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state of the liquid where this density is larger than in
any other state. But in order to obtain a clearer idea
of the state of a6airs at the approach of the critical
state, we have to consider anew the radial distributoin
in the space of relative momenta. Since Fr,'(k, T)
depends only on the magnitude

~

Ii ~, the distribution in
k-space is isotropic. Hence, the radial distribution
function in this space, that is the number of atoms per
unit volume and per unit relative momentum range,
at small momenta, is

dg(k, T,)
lim =hm4~j'PLFr, '(k T ) —17
k~O dg k~O

= lim47rk'Fr, '(k, T,) = 247r/r p-', (19)

which is finite. But we have just shown, Eq. (14), that
in all states T& T„ this quantity vanishes strictly. We
thus see that in the space of relative momenta the
approach of the critical state, in the limit, is accom-
panied by an accumulation of atoms in the region of

vanishing momenta. This accumulation of atoms in
this vanishing momentum state is entirely similar to
the Bose-Einstein condensation process in ordinary
momentum space of ideal symmetric Quids. On the
basis of the rigorous Eq. (19), valid only in the unique
limiting critical state of normal Auids, it appears
justified to describe this unique state as one of conden-
sation in the space of relative momenta of the Quid

atoms. This is the result which we set out to derive.
In concluding we note that the equivalence of these

two condensation processes in the behavior of the
macroscopic variables of state manifests itself, as
pointed out previously, ' in that the isothermals of these
Quids reach the limiting state of condensation with a
vanishing slope. Finally, it should be added that while
the preceding result has been obtained in the simplest
case of monatomic liquids, its extension to molecular
liquids presents Iio difficulties, so that the condensation
process in the space of relative momenta at the approach
of the critical state is of general validity in liquids,
subject only to the applicability of the correlation
model.
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It is shown that the magnetic moment of nuclei can be explained by a refined j—j coupling shell model,
where neutron and proton shells are treated simultaneously, using the isotopic spin variable. The experi-
mental moments agree well with the calculated ones for those states which have definite isotopic spin multi-
plicity. It is shown that a nuclear force caused by a neutral or symmetric meson is consistent with our results,
but one caused by a charged meson is excluded.

I. ImRODUCTIOm

'HE spin-orbit coupling shell model proposed by
Mayer' succeeded in explaining nuclear magnetic

moments, P-decay and isomerism, etc."In such a one-
particle approximation, however, the nuclear magnetic
moment must lie on the Schmidt line. But, as is well

known, the values of nuclear magnetic moments deviate
considerably to the inside region between two Schmidt
lines, and this deviation has been considered to suggest
that the angular momentum of the outer nucleon does
not hold. It was first suggested that the nuclear state is
a linear combination of two states with /= j—~ and
l=j+~, which correspond to the two Schmidt limits

respectively. 4 But it was soon pointed out that this is

' M. G. Mayer, Phys. Rev. 78, 16 (1950).' Umezawa, Nakamura, Ono, Yamaguchi, and Taketani, Prog.
Theor. Phys. 6, 408 (1951).

' E. Feenberg, Phys. Rev. 76, 1275 (1949).
4 L. %. Nordheim, Phys, Rev. 75, 1894 (1949).

not plausible, since these two states have opposite parity
and cannot combine. Next, the eGect of exchange cur-
rents was examined in order to explain this deviation,
but this effect was found to be not sufficiently large,
and, moreover, the moment can deviate to the outside
region as well as to the inside of the two Schmidt limits
in that theory. '

On the other hand, the nuclear quadrupole moments
. of some nuclei are too large to be expected from a one-
particle shell model, and some types of asymmetric drop
model have been proposed to explain it. ' ' Since the
angular momentum of the outer nucleon is not rigor-
ously constant in the asymmetric drop model, the model
was also used to explain the deviation of the magnetic

~ R. G. Sachs, Phys. Rev. 74, 433 (1948); R. K. Osborne and
L. L. Foldy, Phys. Rev. 79, 795 (1950);L. Spruch, Phys. Rev. 80,
372 (1950).

