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The author's older theory of conduction in polarizable media is generalized in such a way as to include
rectification. An electronic component (positive holes or electrons) and an ionic component (negative or
positive ions) are taken into account. The former are subjected to the boundary conditions of the Mott-
Schottky theory, the latter to the boundary conditions of the author's theory of polarization. Significant
deviations from the Mott-Schottky theory are caused by the ionic component.

In Sec. I the fundamental equations are established in a general way and the boundary conditions are dis-
cussed. In the remainder of the present paper only the limiting case is treated where all impurity centers
are either completely associated or completely dissociated. In Sec. II(a) the general procedure for treating
the time-dependent equations is sketched, and subsequently the special case of simple ac is treated in detail.
An expression for the current is obtained without the omission of any terms LEq. (21)g; however, its '

evaluation requires the introduction of a simplified "zero solution. " Then the complete expression for the
frequency dependence of the equivalent susceptance and conductance is established {Sec.II(b}).Finally, in
Sec. III, the theory is compared with the results of ac measurements performed in this laboratory on locally
manufactured selenium disks. The theory explains the frequency dependence of capacitance and conductance
over the range from about 2000 to 200,000 cps, if the presence of two species of ions of different mobilities
is assumed. Prom this agreement ionic data, i.e. the concentrations of the carriers, their mobilities, diffusiv-
ities, and the thickness of the depletion layer, are derived and discussed.

'HE theory which has been applied with the most
success to the understanding of the rectifying

action of semiconductors is the so-called boundary layer
theory. It was developed in a simpler form by Mott, '
and in a more elaborate form by Schottky and his
collaborators. ' The underlying concept is that the
unipolar resistance of the contact between metal and
semiconductor is mainly due to a thin layer, the de-
pletion layer, which is practically depleted of the mobile
particles, "electrons" or "positive holes, " as the case
may be. The state inside the semiconductor is regulated
by space charge and diffusion and is affected in a sig-
nificant way by the relevant boundary conditions.

This model gives the essential features of the ob-
served characteristics though it proves not to be Qexible
enough to account for the finer details. Thus it was
recognized by Mott and Schottky that field effects, due
to the intensity of the electric 6eld near the boundary,
and to the discrete nature of the perturbing charges;
had to be introduced.

An entire group of phenomena, which are not ex-
plained by the theory as it stands, is related to the
behavior of recti6ers with time, in particular the com-
paratively slow changes in coriductivity which are
observed. It has been suggested by several authors that
these changes may be due to an ionic component of the
current, as opposed to the electronic component so far
studied.

Now, a theory of conduction in polarizable media
based on exactly the same principles as the Mott-

*Part of the work reported here was performed under contract
with the Department of the Army, Signal Corps.' N. F. Mott, Proc. Roy. Soc. (London) A1?1, 27, 281 (1939).

~ (a) W. Schottky, Z. Physik 113, 367 (1939); (b) W. Schottky
and E. Spenke, Wiss VeroBentl Siemens-Werken 18, 225 (1939);
(c) W. Schottky, Z. Physik 118, 539 (1942).

Schottky theory was developed by the author as early
as 1932.' At that time the theory was applied to explain
the well-known time eGects connected with polarization,
and the boundary conditions were chosen in such a way
as to realize this aim. It was not the object of the inves-
tigation, as carried out then, to give account of recti-
fication, and this effect was automatically excluded by
the symmetrical nature of the boundary conditions.
However, it is only necessary to introduce boundary
conditions of a dissymetrical kind, such as used by Mott
and Schottky, to make the theory include unipolar
conduction, i.e., rectification.

It was pointed out in the quoted paper that the
changes in conductivity observed in. polarizable media
can be explained if two kinds of carriers were assumed
present. They were then called ions of the first and of
the second kind, the former being characterized by the
fact that they could not leave the dielectric and there-
fore could not carry a current across the boundary,
whereas those of the second kind were subject to the
usual boundary conditions and could carry a current
across the boundary.

It is evident that this approach to the problem can
be extended to semiconductors and that these lend
themselves particularly well to description by such a
model. U the normal carriers (electrons or positive
holes) are identified with the "ions of the second kind, "
and the ions in the semiconductor with the "ions of the
6rst kind, "the semiconductor will show the phenomena
of polarizability and relatively slow changes with time,
as desired.

In the present investigation the older theory of the
author will be generalized in such a way as to include

' G. IaM, Ann Physik 16, 217, 249 (1933).
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recti6cation. From what has been said above, this
amounts to the same as saying: the Mott-Schottky
theory will be generalized in such a way as to include
mobile ions. However, our treatment, the older one as
well as the present one, is more general than the Mott-
Schottky approach in one other regard. Mott assumes
the chemical equilibrium in the semiconductor to be
established and known, and Schottky treats of it in a
very elaborate way4 under the speci6c assumption that
it is "quasi-thermic, "i.e., that it is not modified by the
passage of the current. This assumption is evidently
correct if the time which the dissociation equilibrium
requires to establish itself is short compared to the time
during which the concentration of the various particles
may change as a result of their motion (in the diffusion
field and in the electric Geld). Thus, the assumption of
quasithermic equilibrium breaks down at least when we
are dealing with ac and when its period becomes com-
parable with the chemical time of relaxation. ' Now it
is our object to include in our fundamental equations
the possibility that the applied voltage varies with time
in an arbitrary way. Then it will not be correct to
calculate the dissociation equilibrium independently of
the passage of the current. The way of avoiding this is
to start from the equations for the rate of change of
each species of particles, instead of starting from the
equilibrium equations (as do Schottky and Spenke).
This leads, in the case of the stationary state, to equa-
tions which establish the modi6cation of the dissociation
equilibrium by the diffusion 6eld and the electric 6eld.

