
PH YS ICAL REVIEW VOLUME 85, NUMBER 3 FEBRUARY 1, 1952

Wave Function of Ionized Lithium*
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A nonrelativistic wave function for the 1s2s '5 state of singly ionized lithium has been found by using an
expansion of the function in Legendre polynomials of the cosine of the angle between the lines joining the
electrons to the nucleus. Previous work had indicated that the distance dependent coeKcient of the angle-
independent term of the expansion predominates over the others. This made it possible to obtain an accurate
function by computing to high precision an approximate value of the coefficient as a function of the distances
of the electrons from the nucleus. The calculation of this function of the two distances was facilitated by the
separability of the wave equation satisfied by the function. An additive correction to this function and also
the distance dependent coeKcients of higher order Legendre polynomials, all of which were comparatively
small, coujd then be calculated by relaxation and numerical variational methods of less accuracy. Application
of tests based on the virial theorem and Green's theorem to the wave function were used as criteria of
accuracy. The Ritz integral led to the energy value —1.135724 RIzcZ', where E is Rydberg's constant for
lithium, Z is the atomic number, and h and c are Planck s constant and the velocity of light, respectively.
This result compares favorably with the experimental value, corrected for the relativistic e8ect and nuclear
motion, of —1,135722~0.000025 RhcZ . The hyper fine structure integral 1+c of Breit and Doermann was
found to have the value 1.06191+0.00003.

I. INTRODUCTION prescribed energy, exact particular solutions can be
constructed, therefore, in such a way as to satisfy
boundary conditions for each electron at the nucleus
and at infinity. On account of the antisymmetry of the
space function in the two electrons it is also necessary
to make the wave function vanish when the two elec-
trons are at the same distance from the nucleus. By
employing a 6nite number of terms and an energy
value which is only slightly inaccurate, the latter con-
dition can be satis6ed only approximately. An initial
approximation is obtained by minimizing the integral
of the square of the wave function for the line in two-
dimensional space on which the wave function must
vanish. A correction to the wave function is then
worked out by a method similar to Southwell's relaxa-
tion procedure. This correction term is a solution of the
differential equation for the angle independent function
and is arranged to cancel the residue of the initial ap-
proximation on the line of equal distances. The im-
proved angle independent function is then used in the
coupled equations to determine the functional coef-
ficients of higher order Legendre functions. Changes in
the coefficient of the Legendre function of order zero

- necessitated by the last step are then worked out, and
the consistency of the whole solution is reexamined.

A %AVE function for the is2s 'S state of singly
ionized lithium has been obtained by Breit and

Doermann, ' using a variational procedure. This func-
tion gave a value of the energy parameter in agreement
with the experimental value tp about 1 part in 3000
and was used to compute the hyperfine splitting with an
uncertainty of about 1 percent. The object of the
present paper is to extend this work by obtaining a
more accurate wave function, and, particularly, to
develop a method suitable for this purpose. The method
of solution, which was suggested by Breit and used in
the present work, consists of the following steps and
reasoning.

Disregarding spin dependence the wave function of
an S state can be represented exactly in terms of the
length of the lines joining the two electrons to the
nucleus and the angle between them. The agreement
with experiment of the function obtained by Breit and
Doermann indicates that the function may be approxi-
mated by neglecting its dependence on the angle between
the two lines. The function is therefore expanded in a
series of Legendre functions of the cosine of this angle.
The coefficients of the Legendre functions depend on
the two distances and will be occasionally referred to as
"functional coefficients. " Substitution into the Schro-
dinger equation yields an infinite set of co.upled equa-
tions between these functions of the two distances. The
solution is started by first neglecting all but the coef-
ficient of the Legendre function of order zero, i.e., by
assuming an angle independent approximation. In this
approximation the wave equation is separable as is
clear from the work of Breit and Doermann. For a

II. GENERAL EXPANSION

The wave equation considered here is the Schrodinger
equation for a particle without spin. The effect of spin
dependent terms on the energy may be calculated by
means of this wave function employing standard per-
turbation methods and will not be discussed until the
end of the paper. In calculating the wave function it is
convenient to take as coordinates the Euler angles
which specify the orientation of the' electronic triangle
formed by the nucleus and the two electrons, the dis-
tances r&, r2, and the angle 8 which specify the size and
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shape of the triangle. Here rj and r2 are, respectively,
the distances of electrons 1 and 2 from the nucleus, and
0 is the angle between ri and r2. For 5 states the wave
function does not depend on the Euler angles. ' The dif-
ferential equation for f is Eq. (39) of Breit and Doer-
mann's paper, vis. ,

[8'/Br '+ B'/8r2'+ (1/ri'+ 1/r2') (8/sin888) (sin8B/B8)

+) /4+1/. +1/. -1/(Z")]~=0 (1)

Here q =rir~f and r&2 is the interelectronic distance. The
units of the energy parameter P and of length are
pe4Z'/2h'=RhcZ' and Ii'/2lie'Z=a&r'/2Z, respectively,
where e, k, are, respectively, the electronic charge,
Planck's constant divided by 2x while Z is the atomic
number; the symbol p is used for the reduced mass of
the auxiliary two-body problem in which one electron
is supposed to move in the fieM of the Li' nucleus. A
partial justification for the employment of this kind of
reduced mass is obtained by observing that the most
important e6ect on the hyperfine structure arises from
the coupling of the is electron to the nucleus and that if
the 2s electron were absent the employment of the
reduced mass has been justi6ed by Breit and Meyerott. '
The Bohr radius u~' is the value which the Bohr radius
of hydrogen wouM have if hydrogen had an atomic
mass 7. The boundary condition on p is that it vanish
when either rj or r2 is zero or in6nity. In addition,
since the term is of the triplet system, the wave function
is antisymmetric in space coordinates and

q (r&, r2, 8) =0, (ri ——r2). (2)

Further, it is possible and also convenient to work in the
region rj) r& and determine the rest of the function by
means of Eq. (2).