6 J. Rainwater, Phys. Rev. ?9, 432 (1950).
7 A. Bohr, Phys. Rev. 81, 134 (1951).' L. L. Foldy and F. J. Milford, Phys. Rev. 80, 751 (1950).
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moment from the Schmidt line. ' ' But it was pointed
out that the magnetic moments of B"and N" agree well
with the calculated value, although they have a non-
vanishing spin of 3 and 1, for which, according to the
above model, the deviation from the calculated value
is expected. This seems to be a contradiction to the
asymmetric drop model.

On the other hand, some evidence for the j—j
coupling model has been obtained in the investigation
of lower excited states of even-even nuclei. Boric,
Yamaguchi, Voshida, and one'of the present authors"
have shown that the ground, erst, and some of the
second excited states of even-even nuclei have a spin
of 0, 2, and 4, respectively, except for the closed shell
nuclei, and this fact can be explained easily by the j—j
coupling shell model, while the J—5 coupling model
fails to explain this fact, since a lower odd spin state is
also possible in the latter scheme.

In this paper we propose a refined j—j coupling shell
model, and calculate nuclear magnetic moments assum-

ing some features about the hamiltonians of nuclei. "

III. CALCULATION OF THE MAGNETIC MOMENT OF
NUCLEI WITH (CLOSED SHELL&THREE)

NUCLEONS

The following discussion can easily be extended to
cases of more than three nucleons, but since they are
relatively unimportant we shall limit our discussion to
the case of three nucleons.

The proton and neutron are treated as a nucleon in
different states, using the isotopic spin function

' H. Kopfermann, Naturwiss. 38, 29 (1951).
' Horie, Umezawa, Yamaguchi, and Yoshida, Prog. Theor.

Phys. 6, 254 (1951).
"A preliminary paper was published by M. Mizushima and M.

Umezawa, Phys. Rev. 83, 463 (1951).
'2 L. Rosenfeld, nuclear Forces (North-Holland Publishing Com-

pany, Amsterdam, 1949), Sec. II, p. 402.

II.REMARK ON THE MAGNETIC MOMENT OF NUCLEI
WITH (CLOSED SHELLwONE) NUCLEONS

It may be. worth noting that by the above term,
nuclei with (closed shell&one) nucleons, those nuclei
are meant which have (closed shell&one) neutrons
+(closed shell) protons or vice versa. If we neglect the
contribution of the closed shells entirely, the theoretical
values of the magnetic moment can be obtained
straightforwardly. '2

Comparison of theoretical and experimental values of
magnetic moment for this kind of nuclei was made in
Table I of our preliminary paper. "Among eleven nuclei
cited there, disagreement is found only for B", Al",
and P".

with j=3/2 and 5/2 are shown, since they are the only
practically important cases."

The total wave function 0' must be a representation

x~, according to the well known Pauli principle. Thus,
if T is fixed, the symmetric properties of O(ji, jo, jo)
are restricted. For a charge quartet state (T=3/2)
O(ji, jo, jo) must belong to the representation xi, and
for a charge doublet state (T=1/2), it must belong to
xo, since yiXxo= xi, xoXxo=xo+ pi+ go, and no other
representation can make + antisymmetric. We can see

from Table II that, for Li', Be', and CP', whose con-
figurations are (2po~o)', (2po~o) ', and (3do~o)', respec-

tively, and I=3/2, the angular part of the wave func-

TABLE II. Irreducible representations of O(j1, j2, j3) in S3.

~(= I&ii'I =i)

3/2
5/2

Xo+X&+X2
xo+ x&+2x2

' For other cases see, for example, M. Mizushima and T. Ito,
J. Chem. Phys. 19, 739 (1951).