The fundamental equations will be derived in this
more general form because they are meant to serve as a
basis for various problems in the theory of conductance
of crystals, semiconductors, and solutions. However, in
the present paper two limiting cases will be treated only,
and further simplifying assumptions will be introduced.
It will be assumed that there are present in the semi-
conductor either positive holes and negative ions only
(case A: defect semiconductor), or electrons and positive
ions only (case 8:excess semiconductor). Furthermore,
it will be assumed that the impurity centers are, in
case A, completely associated with electrons and, in
case 8, completely dissociated from electrons. Under
these restrictions the problem can be treated in a
general way by a method of successive approximations
for a wide class of time-dependent applied voltages.
However, for the sake of brevity, only the case of simple
ac will be treated explicitly here.

I. THE FUNDAMENTAL EQUATIONS

We are treating the linear case only and assume the
two electrodes to be in the planes x= 0 and x= 1. Dealing
with case A first, we designate by p the concentration
(i.e., number per cc) of the positive holes, by nz and m

4 See reference 2(b), Sec. A.
~ It will be seen in what follows that the assumption becomes

illegitimate even in the case of dc provided the inhomogeneities of
the field and of the particle densjties are sgfgciently large.

the concentrations of the "acceptors" in the neutral and
charged states, respectively. Since we assume all par-
ticles, even the neutral acceptor molecules, to be mobile,
the concentrations p, e~, and n, as well as the Geld
intensity E, are, in general, functions of x and t.

Each time a neutral acceptor molecule associates with
("catches") an electron, an A ion and one positive
hole are formed. This "formation process" may be
considered as being of the first order, since the electron
concentration in the highest band is practically constant.
Hence, the number of positive holes (and A -ions)
formed per sec and cc is given by k&e& where k& is a
rate constant.

Each time an A--ion gives up its electron to a positive
hole, one A -ion and one positive hole disappear (by
"recombination" of the positive hole with the electron).
This recombination process is of the second order, the
number of positive holes (and A -ions) disappearing
per cc per sec being kmpe where p2 is a second rate
constant.

Besides these "chemical" changes, the changes due
to diffusion and to migration in the field must be taken
into account. Let b be the mobility of the positive holes
and D their coefficient of diffusion, then the complete
equation of balance will be

BP/Bt =kin~ k2eP+—DB'P/Bx' bB(PE—)/Bx (I).
If b' and. D' have the corresponding signi6cance for

the negative ions, we obtain in a similar way

Be/Bl= king kmnP+—O'B'n/Bx'+O'B(eE)/Bx (II).
The neutral acceptor molecules do not move in the

electric 6eld but may di6use, hence their equation of
balance is

Beg/Bt = —kgng+k2np+D~B'Ng/Bx', (III)

if D~ is the relevant coeKcient of diffusion.
Finally, the electric 6eld, E, is subject to the Poisson

equation
BE/8$= 47I'6/E(p s) (IV)

if ~ is the elementary charge, and E the dielectric
constant of the semiconductor.

Equations (I) to (IV) are the fundamental equations
of the problem as treated here. They suKce to determine
the four unknowns, namely p, n, nz, and E, provided
adequate boundary and initial conditions are given (see
below).

Our theory is descriptive in the sense that the relevant
"constants" b, D, etc., and the rate constants ki and k2

are considered as known functions of the temperature.
Of course, what is known of these constants from other
arguments6 can easily be incorporated into the present
theory.

It will not be necessary to write down explicitly the
fundamental equations for excess semiconductors (case

6 Compare N. F. Mott and R, W. Gurney, Electronic Processes
in Ionic Crystals (Oxford University Press, New York, 1940),
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e=nr for x=o; e=mir for x=l. (2)

For the ions we retain the boundary conditions of our
older theory. These prescribe that no ionic current can
cross the two boundaries, i.e. , in case A g ):.&&i,"~j

b'nE+O'Bm/Bx=0, for x=0 and x=t, (3)

and in case 8
bpE DBp/Ox=0, fo—r x=0 and x=l. (4)

It is reasonable to assume that the neutral impurity
centers, though mobile by diffusion, cannot cross the
boundaries. Hence, we have the boundary conditions

BN~/Ox=0 or 4lpn/Bx=0, for x=0 and x=1. (5)

8). Let now r4, p, and pn stand for the concentrations
of the free electrons, the positive ions, and the neutral
"donator" molecules, respectively. The relevant forma-
tion process wi1.1 now be the release of an electron by a
neutral donator molecule whereby one free electron and
one positive donator-ion is formed (rate: kapn). The
reverse recombination process consists in the formation
of a neutral donator molecule by the capture of an
electron by a positive ion (rate: k4Pe).

It is easy to show that, with the definitions given
above, the fundamental equations for case 8 are ob-
tained from (I) to (IV) by replacing in these equations
Ng k&, k2, Dz by pn, k3, k4, Dn, respectively.