To solve Eq. .(1), the function y is expanded in a
series of Legendre polynomials

and the primed summation over m is for mal. The
summation over rl, is broken off because of the fact that
the integral of three Legendre functions vanishes if the
index of one exceeds the sum of the indices of the other
two. ' Nonvanishing values of the integral start there-
fore with e=

~
l—m

~

and extend to e=
~ l+m .

Solution of the wave equation will be simpli6ed if
one of the terms in the expansion of Eq. (3) is much
larger than the others. The following considerations
show that Cp predominates over the other terms. The
homogeneous equation,

[B2/Br@+B'/Br2' —t(t+ 1)(1/ri'+ 1/r~')+), /4
+1/ri+ 1/r —Mi&/(2Z)]xi =0 (7)

de6nes a set of orthonormal eigenfunctions x~(:"', with
eigenvalues X~&") with the understanding that x~ satisfies
the boundary conditions on y. The function corre-
sponding to the lowest eigenvalue is the best first
approximation to y and it can be seen from Eq. (7)
that this is yp() with eigenvalue Xp&'), since both the
term t(t+1)(1/rP+1/rP) and the change in M~i raise
the energy for l&0. The equation for xp&", which is
essentially Eq. (39') of Breit and Doermann,

[B'/Br '+B /Brg+Xp& &/4+(Z —1)/Zri+1/rq]xo~"
=—[z+ (Xo&'&/4)]go&'& =0 (8)

is just the Schrodinger equation for the inner electron
moving in the unscreened nuclear potential —Ze'/ri
and the outer electron in the p6tential —(Z—1)e'/ri
corresponding to complete screening by the inner elec-
tron. This picture leads one to expect xp~" to be a good
first approximation to q. With the eigenvalue 'Ap&'),

there exists no other solution of Eq. (7), so that each
C~ for l&0 must be a solution of the inhomogeneous
equation, Eq. (5). If each Ci is expanded in a series

y(ri, r2, 8) =Z&=0"(2l+ 1)'4i(ri, r~) Pi(cos8). (3)

The interelectronic distance r~2 is also expanded as

C'l =&l&l " xl "

the coefficients ci'"&, obtained from Eq. (5) are

(9)

1/ra= (1/ri)2~=0" (r2/ri) "P (cos8), (ri) r2) (4)

Substitution of these expansions in Eq. (1) .and inte-
gration over 0 leads to a set of coupled differential
equations for the functions C&. These are

[B'/Br '+ B'/Br '—l(l+ 1)(1/ri'+ 1/r2')+ X/4

+1/ri+1/r2 —Mp/2Z]4 (= Z 'Mi„C„/(2Z). (5)

Here the coef6cient M~„ is

Mi„——(21+1)&(2m+ 1)&(1/ri)

f7t

X&o'+ (r2/ri)"~ PiP P„sin8d8 (6)
p

2 In principle the possibility of separating the Euler angles has
been covered by E. Wigner, Z. Physik, 43, 624 (1927). An explicit
treatment of separation of angles employing only elementary
methods is found in G. Breit, Phys. Rev. 36, 383 (1930).' G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 {1947).

cia"&=4(xi&"&, Z 'Mi C )/[2Z(». —X«"&)]. (10)

If only the interaction with Cp= xp'" is considered, this
becomes

ci&"&=4(xi&"&, (r2'/ri'+') yoi &)/[Z(2l+ 1)&(X—)i &"&)]

(10a)

The functions y~&" have no nodes in the interior of the
region for all /, y~&"' have nodes for n&0. Therefore

~
(yi" yo ")

~
&

~

(xi&'&, &toi")
~
&1, and since ri'/ri'+'&1

for all but a small part of the region near r2= r~ and for
r&&1, the inequality

1(x '"' (r '/r '+')x '")
I
&I(*'",(r '/r '+') x "')

I
&1

also holds. This, together with the fact that X—Xii"&~

increases with increasing n shows that ~ciao& ) ~c~'"&~,

4 See, e.g. , Whittaker and Watson, Modern A-nalysis (Cambridge
University Press, I.ondon„1948), p. 331, ex. 11.
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III. ITERATIVE PROCEDURE AND ANGLE
INDEPENDENT APPROXIMATION

Returning to Cp it is seen that this function may be
separated into two parts,

C)p —C)p(o)+@p(1) (12)

with Cp&"=cp&"xp&" the solution of the homogeneous
equation obtained by setting l=0 and neglecting the
right side in Eq. (5), and Cp( ) =Xi cp( 'Xp("' a suitably
chosen particular solution of the inhomogeneous
equation.