We assume that the total wave function of our nucleus
can be written as

@= 4(i nner)(R(r„r o, ro) O(ji, j„j,) r(r„~o, ro), (1)

where 4 (inner) means the wave function of the nucleons
in inner closed shell, N. (ri, ro, ro) is the radial wave
function of the three nucleons in the outer shell,

O(ji, jo, jo) is their angular wave function in the sense
of j jcouP—ling shell model, and K(ri, ro, ro) is their
isotopic spin eigenfunction, which means an eigen-
function for a definite

~
T~ = ~P, ~;~. The important

assumption in (1) is that the angular part (including
ordinary spin) and isotopic spin part can be separated
from the other parts.

Since the individual isotopic spin ~ is a dichotomic
variable, the total spin function W(ri, ro, o o), which is
an irreducible representation of the rotation group in
isotopic spin space, is also an irreducible representation
of the permutation group of order three. The represen-
tation to which each isotopic spin state belongs is shown
in Table I, where T=

~
T~ =

~
P, ~,

~

and yo, yi, and xo
are the totally symmetric, antisymmetric, and two-
dimensional representations of the permutation group
+3 respectively.

The angular Part O~(ji, jo, jo) is an irreducible rePre-
sentation of the rotation group. The reduction of the
product representation in this group can be done in the
usual way; but since the spin function thus reduced is,
in general, still a reducible representation of the permu-
tation group, we must further reduce it in the latter
group. The results are shown in Table II, where only
the results for the case of
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tion is uniquely determined for each charge multiplet
state, and for Mg", whose configuration is (3dq~2)

' and
spin is 5/2, there are two independent possible angular
wave functions.

The magnetic moment can be easily calculated if we
know e(ji, j&, j&) and W(ri, r2, r3) explicitly, by calcu-
lating the average of

Li7

Configura-
tion Tg T Peale @exp uSb

3/2 (2p3/2) 3 1/2
1/2 3.07

3/2 0
3.26 3.79

TABLE III. Magnetic moments of nuclei with
(closed shell~3) nucleons.

for I,=I state. The results are shown in Table III. In
this table we see that for Li~ and Be', the calculated
moment for isotopic spin doublet state agrees well with
experiment, while in the case of CP', the value corre-
sponding to the isotopic spin quartet state agrees with
experiment. In the case of Mg", since there are two
independent states for I=5/2, T= 1/2, the calculated
magnetic moment can take any value between the two
limits, unless some further specification on the hamil-
tonian is made. It is interesting that the experimental
result agrees with the lower limit for this state.

IV. DISCUSSION

Our success with the nuclei of (closed shell&one)
nucleons shows that the calculation of magnetic mo-
ments on the Mayer shell model is fairly good. At this
point it must be noted that our interpretation of (closed
shell&one) nucleons is slightly different from hers.
Mayer treated the neutron shell and the proton shell
separately. Thus, for example, a nucleus with (closed
shell&two) protons+(closed shell&one) neutrons is
treated in the same way as a nucleus with (closed shell)
proton+ (closed shell& one) neutrons in Mayer's
scheme. But from our standpoint, they are entirely
different. The former is a nucleus with (closed shell

&three) nucleons, and is treated in Sec. III.
The good agreement between our result and experi-

ment in the case of (closed shell&three) nucleons
shows that the ground states of these nuclei have a
de6nite isotopic spin multiplicity.

In order to be able to assign de6nite isotopic spin
multiplicity to each stationary state, the hamiltonian H
of our nuclei must satisfy a commutation relation

[~ T~', H]=0. There are three typical kinds of charge
dependence of the internuclear force in the meson
theory: the forces corresponding to neutral, symmetri-
cal, and charged mesons. In the neutral meson theory H
does not contain any factor which depends on isotopic
spin; thus it commutes with

~

T~'. In the symmetrical
meson theory, the internuclear potential can be ex-
pressed as f(ri~)~i~~ where f(ri~) is a function which

depends on relative coordinate, ordinary spin, etc.
By a straightforward calculation one can show that
L~T~', P f(r„)~,~;j=0; thus, in th. is case also, each
stationary state has a de6nite isotopic spin multi-

plicity. But in the charged meson theory, in which
P= Q f(r;;) (rr;rr,+r„,r»), ~

T
~

' does not commute
with H. Our result that each stationary state of nuclei
has a de6nite isotopic spin multiplicity is consistent