Our fundamental equations show in what way the
quasithermic equilibrium is affected by the migration
of the particles in the electric field and in the diffusion
field. In the stationary case the left-hand sides of Eqs.
(I) to (III) become zero. However, only if either the
neutral molecules cannot diffuse (D~=O in case A), or
if the ions have no mobility (D'=b'=0 in ca,se A), do
Kqs. (II) and (III) reduce to the mass action equation
n p/e~ kg/k2. ——

In the general case this equation will be correct only
if the differential coeKcients with regard to time, as
well as the local gradients representing the inhuence of
diffusion and migration in the Geld, are sufFiciently
small.

It is easy to write down the fundamental equations in
more general cases, e.g., if electrons, positive holes,
acceptors, and donators are present at the same time.
It can be deduced then that for each species of particles
which are not mobile the corresponding mass action
equation is obtained for the stationary case,

As for the boundary conditions, we have to dis-
tinguish between positive holes (electrons) on the one
hand and ions on the other hand. For the electronic
carriers we assume the asymmetric boundary conditions
as introduced by Mott and Schottky. Thus we prescribe
in case A

p= pr for x=0; p= pn for x=l,

and in case 8

Finally, the field E has to be determined subject to
the condition that the voltage between the electrodes

V(t) = ECx (6)

is a prescribed function of time, related to the applied
voltage U(t)

The initial conditions, together with Eq. (6), deter-
mine the nature of the problem in question.

A few words should be said about the physical sig-
nificance of the boundary conditions as stated. As far
as the electronic component is concerned, there will be
a "depletion layer" at the electrode, say at x=0, if the
values of p& or nr (respectively, in cases A and j3) are
smaller than the undisturbed value which would hold
at large distances from the electrode. However, the
character of the depletion layer will differ both from
that of Mott (no charges whatever), and that of
Schottky (no electronic charges and constant ionic
density). Since it is assumed that the ions are mobile
but cannot carry their charges across the boundaries,
the space charge distribution will vary under the
influence of the applied voltage. In the dc case, and for
the high resistance direction, the ions will run against
the electrode until the ionic current is stopped. This
will cause a space charge opposed in sign to the elec-
tronic component and, therefore, the Row of the latter
will be enhanced. In the low resistance direction the
electronic component will be decreased and the "infinite
catastrophe" of the Schottky theory will be avoided.

The same situation will hold with ac as long as the
frequency is so low that the average time which the
ions take to travel over the distance 1 by diffusion is
small compared to the period. If the frequency becomes
so high that the reverse is true, the ionic Row is no
longer impeded by the boundary layer, and the ions can
contribute to the conductivity according to their
density and mobility. This contribution can be appre-
ciable because in the very nature of the depletion layer
the density of the ions is high while that of the elec-
tronic carriers islow. It will be seen (see Sec. III) that in
selenium this effect is so large that ionic effects com-
pletely dominate electronic effects at frequencies above
a few thousand cps.

Finally, it should be pointed out that the ionic
boundary conditions in the form (3) and (4) represent
an ideal limiting case. Actually the discharge at the
electrodes will be a time-dependent process. The theory
here presented has been generalized in the direction
that the discharge across the boundaries is not alto-
gether prohibited, but is regulated by a rate constant
and the concentration at the electrode. Then there will
be the possibility of an ionic transport across the

' Since we are not going to treat the dc case here, the explicit
relation between V{t) and U{t)-will not be required. It is given in
case (A) by V=U —V, and in case (B) by V=U+V„where V,
represents Schottky's "difFusion potential" (see reference 6,
pp. 70 and 168, and'references 2(b) and 2(c)).
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boundary, and its amount will depend on the joint
actions of the di6'usion and the discharge process.
Thereby the theory becomes applicable to the case of
electrolytic solutions. ' However, this refinement of the
theory is not required for semiconductors, at least not
for the case of selenium here studied. The experimental
results indicate that the limiting case represented by
Eqs. (3) and (4) represents a sufficient approximation.

BP/Bt =DB'P/Bx' bB(PE)/—Bx, (Ia)

BII/Bt =D'O'I0/Bx'+b'B(nE)/Bx, (IIa)

BE/Bx= (4n.0/X) (p—II). (I«)
These equations are not linear and, therefore, can be

treated only by successive approximations. If it is
assumed that the voltage V(t) is a periodic function
which can be represented in the form'

V(t) = p V exp(im0It),

Eqs. (Ia), (IIa), and (IVa) can be treated in a general
way. If expressions similar to (t) are assumed for P, II, E,
and the current density j, the differential equations are
linearized. They can be solved in a formal way if the
6eM is supposed to be known, and this leads to an
alternate procedure for the actual determination of the
unknowns similar to the one given below for a more
special case.

We have carried through the calculations using
infinite series as indicated, " however, for the sake of
brevity we will restrict ourselves here to the simpler
case where the series (7) reduces to its first two terms.

Even then the complete solutions for p, e, E, and j
lllvolvc lllfillltc scl'lcs of tile type (7), owlllg to tile
nonhnearity of the difI'erential equations. This means
physically that a semiconductor described by the

SThis part of the theory and its application to electrolytic
solutions vrill be published later.

Since, for the sake of simplicity, the summation in Eq. {'tt) is
not extended to —~, Eq. {7)does not represent the most general
case. It holds if V(t) is an arbitrary function of time which is
either even or odd.

'0 I'inal report of the Signal Corps Project No. j.52 B.

II. COMPLETE ASSOCIATION {DISSOCIATION}

(a) General Solution

Under this assumption the fundamental equations
simplify considerably since all impurity centers are
supposed to be ionized at all times. In order to make
the formulations less cumbersome we shall treat only
case A explicitly, and shall state the results for case 8
later.