If the problem consisted only in obtaining a solution
of Eq. (5) for 1=0 and with prescribed C„(»)2)0) there
would be no objection to adding to Cp&'& an arbitrary
constant multiple of Cp&". Such an addition would
modify, however, the values of the 4& obtained by
solving Eq. (5) for /)0. An iterative procedure of
solving the equations becomes impossible, therefore,
unless a closer speci6cation of Cp") is made. In principle
any definite specification can come under consideration
and the uniqueness of the solution of the Schrodinger
equation assures one of the equivalence of all convergent
procedures. Considerations based on the Schrodinger
perturbation theory, for which we are indebted to
Professor Breit, have indicated, however, that for
securing convergence it is advantageous to require that
4'p~ ) be orthogonal to Cp&'& at all stages of the iterative
process.

The method of solution of Eq. (5) used in the work
reported on is as follows:

(a) The function C1O(P) is determined by a special
method capable of relatively high accuracy on account
of the separability of Eq. (8); Cp(') will be referred to
as the angle independent approximation.

(b) Using C'o(" on the right side of Eq. (5), C1(') is
calculated.

(c) Newly computed functions C„(P) are introduced
on the right side of Eq. (5) and the functions Ci
improved.

(d) The function C p(') is calculated using the functions
C 1 obtained as in (c).

If necessary, Cp&'~ is introduced into the calculation of

and therefore a rough approximation to 4 g is c~~') x~& ), or

C' ~4()(1"' (» '/»i'+') Xo"')X('"/
[Z(2t+1)&(~—),(-))]. (11)

Equation (11) shows that in this approximation Ci is
negative if yp&" is positive, and that the order of mag-
nitude of 4 ~ decreases with increasing l. That 4 ~ and 4 p

should have opposite signs is to be expected. Indeed on
account of the electronic repulsion, there should be a
preference for the situation in which the electrons are
on opposite sides of the nucleus. This preference is
exhibited by negative coefficients for I'& in Eq. (3)
when / is odd.

the functions 4& and the cycle continued until the
desired precision is obtained.

It is essential to have a good solution Cp( ) because
it is the only part of C giving direct contributions to the
hyper6ne structure in distinction to contributions
through the normalization integral, because it is the
largest term in y in most of the configuration space, and
because it is important in determining the 4 ~ for /) 0.
The function C'p(') satisfies Eq. (8) and the boundary
conditions on p2. Since Eq. (8) is separable for»1)»2,
the solution can be expressed as a linear combination
of products of the type w(»1)v(»2). The boundary con-
ditions at r~= ~ and r~=O can be satis6ed by taking
functions such that w(pp) =v(0) =0. The antisymmetry
condition at r&= r2 can be satis6ed only by adjusting the
coefficients of an in6nite series of such products and
then only if the energy is exactly right. A relatively
good approximation can be obtained, however, using a
finite number of terms, and a correction function which
will be relatively small can be found by other methods.
It is therefore convenient to put

C 0 = ppo+ apl ppo= Zl cjwj (71)vj(»2).

These functions satisfy the differential equations

(13)

),p(P)+ (g—1)2/(g2P)+ 1/j2 —0 (14 4)

One of the parameters j or k may be chosen at will and
it is convenient to take j=1, 2, 3 so that the
functions v; are hydrogenic functions which do not
depend on the value of P p'". The completeness of this
system of functions assures the possibility of the expan-
sion. After a change of the independent variable, Eq.
(14.2) assumes Whittaker's form of the equation for the
conQuent hypergeometric function. The functions m,

~ Meyerott, Luke, Clendenin, and Geltman, Phys. Rev. 85, 393
(&9S2).

I Z+ 0 o("/4)3p o+p, ) =0, (14)

[Z+ (l(p("/4) jppp
——0. (14.1)

The function yp is the initial approximation of the
introduction. The sum ppp+ o21 is the angle independent
approximation of the heading of the present section.
A value —1.13550 was chosen initially for )p(". By
means of the perturbation formula for energy' the
improved value —1.13544667 was arrived at and used
in the final calculations. The value —1.1354 obtained
by Breit and Doermann has been used as a guide in the
choice of the 6rst trial value of Xp&'). The solution for
Cp&" was obtained as follows. Separating variables in
the equation for pp one 6nds the following equations
for m; and v,

w "+[—(~—1)'/(4~'&')+(~ —1)/(«1)3w =o (14 2)

v,"+[—1/(4j')+1/»2]v, =0, (14.3)

where primes indicate di6erentiation -with respect to
r~ or r2. The parameters are related by the equation
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were taken to be proportionaj. to the%hittaker functions
for the values of k determined by Kq. (14.4). &y em-

ploying this choice for the solution of Eq. (14.2) one
assures the condition that the wave function vanish
term by term for r~= ~ as long as r2&r~. It is not
necessary to do anything about r~&rj because for such
values the solution is obtained by antisymmetrizing the
solution for r~&r~. Values of m, computed at large rI
from the asymptotic series were used as starting values
for a numerical integration of Kq. (14.2) toward the
origin using the method of Hartree. ' At small r~, z,
was computed by means of the series in ascending
powers of rj. The two tables of m; were checked for
smoothness of joining at «,=0.9 in units aii'/2Z.