1/2 -1.14
Be' 3/2 (2pg/2)

—' 1/2
3/2 1.9

—1.18 —1.91

CPS 3/2 (3d3I2}' 1/2
1/2 —0.48

3/2 0.80
0.82 0.12

Mg2' 5/2 (3d'g/2) 3 1/2
1/2 -1.06

to 2.76 —0.96 —1.91
3/2 2.57

a J. E. Mack, Revs. Modern Phys. 22, 64 (1950).
b Value in the Schmidt limit.

with neutral and symmetrical meson theory, but contra-
dicts charged meson theory.

It should be remembered that the coulomb potential
II,=4(e'/r„)(1 rr;)(1 «,) —does—not commute with

~
T~', but this effect is usually not very large, and can

be treated as a small perturbation.
That the ground states of these nuclei, except CP',

are charge doublet states is consistent with the fact
that the ground states of their neighboring isobars, in
which only the charge quartet state can appear, have
much higher energy. Also it can be seen that the theo-
retical estimate of the energy by means of our wave
function yields the same conclusion if an attractive
internuclear potential is used. The latter conclusion is
valid for both the neutral and the symmetrical meson
theories. The details of the energy calculation will be
published in another paper.

The reason that the ground state of CP' is charge
quartet is not clear.

Our result for Mg" seems to indicate that the mag-
netic moment can be diagonalized with H in a space
diagonal in I and T. The operator of the s component of
the magnetic moment is

since the g-factors are common to nucleons in the same
shell. The 6rst term being always commutable with H,
we have only to examine the commutability of the
second term with H. If the range of the internuclear
potential is very small compared to the dimensions of
the nucleus, we can approximate it by the delta-function
8(r@) In this case .we can show without much difficulty
that the H corresponding to the neutral and sym-
metrical theories commutes with M, in our limited
space, by using the commutability of 8(r„) and j„.If
the range of the internuclear potential is larger than
the dimensions of the nucleus, we can expand the
space-dependent factor of the internuclear potential as
q (r;) y(r;)+ y'(r, ) y'(r;) cose„+, where y(r, ) .is a
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function which depends only on the radial coordinate
of the ith nucleon. Taking the average over r, we can
neglect the higher terms in the above expansion under
the above assumption. Thus our hamiltonian reduces
to ag, ';1 and aP,~, ","; for the neutral and the
symmetrical theories, respectively, confirming the com-
mutability of H and

~

T~'."Since the range of the inter-
nuclear potential is 1.5&10 " cm, and the radius of
Mg" is 7&&10 " cm, the present situation seems to
favor the former approximation.

It should be mentioned that the success in the case
of odd-odd nuclei by Feenberg' is also preserved as such
in our theory.

We wish to thank Professor Muneo Sasaki and Dr.
Hisashi Horie for their continued help and encourage-
ment throughout the work. We also owe thanks to
Professors S. Nakamura, T. Yamanouchi, and M.
Kotani, and Drs. S. Tani and H. Narumi for their
discussion.

APPENDIX

The spin function which is a representation of both
rotational and permutation groups can be constructed
as follows:

We start from an invariant formula,

I—g (I (eN (t) —~ (&)I (B)~ii
i&7'.

Xg (n&(")x&+u2(')x2)"—g', (A1)

where i, J, k=1, 2, v, P,~;o,;=vs —S w-ith indi-
vidual spin s and total spin 5, and the gI, 's are so chosen
as to make I a function of order 2s for every I& and N2.