In case A we have ez ——0 by assumption, hence it
follows from Eq. (III) that k0 ——0, i.e., the rate constant
for recombination, mist be negligibly small.

Under these circumstances the fundamental equations
reduce to

i00III+D'(d'll/dx') =b'(dF I'/IEx),

where we have set

F1 EOPI+ E1PO)

F1' =E0II1+Ele0.

If we treat F~ and Fj.
' as known, we obtain the fol-

lowing solutions for Pl

Pl ——hl exP(tI, x)
+& c p(—t x)+(b/2D)t:G (*)+g (x)7 (13)

and Ry

101
——hl' exp(tl', x)+FI'(—tII, x)—(b'/2D')

XÃ,'(x)+&I'(x)7. (14)
Here we have set

t I= t I(1+1:), t I= (~/2D)',

t I'= t '(1+1'), t I'= (~/2D')',

(15a)

(15b)

Gl(x) =exp(tl Ix) exp( —tlly) FIdy,
40

gl(x) =exp( —tllx) exp(tlly)FIdy. (16b)

The de6nitions for G~' and 6'~' are obtained from
(16a), (b) by substituting tll', Fl, for tII, Fl. T—he
constants of integration 8 and P remain to be deter-
mined.

» See reference 10. In that report the theory is applied to the
slow changes in time which are observed upon prolonged applica-
tion of the direct voltage. The results are in qualitative agreement
with observations, including the occasionally observed appearance
of a current maximum, some time after the application of the
field. However, the ionic mobilities necessary to explain such an
event come out to be unreasonably large {ofthe order of ~10 of the
electronic mobility), if a quantitative Qt is attempted.

present model will act as a nonlinear element, i.e., will
respond to a simple harmonic emf not only with the
same period but also with all its overtones. Again,
since we are interested mainly in the simple ac response,
we shall disregard all terms involving ns higher than
one.

Consequently, we assume not only that Eq. (t)
reduces to two terms, but also that all unknowns are
of the form

p= p0+ pl exp(u0t).

The case V~ ——0 has to be treated separately. It
represents the dc characteristic which has been de-
veloped to the second approximation. "However, since
no new observations on the dc characteristic are avail-
able, we shalI not treat the dc case explicitly here.

If the expressions for p, n, and E of the form (8) are
substituted into Eqs. (Ia) and (IIa), these reduce to

i,I0pl D(d'p—l/IEx') = b(dFI—/dx) (9)
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If now Eqs. (13) and. (14) are substituted into the
Poisson equation, an integral equation for E& is obtained
which we shall indicate only in the abbreviated form

Ei= Vi/l+Ei++Ei (17)

The expressions for E~+ and E~ are somewhat lengthy"
and need not be given here since they are not going to
be used. They represent the space charge 6elds arising
from the holes and negative ions, respectively, while V&

is the applied ac voltage.
%e are mainly interested in the current which will

Row for a given value of V&. The total current jt,,&

consists of the displacement current

q, ;.= (E/4~) aE/at

and the convection current

~...= ~[(bPE DaP—/ax)+(b'~E+D'a~/ax)]. (1S)

The resultant value depends on the constants of inte-
gration which, in turn, depend on the boundary condi-
tions. In case A the density p refers to positive holes
and must be subjected to the conditions in Kq. (1).
Since pi and pii are supposed to be independent of
time, the boundary conditions must be realized in the
dc component; consequently, we must demand pi ——0
for x=0 and x=l. This determines 8~ and PI. On the
other hand, n~ refers to negative ions. Hence the
boundary conditions (3) will have to be used, which
determines B~' and F~' to be

h '=~'=(b'/2D')[G'(t) —G '(t)]/
[exp(tii'1) —exp( —t'ai't) ]. (19)

The total current can be obtained in a variety of ways.
The knowledge of Ej+ and E& is not required if the
following procedure is adopted. Since the total current
is the sum of the displacement current and of the con-
vection current, and since BE/Bt reduces under our
assumptions to BEi/Bt, we obtain by simple integration

~l
(ji)„i ia&(E/4')Vi——/1+(1/l)) j„„dx, (20)

where j„ is given by Kq. (18). The integral is easily
transformed if it is taken into account that pi vanishes
at x=0 and x= 1, and if the expressions (11), (12), (14),
and (19) are used. The result is given by

(j i)i,i, i(o(X/4s——)(Vi/t).
pl

+(~b/l) Fidx+ (~b'/t)
~

Fi'dx
0 0

Our equations (13), (14), (17), and (21) for the den-
sities, the 6eld and the current density are rigorous
consequences of the differential equations (9), (10), and
the corresponding Poisson equation. However, they are
formal solutions only, in the sense that they represent
rather complicated integral equations for the, unknowns.
The value of this formal solution consists in the fact
that it leads the way to an actual calculation of the
unknowns by successive approximations. The pro-
cedure is as follows: we begin by assuming any reason-
able zero solution for pi, Ni, and Ei. In the simplest
case, when VO=O and V~ is small, a homogeneous field
and no free space charge would represent such a zero
solution. By the aid of this zero solution improved first-
order solutions for Pi and Ni may be obtained from (13)
and (14), and then for the field from (17), or from the
Poisson equation. -