In order to make ooo(«, «) as small as possible the coef-
hcients c; are adjusted so as to minimize the expression

f= "["(«,«)Vds ) [o o(«i, «o)] d«id«„(»)

where s is measured along the line r~ = r2. This procedure
determines only the ratios c;/ci, but the normalization
condition

determines the remaining common factor in the c;.
The calculation of the initial approximation was

combined with improvements in the value of the energy.
These can be made by means of a formula which follows
from Green's- theorem or else by means of a nearly
equivalent formula which follows from a variational

. statement of the problem. It will be supposed that the
value of Xoi@ in Eq. (14.1) for which ooo has been com-
puted ls slightly ln crrol. This imperfect VRluc wiB bc
denoted by 4AO so that

by C. In the application, A is the area of the 45' sector
of the r j, r2 plane bounded by the lines r2= 0, rg= r2 and
extending to infinite values of («i'+«o')'. If qo is a
sufficiently good approximation to C to make Bazoo/B«i

sufFiciently close to BC/Bn one has the approximation

A.—Ao—— yo(B(po/B«i)ds, vapo'd«id«o (16.5)

in which all quantities are known from the initial ap-
proximation po. In the work reported on the approxi-
mation of Eq. (16.5) was not as accurate as was desired
without an estimate of Bipi/Bio for use in Kq. (16.4). A

way of calculating the energy correction is furnished by
a variational formulation of the problem which is
especially suitable for the applicati. on of the numerical
variational method' used in .the calculation of y~.
According to this

—Avio+ Vpo=Aopo, (17.2)

the variational statement of the problem can be put
in the form of BA=O as in Eq. (17) but with

A —Ao= '

'

[(p'yi) '+ (V Ao) &pio-jd«id«—o

RA=0, A=
) f(~C)'+VC'Id«, d«o

( )

takes place of the differential equation for C, arbitrary
variations being supposed to be performed on this
function. Representing 4 as

(17.1)

with po 6xed and satisfying

[)~o 1preii minors = 4Aoq

while the value of Xo&oi in Eq. (14) will be supposed to
be accurate and for it.

ooo(B ohio/Be) ds 4 d«id«o, (18)
t'

%riting
Z=d, —V; A=B'/B«io+Bo/B«oo

(16.1)

(16.2)

C=C &') (16.3)

one applies Green's theorem to 4 and po interpreting
6 as the divergence of a gradient and obtaining

A —Ao ———
~I ooo(BC/BN)ds t 4yod«, d«o (16.4)

J ~„

where the 6rst integral is taken over a contour C
enclosing area A and where B/Bn denotes differen-
tiation with respect to a normal to C drawn outward
from A. The second integral is over the area enclosed

6 D. R. Hartree, Mem. Proc. Manchester I.it. and Phil. Soc.
77, 9i (1932).

account being taken of the fact that ipo+ ooi ——0 on C.
For smaH values of yo on C the contour integral in curly
braces in the preceding formula can be expected to be
larger than the integral over the area because
depends approximately linearly on ooo(C) while Booo/Bio

approaches a 6nite and nonvanishing limit. It is pre-
supposed that the contour integral does not vanish to
a higher order than yo, such a condition implying
special circumstances. Under the foregoing conditions
Eq. (18) gives again the approximation of Eq. (16.5).
While this approximation shouM apply for infinitesimal

yj, it was found necessary to correct for the integral
over the area in the numerator of Eq. (18) employing
values of y~ available with suKcient approximation
from calculations made by means of the numerical
var'1RtlonR1- IlMthod. In this manner lt, has bccn found
possible to carry out successive improvements in A and

p&, the procedure showing every evidence of stability,
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Equation (18) shows that the calculation of pi and
A.—Ap involves the knowledge of yp in a somewhat
secondary manner for the calculation of the normaliza-
tion integral and that besides its value on C must be
known also. The normalization integral requirements
can be taken care of in principle with any accuracy by
tabulating pp at small enough intervals. The require-
ments on C are tied in with the treatment of p& by
means of a two-dimensional net. Work with the latter
would be prohibitively heavy if the net were made
much finer than that used. There is consequently a
practical limitation in the fact that on the line rj=r2
the function yp is available in the form of a numerical
table only. The error caused by this circumstance will

be discussed in a later section.
In carrying out the numerical work the values of p&

were first obtained by means of Southwell's relaxation
method and then the somewhat more laborious nu-
merical variational method was applied to these pre-
liminary values. The values were sequenced twice. It is
not certain that this number of iterations was sufficient
to stabilize the values within the accuracy used, but it
is believed that this was the case.

The improvement in the wave function produced by
changing the number of hydrogenic functions in pp from
1 to 3 may be inferred from Table I in which values of

f of Eq. (15) are tabulated against the number of
hydrogenic terms used. These values are for Xp&"=
—1.13550 rather than —1.1354467 which was used in
most of the calculations. If the latter value of Xp"& is
used the value of f; for the three term function
becomes 4.48X10 '. By means of Eqs. (16.1), (18) the
correction to ) p~" is obtained as

the way in which values of p& between net points were
made to depend on values at the net points was varied
and it was found that although the individual cross
terms were affected by such changes the final values of
the potential and kinetic energies were not. Two main
interpretations were used. In one Pearson's inter-
polation formulas defined pppi between net points. In
the other the interpolation surface of the numerical
variational method defined pi.

g&= 2X10—
4,

g2=7X10 ',

g3= 0.7X 10-'

(21)

(21.1)

(21.2)

TABLE I. Values of minimum f for difIIerent number of
terms in q0.