Since, in general, there are m sets of (o... gq) which

satisfy the above condition, we obtain m formulas

I&, I2, I . The representation D(R) of an operator of
the permutation group 8„ is then calculated for all R,
taking I&, I as the basis. H Z&(R) is an irreducible

representation x& of the operator E. and n is an arbitrary
vector of order nXm, where ns is the order of Z&(R),
we can obtain ns linear combinations of I„as:

(I.. .I„)(pg D(R)uZ)&(R)
—')

=(P„g ('I„, , g„a, ("I ). (A2)

Then each linear combination of I„ is expanded, and
the coeScient of x~8+~x2~ ~ is calculated as Og, ~&",
O~~, ~&') ., O~, ~(").This set of 0'&, ~ is the required

spin function which is a representation of the permuta-
tion group 6„, if we put the individual spin function

'4 It may be worth noting that in these cases 3E, commutes with
II in the whole space, in the neutral meson theory.

U), &@ as

P&(e —(~ (o)s+x(~ (())a—x{(e+g)&(e g) &I
—&/2 (A3)

where X=s,.
Some of the explicit spin functions thus obtained are

as follows: For v=3, s=3/2, 5=3/2, and the x' repre-
sentation,

{—(3/2, —3/2, 3/2) —(—3/2, 3/2, 3/2)
+(3/2, —1/2, 3/2)+( —1/2, 3/2, 3/2)
—(3/2, 1/2, —1/2) —(1/2, 3/2, —1/2)

+2(3/2, 3/2, —3/2)I/10"'
and

{3(3/2, —3/2, 3/2) —2(1/2, —1/2, 3/2)
+2(—1/2, 1/2, 3/2) —3(—3/2, 3/2, 3/2)
—(3/2, —1/2, 1/2)+ (—1/2, 3/2, 1/2)

+(3/2, 1/2, —1/2) —(1/2, 3/2, —1/2)I/30"'.

For v= 3, s=5/2, S=S/2 and the x' representation,

{—18(5/2, —5/2, 5/2)+ 10(3/2, —3/2, 5/2)
—7(1/2, —1/2, 5/2)+7( —1/2, 1/2, 5/2)
—10(—3/2, 3/2, 5/2)+ 18(—5/2, 5/2, 5/2)
+8(5/2) —3/2, 3/2) —12 10 "'(3/2, —1/2, 3/2)
+12 10 "'(—1/2, 3/2, 3/2) —8(—3/2, 5/2, 3/2)
—5(5/2, —1/2, 1/2)+9 5 "'(3/2, 1/2, 1/2)
—9 5 "'(1/2 3/2, 1/2)+5( —1/2, 5/2, 1/2)
+2(5/2, 1/2, —1/2) —2(1/2, 5/2, —1/2)
—2(5/2, 3/2, —3/2)+ 2(3/2, 5/2, —3/2)I

X (2 3 7 11 13/5) "'
and

{—6(5/2, —5/2, 5/2)+2(3/2, —3/2, 5/2)
—(1/2, —1/2, 5/2) —(—1/2, 1/2, 5/2)
+2(—3/2, 3/2, 5/2) —6(—5/2, 5/2, 5/2)
+4(5/2, —3/2, 3/2) —2(2/5)"'(3/2, —1/2, 3/2)
+6 5 "'(1/2) 1/2, 3/2) —2(2/5)"'( —1/2) 3/2, 3/2)
+4(—3/2, 5/2, 3/2) —3(5/2, —1/2, 1/2)
—3 5 "'(3/2y 1/2) 1/2) —3 5 "'(1/2) 3/2) 1/2)
—3(—1/2, 5/2, 1/2)+4(5/2, 1!2,—1/2)
+4( /5)"'(3/, /, -1/2)+4(1/2, 5/2, —/ )
—6(5/2, 3/2, —3/2) —6(3/2, 5/2, —3/2)

+12(5/2, 5/2, —5/2)I(2. 7 11 13/5) ')'

The other functions needed in the present calcula-
tion can be easily obtained. In the above formulas
(X&, Xg, Xg) =—V).g(') U&.2("Uxa(').

Note added ie proof. Ross obtained the sa—me results
as are given in Table III.'

'5 E. P. Wigner (private communication).