In this way the procedure goes on by the alternate
use of Eqs. (13) and (14) on the one hand, and of Eq.
(17) on the other hand. Finally, the current density is
obtained from Eq. (21). The value of the procedure
will, of course, depend greatly on the choice for the zero
solution. In the case of dc, only the 6eld Eo has to be
assumed. The assumption of a constant 6eld leads to
Mott's formula, the assumption of a linear field to an
improved Schottky formula which avoids the "infinite
catastrophe. " The zero approximation will be "ade-
quate" if the next step in the alternate procedure does
not modify it significantly.

b. The ac Characteristic

The second term of (21) represents the electronic
contribution. It is not our object here to study the fre-
quency dependence of the impedance. as far as it is due
to the electrons or positive holes, though our method is
applicable. The ac behavior of the electronic component
of semiconductors has been studied by Spenke, "who ob-
tained results which are explicit for small frequencies.
Furthermore, Schottky" has shown that the "internal
time of relaxation" for semiconductors, as far as the
electronic component is concerned, is very short, of the
order of 10 "sec. Therefore, up to frequencies almost
as high as 10"cps, the behavior of the electronic com-
ponent can be described by equivalent values of the
capacitance and resistance which are constants. On the
other hand, Eq. (21) indicates a frequency dependence
for much lower frequencies due to the ionic component.

For these reasons we shall assume that the frequency
is limited to such values that the 6rst two terms of
Eq. (21) can be written in the form

—(~b'/f) [Gi'(t)+exp(t i' f)Gi'(t)]/ (ji),i= (1/R, i+icoC.i) Vi, (22)

[exp(ti&'1)+1]. (21)

In case 8 an expression can be derived which is
identical with (21) except that in the last term b, t'ai, G,,
Gi replace b', pi', Gi', 'gi'.

where C.i and 1/R. i are the constant effective values
of the electronic contribution to the parallel capacitance
and conductance, respectively.

~ W. Spenke, Wiss. VeroRentl Siemens-Werke 20, 40 (1941).
"W. Schottky, reference 2, p. 550 6'.
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The last. two terms of (21) represent the ionic con-
tribution to the current. It will. be seen that an exact
evaluation would require the knowledge of Eo and eo,
i.e., the solution for the dc case. If we should attempt
the evaluation using the solutions obtained for this
case," the calculations would become prohibitively
complicated. Therefore, we are going to introduce
simpler approximations with the double object of sim-

plifying the integrations and of making the knowledge
of the dc solution unnecessary. This object is achieved
by the simple assumption that in calculating the ac
current, the inhomogeneity of the ionic distribution
may be disregarded, though the inhomogeneity of the
field should be retained.

Consequently we assume, as zero approximation for e)

(23)

where t,o is the undisturbed value.
A few words should be said regarding the validity of

these assumptions. If we suppose that the applied ac
voltage V& is sufficiently small, our second assumption
(23) becomes legitimate since a weak Vi will not con-
tribute noticeably to the space charge distribution. Nor
is it inconsistent to retain the inhomogeneity of the
held as, in the case of small voltages, it is much more
marked than the inhomogeneity of the ionic distribu-
tion. '4

The first assumption (23) is less justi6ed and would
be quite inadequate if the case of an applied bias were
to be studied. Therefore, we have to assume that there
is no applied dc voltage present. Even then there may
be a space charge distribution of the negative ions near
the electrodes. Its value will depend strongly on the
boundary conditions which we impose on e) and will
acct the current indirectly. However, it is easy to see
that this inQuence is limited to low frequencies. The dis-
cussipn given in Sec. I shows that the conditions near the
electrodes become of less and less importance as the fre-
quency increases. Therefore, the first assumption (23)
becomes adequate as those values of the frequency are
reached where the ionic current begins to rise strongly
from its low value at low frequencies. In the applications
we are going to study this region exclusively.

As for the 6eld strength, our second assumption (23)
makes the knowledge of Eo unnecessary. For Ej we
assume

can be proven that it is an "adequate solution" in the dc
case, even when a current Bows. '0 This, of course, does
not prove yet that Eq. (24) is a good approximation in
the ac case, except for low frequencies. As a matter of
fact, it can be foreseen that E~ becomes more and more.
homogeneous as the frequency increases. " From this
point of view it might appear that the simpler assump-
tion E~= const represents as good a zero approximation
as (24). However, if Ei——const is used, the possibility
of determining the thickness of the polarization layer
(see below) is lost. For this reason we retain the form
(24).

Finally, we assume that there is only one depletion
layer, at x=0, but no polarization layer at the other
electrocle. This we realize by using the solution (24) only
from x=0 to @=l/2= ii. Then the constant Ci becomes

2C1——n Vi/sinh(nil) (26)

v = cotll(nil) (28)

has been introduced. Since pi' [see Eq. (15b)] is
complex, Eq. (27) de6nes a complex admittance. If the
real and imaginary parts are separated, the admittance
for the layer extending from x=0 to x=l& assumes the
form

V,=1/R, 1+(1/R„)I' (Y,P)+4 [C, +Col'1(V, P)]. (29)

The two functions of two arguments, I ~ and F2, are
defined by

I'l(V, p) = (1+4(V/p)') '[(v/V) gi(V)
—2/P+(2vV/P')gg(V)] (30)

if V& is the voltage applied to the layer of thickness l&.

In calculating the current, we may still use Eq. (21).
Owing to the complete symmetry of our assumptions
with regard to x=1/2, Eq. (21), when divided by 2V1,
yields the impedance of two polarization 1'ayers in
series, and therefore, half of the conductance and
capacitance of each of them.