Number of terms fm in

1.1X10~
2.0X 10-4
50X10 '

IV. ANGULAR DEPENDENCE AND RESULTS

The angular terms C ~ and the particular solution C p~"

of the inhomogeneous equation were next calculated
according to the plan described previously. The function
C» was computed first by relaxation methods using just
C 0"& on the right side of Eq. (5). Th'en C» was calculated
using 4»&'& and Ci on the right side of Eq. (5). A less
accurate computation of C» was made using just Cp()
on the right side. The magnitudes of the 6rst three
angular terms were such that

~ 4(A —A.o) = 29.0X 10~

while Eqs. (16.1), (16.4) give

(19) where

4(A —Ao) =30 0X10 ' (20)
g;= C,. dr~dr2 C dridr2. (21.3)

The origin of the slight discrepancy is not known, but it
appears to be below the necessary accuracy require-
ments. The improved value of 'Ap&" is thus —1.1354467
+0.0000290= —1.135418 to about 1 part in 10—'.

A check on the function 4p&" was made using the
virial theorem, according to which, a solution of the
Schrodinger equation with potential energy homoge-
neous of degree —1 should give an average value of the
potential energy equal to —2 times the average kinetic
energy. To test y~ the ratio of the potential to the
kinetic energy was computed for Cp&'& and found to be
—2(1—2X10 '). This check seems to confirm the
order of accuracy of Xp which was quoted previously.

The desired accuracy was obtained by arranging the
calculation in such a way that terms in (V +0)' and y0'
did not require numerical treatment by means of the
net. Since pp is the major part of C a relatively small
accuracy in the cross product terms with p& suKced.
DiGerent methods were used in computing these terms
and checked against each other. In these comparisons

Zo" (co&"&/4) (X—Xo'"')Xo&"'=E. (22.1)

7 K. Pearson, Tracts for Compute~ s (Cambridge University
Press, London, 1920), Vol. III, pp. 8—9, Eq. (IV).

The function C3 and functions with higher t thus
seemed negligible for the purpose of energy and hyper-
fine structure calculation and were not considered
further. The function C~, however, was recomputed,
using C» in addition to Cp&') by means of the numerical
variational method. The final functional values were
not greatly different from those obtained in the relaxa-
tion calculation. In obtaining C~ and C2, it was suf-
ficiently accurate to use Xp in the differential equations
in place of X.

From Eq. (5), one sees that the differential equation
for C p is of the form

(22)

Utilizing the expansion of Co in the form of Eq. (9) one
obtains
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The differential equation for Cp&" is found by subtract-
ing Eq. (14) for Co"& from Eq. (22), and is, writing 4
for Cp(P),

L&+ (X/4) jCo&"=R (1/4) (X Xo&o')4 (22 2)

Slllce 4o——co~'~xo~@, the rrght side of Eq. (22.2) rs,
according to Eq. (22.1) orthogonal to C. This circum-
stance provides a means of calculating the value of X

to be used in Eq. (22.2) to obtain 4 o&'&. It thus appears
as though only routine numerical work remains at this
stage in order to determine both X and 4'p(: . It wRs
found necessary~ however) to cxcl else spcclal eaI'c so
as to avoid an instability in the calculation of Cp&')

which can arise if Eq. (22.2) is not supplemented by an
additional requirement. The difIieulty became apparent
when an attempt was made to calculate Cp&" by means
of Eq. (22.2) starting with approximate values and
employing a relaxation procedure without additional
considerations. The sequencing process employed in
this method kept on changing the values of Cp"&

without Rny cvldenec of Rn RppI'oReh to R llDllt. The
origin of this phenomenon is the fact that Eq. (22.2)
does not de6ne Cp('~ but only restricts it. In fact from
any solution obtained for this function one can form
an in6nite number of other solutions by adding mul-
tiples of the solution of the homogeneous equation
obtained by replacing the right side of the equation by
zero. Since ) and Xp&p) are very closely equal the function
which may be added is a, multiple of 4 within the hmits
of accuracy of the calculation. The addition of a mul-
tiple of 4 cannot be objected to in principle, but if it is
made it becomes necessary to recalculate 4», 4»,
Since any convention regarding the introduction of
multiples of 4 at this stage is as good as any other the
one requiring least work was chosen, re. , the convention
of having Cp(" orthogonal to C. As a result of enforcing
this requirement the numerical treatment was made
rapidly convergent. In order to have a further check
on the values of Cp&'& the direct calculations were sup-
plemented by a variational calculation ma, de as follows.

The differential equation for 4 o'", Eq. (22), is of the
fol n1

The weighting factors used in this work were unity and
R . By nMRns of this test R function with ncally thc
correct shape which has been determined by the relaxa-
tion method is being adjusted for the best over-all fit,
If the relaxation procedure has been carried far enough
the variational value of A should be dose to unity. The
writers are grateful to Professor G. Breit for pointing
out the possibilities of this test as well as for pointing
out the necessity of care regarding orthogona, lization to
4. They are indebted to Dr. R. Thaler for help in
carrying out this stage of the calculation.

