).

18 Miller and Waldman (see reference 16) have found a lower
activation level in the neighborhood of 0.87 Mev with a cross
section 100 times smaller than the cross section for the 1.04-Mev
lEevelz. %\Io (;lirect excitation of this level by positrons is possible if

<2.7 mc?.