If we substitute (23) to (26) into Eq. (21) the inte-
grations become quite simple and yield

Vi)'-= ~b'«(V /11){11—(1/(n' —w"))
X [n' nI41'v—tanh(pi'll)] I. (27)

Here the abbreviation

Ei——2C, cosh[n(x li)], li—l/2, ——(24)

with n given by

n'= (8s e/E) (b'/D') co. (25)

This form of the field is suggested by the fact that it
represents a 6rst-order approximation in the static case
studied in the author's older theory. " Furthermore, it

'4 Using the static solution and the constants obtained in Sec.
III, we find for the ratio of eI at the anode to the undisturbed
value about 1.5 for a potential difference of 10 ' volt, whereas the
same ratio for E is of the order of 100. -

'~ See reference 3, pp. 228 to 229.

I (V P) =(1+4(V/P)')-'[( V/P)g. (V)
-2v(Y/p) 'gi(V)+4(V/p) 4], (31)

g2(X ) = (slnhX sink )/(coshX +cosh ). (33)

"H. Chang has carried the calculation of EI to the second order
and veri6ed the statements in the text.

and the two functions of one argument, g~ and g2, are

gi(V) = (sinhY+ sin V)/(coshV+cosV) (32)
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FIG. 1.Theoretical curves representing the reduced susceptance,
4»()', p), (full lines), and the reduced conductance, 4'2(X', p)
(broken lines), as functions of the reduced frequency, X", for
various values of the reduced plate distance p.

The variable ) ' is given by

Y=2lg(co/2D') &,

and the dimensionless parameter P by

P=2nlg

(34)

(35)

The variable X' is dimensionless, but the combination
(21&)'/D'=r' has the dimensio~ of time and may be
taken as the "time of relaxation" for the ions of dif-
fusivity O'. It represents the average time such ions
take to travel over the distance 2l& by diffusion. Con-
sequently, (Y)' itself is proportional to the ratio of r'
to the length of the period. It is seen that the time-
dependence of I"& is expressed by this ratio exclusively.
This specifies quantitatively the statements made in
the introduction.

As for the dimensionless parameter P, it was intro-
duced in the author's older theory by the name of
"reduced plate distance" and designated by b (see
reference 3, pp. 226 ff.). It characterizes the behavior
of the polarized layer. If P is suIficiently large, and that
means from about P = 10 on, the thickness of the
polarization layer will be small compared with the
total thickness of the dielectric.

Since Fz tends towards unity as X'—&0 and p~pp,
Cp is the equivalent parallel capacitance (of ionic origin)
in that limiting case. Its value is

Cp ——pb'cp/(nD') . (36)

On the other hand, I'2 tends to unity as V—+~. Hence

1/R„= pb'cp/li, (37)

defines the equivalent parallel conductance (of ionic
origin) in the limiting case of very high frequencies. All
constants refer to one cm' area.

U we designate by E„and C„ the equivalent parallel
resistance and capacitance, respectively, their fre-
quency dependence will be expressed by

C„=CpI' ('A', P), 1/R„=(1/R„)I' (X', P). (38)

In order to illustrate this dependence, we have plotted
in Fig. 1 the two dimensionless functions

CgP, ', P)=PppC„/(1/R ),
C'p(7', p) =p(1/R~)/(1/R )

(39)

P = 2nlg 41nn —2 1n——(a)/2D'), (4o)

if X' is small and P not small (say P) 10).
Thus l~ is, for a given concentration of the ions, a

slowly variable function of the frequency. As )' in-
creases, the approximate solution (40) ceases to be
correct, and graphical methods have to be applied
(see Sec. III); however, 1& continues to decrease slowly
with increasing X'. On the other hand, with decreasing

the thick. ness l& will increase until it becomes equal
to the total thickness of the semiconductor.

In the applications it will become imperative to
assume the presence of more than one species of
moveable ions. The resulting expression for the admit-
tance is of the same form as (29); only there are as many
terms involving functions P~,(X, p) and I'p;(X, p) as
there are different species of mobile carriers (positive
or negative). Naturally, all of them move in the same
Geld, and this necessity Gnds its expression in the fact
that P is the same throughout. Provided all ions have
the same valence, the expression for n has to be changed

They represent reduced values of the susceptance and
conductance. As abscissas we have chosen V' which is
proportional to the frequency, and representative
values of p, from p=4.73 to p= ~, have been selected.

The curves for C ~ all pass through a maximum and
ultimately approach zero with ~~. These features
are not exhibited by the diagram as they occur for
higher values of )".On the other hand, the curves
representing C» (broken lines) increase to the asymptotic
value P. Thus, with increasing frequency the ionic con-
ductance increases from zero to the maximum value
given by (37). Conversely the capacitance decreases
from its initial value at &a=0, Cp (1—2/P) to zero.

For a given value of P the corresponding curves for
I» and 4» intersect at a characteristic frequency f=f~,
and this point of intersection moves from A"=5.1 to
V'= 9.8 as P varies from 0 to ~. It will be seen in the
next section that such points of intersection have been
observed and play an important part in the evaluation
of the ionic constants.

The formulas so far developed in this section refer
to defect semiconductors. For excess semiconductors
analogous results are obtained by replacing in (21), and
correspondingly in all subsequent equations, the
symbols p, e, b', D', p&' by m, p, b, D, p&, respectively.