In calculating Cp&'~, two diferent sets of numerical
values of the function obtained at diGerent stages of
the first calculations were used as starting values. The
quantity A was computed for each set, and it was then
multiplied by this factor. The new values were then
relaxed once and the function made orthogonal to 4 by
subtracting (Co~",4)4. Therelaxingandorthogonalizing
were repeated until the function had changed consider-
ably. Then a new value of A was computed, and the
whole process repeated until the functions obtained
from the two starting points were in approximate
agreement. The quantity 3 was computed for these two
functions, and the values 0.985 and 0.982 were obtained
when thc weighting factor unity was used. For the
weighting factor E', the values 1;018and 1.011, respec-
tively, were obtained. Over the part of the plane where
4p&" was as much as one-tenth its maximum value, the
diGcrcnec bctwecn thc two functions wRs cvcrywllclc
less than 10 percent and at most points less than 5 per-
cent of either function.

Kith Cp, C~, and 42 calculated and. the remaining
terms of the expansion of y negligible, the energy
parameter X may be computed. Substituting of y in the
Ritz integral leads to the expression

r, ' r, —'jC—P+—(1/—2Z)Z„M( 4(4 Idrjdro/

I Z,C. ,'«Pro. (26)

~ Pl (6+U)g R]'wdr~dr—o (24)

where U and E. are functions of r». and r2. It is supposed
that an approximate solution g of this equation has been
found and it is desired to find the multiplying factor A
which will make the product Ag most nearly satisfy the
equation. Thus the variation with respect to A of the

uRIl tlty

In the numerator there occur contributions arising
from one l at a time and also some cross terms arising
from diferent L. The denominator contains no cross
terms. The largest terms in both numerator and
dcnoIMnator Rlc those for t=0. FoI' pulposcs of CR1-

culation it is convenient to subtract A arranging the
answer in terms of small quantities. One obtains

where m is a weighting factor, is set equal to zero. This
leads to the following expression for 3

A = ~ t E(A+ U)gwdridro t (Ag+ Ug)'wdridro
J (25)

X/4=3+(1/D) ~ ~ (Ti+ To+ To+ T4)dridro
J J„

+(1/D) "4' '"(~o o/~ )d (261)
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where

Ti=2[Vqi VC'o' '+(U A)rpiC'o' i7

T2——(VC Oi")'+ (U—il.) (4 0&")'

I 3 4 0+t)0~0l@l/(2Z),

(26.2)

(26.3)

(26.4)

T4 ZtI—(—VCi)'+[l(t+1)(r& '+r2 ') 1/—r, 1/r2-
+Mii/(2Z)74''+Z giMi 4'(4' /(2Z) I. (26.5)

It is understood that the value of pp corresponding to
A rather than Ap is used in the calculations. The last
integral in Eq. (26.1) is zero provided 40&'~ is zero on all
of C as it is intended to be. It is not quite certain that
the numerical work with the net has secured this con-
dition with sufficient accuracy, but since there is no
evidence to the contrary it was assumed that this
integral may be neglected. The approximation made is
perhaps more dangerous than other approximations
because Brpo/Be is not a small quantity. The values of
the integrals multiplying 1/D calculated by numerical
methods are as follows due to T»= —0.26&(10 ', due
to T2——0.31&&10~, due to T~ (—67.71———4.68)&(10 '
= —72.39&&10 ', due to T4 ——(—3.99—0.11))&10~=
—4.10&(10 '. In recording the contribution of T3 the
first contribution is for l= 1, the second for l=2, and the
same convention is used in recording T4. The rapid
decrease of contributions with increase in / is apparent.
The sum of the terms multiplying 1/D is —76.4&& 10 '.
With the final values of the coefficients c;, the integral
J'J'(cpo)'dridr2 had the value 0.9998139. This number
was not adjusted to be exactly 1 on account of technical
detail which amounted to a time saving device. The
remaining parts of the integral J'J'(4 o~)~dridr2 were
computed in two ways. One method was to apply
Pearson's scheme of integration to the integrands (ppp»

and (p&)'. The second utilized a Taylor expansion of po
near the net points of p» and the numerical variational
interpolation formula for y». Since Cp&" is orthogonal
to 4 o& ~ the only other term in J'J 4'0'dridr2 isJ'f (4,&")'dr&dry, which was evaluated by means of
Pearson integration. The integrals fJ"4»'dr&dr2 and
J'J'Comdr&dr2 were also calculated both by Pearson's
method and using the numerical variational inter-
polation formula. The values obtained for these inte-
grals are given in Table II. Using the figures obtained
by Pcarson's method, the normalization integral
&~JJ'4'Pdr&dr'2 has the value 0.999826, while the figures
from the numerical variational interpolation yield
0.999832. As far as the computation of the energy is
concerned, the difference between these is -negligible.
The term to be added to lio&" in Eq. (26) is —277&& 10 ',
and ) is —1.135724.

This 6gure compares favorably with the experimental
value of —1.135722+0.000025 for the energy in units
EhcZ'. The latter value is obtained by adding the non-
relativistic energy of the inner electron to the difference
in energy-of the 1s2s 'S and 1s' '5 levels given in the

TABLE II. Contributions to the normalization integral
due toffxdr»dr2.