The thickness of the layer l& over which the solution
is to be applied, remains to be determined. This we do
by taking into account the bulk resistance of the entire
semiconductor, and by requiring the current and the
field to be continuous at x= l&. By this procedure it can
be shown" that
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from (25) to
0.'= (8~&/E) (b/D)Q; c;, (41)

. where c; is the concentration of the i-species of carriers
and where the summation extends over all carriers of
one sign. "

III. COMPARISON OF' THE THEORY WITH
EXPERIMENTAL RESULTS

It is well known that the ac characteristic of semi-
conductors shows frequency dependence at much lower
frequencies than might be expected from the "internal
time of relaxation" of electronic carriers. This was one
.of the main reasons for developing the present theory.
At the same time an extensive series of bridge measure-
ments was carried through. " These measurements
cover a range of frequencies from 10 cps to 200,000 cps
and were taken. on locally fabricated selenium disks
between nickel and cadmium electrodes.

It has been customary, particularly in the work of
Schottky and his associates, "to discuss the ac behavior
of semiconductors in terms of equivalent circuits.
Valuable as this method is for a rapid survey of results,
it cannot be considered adequate for the description of
the 6ner details. If the fundamental concepts of the
present investigation are accepted, Kq. (29) and its
generalization for several species of carriers indicate
clearly enough that the equivalent parallel. susceptance
and conductance are rather complicated functions of
frequency. Furthermore, the more general treatment
indicated at the beginning of Sec. II(b) proves that a
simple harmonic impressed emf will cause overtones of
all orders in the current. Therefore-, in our opinion, the
correct description of a semiconductor is that by
numbers and mobilities of the relevant carriers. An
attempt at determining these from the measurements
mentioned above is given in what follows.

The experimental curves representing &oC„and 1/R„
as functions of frequency invariably show the character
of the theoretical curves given in Fig. 1, though the
numerical values may vary considerably from one disk
to another and for one and the same disk with the
previous treatment. It was pointed o'ut in Sec. II(b)
that there is a point of intersection between the AC„
and the 1/R„curves at a determined frequency f* The.
determination of ionic constants starts most con-
veniently from these points where they have been
observed.

In Table I we have given all cases where such points

"These results are obtained by. first generalizing the stationary
case of our older theory (see reference 3, paragraph 1) so as to
include several species of carriers. This leads in a simple way to a
6rst-order 6eld distribution given by Eq. (24) with the modi6ed
value of a just de6ned. All other calculations remain the same as
indicated in this section, and the anal. result for the current, and
thereby for the admittance, is obtained by summation.

' The bridge measurements were performed by Mr. Allan
McDonald. The details of the method and of the procedure in
fabricating the disks are to be found in Report 11 and 3rd annual
report (bridge measurements), and 2nd annual report (preparation
of disks), Signal Corps Project No. 152 B.

'9 W. Schottky and W. Deutschmann, Physik Z. 30, 839 (1929).

Disg
fg

(cps)

Virgin
1/Rp =Cp@7
{p,mhos)

Formed
fg 1/Rp =Cger

(cps) {pmhos)

30
47
61
67
74
84

1.18X10~
0.312X 10~
0.652 X 105
1.38X10'
2.05X105
1.02X10'

2.29X 104
2.03X104
2.10X104
4.12X104
4.12X104
2.98X104

not observed
not observed

0 472X10~ 1 07X104
not observed

o.416X10~ 1 29X104
0.647 X 10' 1.38X10'

of intersection have been observed between about 100
cps and 200,000 cps. In some cases a point of intersection
was observed before and after formation, where the
formation consisted in the application of 40 to 160 volts
in the blocking direction over a period of 3 to 6 hours.
Many other disks indicated the existence of a point of
intersection at higher frequencies than were observed.

The e6ective resistances of the locaBy fabricated
disks at the lowest observed frequencies, i.e., 10 cps,
were considerably (from 30 to 100 times) larger than
the dc resistance of commercial disks. Thus, it is evident
that the locally fabricated disks must have contained
much less accidental impurities than the commercial
ones.

Furthermore, it is characteristic of the locally fabri-
cated disks that the electronic component may be dis-
regarded altogether for the interval of frequencies over
which a match with the theory was attempted. This is
justi6ed by the fact that, at lowest frequencies, where
only the electronic component can contribute to the
observed conductances, the conductance is negligibly
small compared to that in the matched interval (see
Figs. 2 and 3).Therefore, in the following computations
the electronic component of the current has been
disregarded.

It will be noticed from Table I that disk 74, in its
two states, represents extreme conditions. (The forming
in this case was performed by application of 40 volts for
4 hours. ) In all cases the frequencies f* and the corre-
sponding values of coC~ and 1/R„are contained within
the limits set by the disk 74 (with one unimportant
exception in the case of disk 61). For this reason the
laborious calculations were carried through only for the
two states of disk 74, which both refer to zero bias (i.e.,
Uo ——0). If the very considerable changes occurring in
disk 74 during formation are represented in a satis-
factory way, it seems reasonable to assume that also
the other, intermediate, cases can be matched.

A great simpli6cation of the numerical evaluations
arises from the fact that the values of 7' and P which
belong to j*,say X'* and p* are completely determined
by the theory, as long as only one species of ions is being
considered. The intersection occurs for

C g(V,p) =C 2(V, p). (42)

If this equation is combined with one which arises from
the boundary conditions for @=le, there remain two
equations for the determination of X'* and p*. We have

TABLE I. Observed points of intersection between the curves
representing susceotance (~{."„)and conductance (1/Rp).
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function of the frequency. Naturally p may change
more markedly by the formation process which afFects
the number of ions present, and possibly their mobilities,
and this circumstance has to be taken into account.