Contribution according
Contribution evaluated to numerical variational
by Pearson's formulas method

2+0+1
Pl

(C'0"))'
@ 2

rIi 22

—206.9X10 '
S.6X10-
0.9X10 6

205.2X10 '
7.2X 10-6

—1929X10 '
5.6X10 '

197.9X10 '
6.8X10 '

tables of the National Bureau of Standards. ' In making
the comparison consideration has been given to the
possible presence of a relativistic energy correction. The
importance of such a correction may be supposed to be
small because the experimental value of the energy is
obtained as the negative of the energy required to
detach the 2s electron leaving one electron in the 1s
state. Considering the problem in the central 6eld
approximation with effective central 6elds assumed
independent of the degree of electron excitation the
relativistic energy correction for the 1s electron is seen
to enter experiment and theory in the same way. For the
2s electron the relativistic factor multiplying the non-
relativistic energy is 1+5Z'u'/16 where n is the fine
structure constant. For Z=3 this factor minus unity is
1.5X10 4. For a 2s electron in a 6eld of Z=3 the
expected addition to ) is, therefore, —0.25&(1.5X10 '
= —3.7)&10 '. However, the ionization energy of the
2s electron in units RhcZ' is 0.135 which is less than the
0.25 assumed in the preceding estimate. For this value
the relativistic correction is only —2.0& 10 '. The value
of Z used here is an overestimate, but the employment
of the experimental energy largely compensates for this
effect. An approximate way of taking into account the
effect of screening is to use the picture of the effect of
normalization employed by Fermi and Segre' and by
Breit." In the notation of the latter reference one has

Zo'/No' 0135Z'——

so that sp = 1.81 and

0'(0)/0 '(o) = (2/3)'(2/1 81)'=0 58.

Here $0'(0) refers to an hypothetical. 2s electron in a
field of Z=3 for which the correction was expected to
be —3.7X10 '. On this basis the correction may be ex-
pected to be —0.58X3.7)(10 '= —2.2&10 '. Both of
the more careful estimates are on the limit of the experi-
mental error. A correction for the nuclear motion is in-
cluded in the use of the reduced electron mass for lithium
in the Rydberg E.This correction had to be applied only
to the difference between —) and unity because the
experimental measurement, being concerned only with
the ionization energy of the 2s electron has to do only
with this difference.

' Bureau of Standards Circular 467 (U. S. Government Printing
M»ce, Washingon, D. C., 1949).

E. Fermi and E. Segrh, Z. Physik 82, 729 (1933).
'0 Q. Breit, Phys. Rev. 42, 348 (1932).
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YAsx,E III. Contributions to 1+e due to J0"Xdr1.

Contribution expressed in
&1.&(0)

treated as an ordinary di6erential equation with ap-
proximate values of a'y&/Br~' obtained from the nu-
merical tables of q~,

pp
2q'0 %1

Is

oIo0(0) oIo0(I)
'

(C'0"')'

j..OQ2-0.00035
0.00002—0.00026
0.0000003

d'q g/dro'+ (x+1/ro) pod
——R'

with x= Xo/4+ (Z—1)/(Zr~) and P(ro) = (Ao —&) poo

B pop/Br/. If y ls a solution of the homogeneous part
of Eq. (28), the function yw will satisfy the inhomo-
geneous equation provided that

(Bp o/aro) o=o=~i'~;~;(ri) (27.2)

The derivative of y~ must be computed from the
numerical tables of this function, and the tabular values
are not supposed to be the actual values of the function
at the net points. Instead they are considered to ap-
proximate the true surface in such a manner that,
within the limitations of the interpolation formula used,
the energy is made a minimum. It was considered de-
sirable, therefore, to improve Bpoq/Bro by other means.
One method. consisted in fitting parabolas in r2 to the
tabular values near r2 ——0 by least squares and com-
puting the derivatives on the assumption that the
parabolas represent q i. These derivatives were checked
by 6tting third-order curves to the same points. Later,
the values obtained from the parabolas were improved
in the following manner. For 6xed ri, the diA'erential

equation for y~ derived from Eqs. (14) and (14.1) was

S. Hugh, es and C. Eckart, Phys. Rev. 36, 694 (1930}.

It is realized that the relativistic and reduced mass
corrections should include additional effects taking into
account the interaction between electrons. For the is2s
con6guration the Hughes-Eckart" effect gives no con-
tribution if one neglects perturbations by other con-
6gurations, and one may expect the mass effect cor-
rection to be sufficiently reliable, therefore. Both
corrections might need refinement, however, and only
their approximate magnitude is relevant in the corn-
parison with the experimental X.

In terms of the functions Cg, the correction factor
1+o appearing in the expression of Breit and Doermann
for the hyper6ne splitting is

00

1+o=Z~ (BC ~/Bro) ro pdrj/fy, (0)Z~ — O'Pdr&dro

(27)

Computation of this quantity is simpli6ed by the fact
that for /&0, the function C ) must be of the order rl'+'
near ro ——0, on account of the term /(?+1)(1/rP+1/roo)
in the diGerential equation. Consequently, only the
term in Co enters the numerator of the expression in
Eq. (27). Here one has

BC'o/Bro= Bqo/Br&+Boo&/Br, +BCo'"/Bro, (27.1)

and the derivative of ooo
——Z~oc;w, (rq)e, (ro) is readily

found. The functions v; are normalized so as to have
unit slope at r2=0 so that

(dl«o) (y'd~/«o) =y& (28.1)

The uncertainty here is principaBy because of inability
to evaluate the integral in 40&0 accurately. Relativistic
corrections are not included. in. the calculation of 1+o.

The authors would like to thank Professor G. Breit
for his continued help and encouragement in the work.
They would also like to acknowledge the help of Dr.
S.Share, then at the University of V(isconsin, in-making
preliminary trials of the method, Dr. R. Thaler of the
Sloane Physics Laboratory for help in the calculation
for C 0&'&, and Mr. S. Geltman in the early phases of the
work at Yale.

APPENDIX A

In order to obtain a check on the function qi, a
perturbation calculation was made as follows. Let 2
be the operator given by

&=a'/arP+a'/aro'yD —(1/Z) j/r, +1/r, r,)r,
Z, = a'/Br/+a'/Bro'+1//re+$1 —(1/Z) j/ro ro&rg.

(A-1)

This operator de6nes the complete, orthonormal set of
functions v, through the equation

(z—A.)e.=0, (A-2)

where v= j. 2 3 ~ and 4~&42&3.3,
. ~ .The function 4

The function y was computed by the method of Hartree'
for about 9 representative values of r~, taking starting
values from a series expansion about r2=0. Two quad-
ratures then gave m. The function pj was taken to be
yw+ay and the constant u determined. in such a way
as to join this function to the numerical tables of yq.
The derivative (Boo~/Bro)„, =o computed. from yw+ay
was used to correct the previously determined values.

A similar method was employed in the case of 40&0. A
third degree curve was. 6tted to the net point values.
near r2=0 and the derivatives obtained from this were
subsequently corrected by means of Hartree type inte-
grations. In Table III are the integrals, aside from the
normalization integrals, which make up the quantity
1+o. In Table III a prime indicates differentiation with
respect to r2. The values in Table III together-with the
value 0.99983 of the normalization integral obtained
from Table II give

1+o= 1.06191+0.00003.
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is taken to be
c'= yp(rl, rp) rl&r2

yp(r2 rl) r2& rl
(A-3)

u„=$1/(A. —A„)] Uv„drldrp,

(A-7)

Along the line r~= ri, 4 is taken to be zero. The function
4 satisfies the differential equation

(& A)c'= 2yp(rl, r2)b (r2 rl) =U(rl r2) (A-4)

where 6 is the derivative of the Dirac 8-function. It is
desired to find the function by, corresponding to y~,
such that

(A-5)

The function by may be expanded in terms of the set
of functions v„, vis. ,

Sy= Z„a„v„. (A-6)

The coeKcients a„are found with the aid of (A-4) and
(A-5) to be

for the inner electron and k for the outer electron, coef-
6cients were computed for the functions v;I, in the
cases of v(3=—v2, v(4, vis, vs, v23, v24, v25, v34, and v45. The
coeKcients were found to become markedly smaller as

j and k increased, as would be expected. Coefficients for
functions of the type vj„where e refers to the continuum
were also computed. The contributions of the con-
tinuum energy spectrum were found to be not limited
to the low energy end but were appreciable up to an
energy equal to about j.4 times the ionization energy of
ionized lithium. It was impracticable to extend the
calculation further, especially since there was no
assurance that the higher energy contributions would be
negligible. Consequently, the calculation was stopped at
this point.

Estimates of the effect of by on the hyperfine struc-
ture integral were made. The main contribution of by
to 1+p is the term

2/(1 —Z a 2)pl.2(0)Zl t ~I Cl'dr, dr,
J

I(gyp/Brp)(B(by)/Br2I rp=pdrl . (A-11)
0

where m=2, 3, 4 . As u& is an inconvenient quantity
to work with, it is better to eliminate it from the cal-
culation by utilizing the normalization condition

(C, C)=1. (-A-8)

Here m»& ' is the S-state hydrogen function for atomic
number Z and principal quantum number 1, corre-
sponding to the inner electron, while +3~ ') is the
S-state hydrogen function for atomic number Z—1 and
principal quantum number 3, corresponding to the
outer electron, which is assumed to be completely
screened by the inner one. Using the subscript j for the
principal quantum number of the hydrogen function

This, together with (A-5), gives for vl the expression

v, = (C+Z„a„v„)/(1—Z„o„2)&. (A-9)

In order to approximate the functions v without
excessive labor, antisymmetrized products of hydrogen-
like wave functions were used, e.g. ,

vp= (2)
—

&Lw, &@(rp)wp&s
—'l(rl)

—w &vl(rl)w &s "(r2)]. (A-10)

The discrete states contributed the amount —0.00013
to this term and the continuum, as far as computed,
contributed the amount +0.00009. This last figure is
not very signi6cant, however, as the contribution of the
continuum at the highest energy calculated was more
than half the magnitude of the maximum continuum
contribution and no estimate could be made of the
contributions of higher energies. The continuum con-
tributions were oscillatory as a function of energy, and
the positive and negative parts nearly canceled each
other, leaving the 0.00009 value as a residue. The per-
turbation calculation values are to be compared with
that obtained using y~, which was —0.00035. It is seen
that the perturbation values confirm the general order
of magnitude of that obtained with the more accurate
yi which was obtained by the numerical relaxation
procedure. They are not felt to be in conflict with the
yi value both because the perturbation calculation was
incomplete and because the functions used in the
expansion were only approximate. The reason for the
large contributions caused by high energy lies in the
fact that very short wavelengths are needed to smooth
the discontinuity in the function C.