If there are two species of ions, it follows from the
last paragraph of Sec. II(b) that the effective values of
&eC„and 1/E~ wiH be given by

reCs, =diCi(Xi', p)+AsCi(Xs', p)

1/E, =A,C,p, ', p)+A,C,(X,', p),

TAsr.z II. Experimenta constants used in the calculation of the
curves for C~, &AC~ and 1/R~ drawn in Figs. 2 and 3.

carried through the evaluation by graphical procedures;
they lead to the result

Y*=2.30, P*=4.73. (43)

With V* and P* known, Cs and 1/E can be deter-
mined from the curves of Fig. 1. Then, Eqs. (2S) and
(34) to (37), together with Townsend's relation

(44)

represent a system of six simple equations for the
determination of a, p, li, O', D', and cs.

Unfortunately, the attempt to match experimental
curves by our theoretical formulas invariably leads to
the conclusion that more than one species of ions, at
least two, have to be assumed as present in the semicon-
ductor if the curves are to be matched over a wide
range of frequencies. This might have been anticipated
if the ions in question are of accidental origin; a whole
"spectrum" of ions of difFerent mobiHties would appear
probable.

In the following computations two species of ions are
assumed to contribute essentially. Furthermore, P is
treated as a constant, though it really is a slowly varying

I.O

PREQUENGY IN GPS x IO

FIG. 2. Comparison of the theoretical curves for C» AC~, and
t/R„with observed values. Selenium disk No. 74, virgin.

(sec)

where C i and C s are the functions defined by Eq. (39)
and plotted in Fig. 1.

The experimental curves have to be matched with
(45) and (46). It should be stressed that the curves for
AC~ and 1/E~, being mutually related, )should be matched
by the same constants, and if this is feasible it repre-
sents a strong argument in favor of the interpretation
given here.

There are five constants available in Eqs. (45) and
(46), namely A i, As, p, and two constants which reduce
the frequency scale to the V'-scale for the two species
of ions. Since X" is connected with the frequency by its
definition (34), the "internal time constants"

r;=tis/D, ', s=1, 2, (47)

may be used as such constants.
We have determined the 6ve constants by trial and

error using the following procedure. First one species of
ions is considered only. By making the theoretical point
of intersection coincide with the observed one, the three
relevant constants (say 2 i, P, and ri) are found without
ambiguity, but the curves do not match suKciently

TAax, E III. Limiting values of specific conductivity, 0;, and
capacitance, CD;, as derived from the experimental data of Table II.

-A1 As 'F}
Disk P (pmhos} (pmhos) (sec)

74 virgin 3.80 2.96X104 5.92X10' 2 78X10 ' 2 52X10 '
74 formed 4.73 0.87X10' 4.96X10' 4.80X10 ' 3.60X10 '

DISC 74

FORMED

OBSERVED POINTS

Disk
+'1 0'g

(pm&os/cm) (limbos/cm)
C01

(pfd/em')
Cos
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Fro. 3. Comparison of the theoretical curves for C„,eC~, and 1/E„
with observed values. Selenium disk No. 74, formed.

74, virgin
74, formed

3.24X104 0.649X104 1.23X10~
1.19X104 0 677X104 0.&2X10~

2.23X 10-2
3.o7x10~

welL Then, a second (slower) species of iona is intro-
duced and the constants 6rst determined are modified
until the matching is as good as feasible with the 6ve
constants available.

The choice of the parameter P should be restricted to
narrow limits. It will be seen from Fig. 1 that the shape
of the theoretical curves changes but slowly with the
value of p;. hence, p cannot be determined with any
degree of accuracy. On the other hand, the mobilities
(and diffusivities) change strongly with p (being propor-
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TABLE IV. Ionic constants, and thickness of the depletion layer l;, derived from the data of Tables II and III.

Disk

74, virgin
74, formed

li
(cm)

0.79X10 '
1.04X10 '

D I
(cm2/sec)

4.5X10 ~

4.5X10-~

(cm~/volt )&sec)

1.71X10 '
1.71X10 3

CE

(cm ll)

0.94X10"
0.4SX10 &

D~J
(cm2/sec)

5.0X10-6|.OX 10-6

bg/

(cm~/volt Xsec)

1.90X10 4

2.27X10 4

&2

(cm 3)

1.70X10"
1 92X10'5

tional to the square of P). Hence, P should not vary very
m»ch. In order to introduce as little ambiguity as pos-
sible into the numerical evaluations, the following pro-
cedure for the determination of P was adopted. For the
formed disk the theoretical value P=4.73, which is
valid for a unique group of ions, was chosen because
the calculations showed that for the formed disk the
one group of ions (the slower one) predominates rather
strongly. To represent, then, the virgin disk, P had to
be decreased, but this was done as little as possible.

The degree of agreement which could be realized
over the range of frequencies from about 2&&10' to
2)&10' cps will be evident from Figs. 2 and 3 where the
curves are calculated from theory. The constants used
in these computations are given in Table II, and Table
III contains the limiting values (per cm' area) of
capacitance (as f—4), Co,, and of specific conductance
(as f~ ~), 0;. These limiting values have been obtained
by extrapolation on the basis of the theoretical curves.
The calculations involve the area of the disks utilized,
which was 3.47-cm', and of the dielectric constant of
selenium, which was found in the literature to be E=6.3.

The agreement over the indicated range of frequen-
cies is about as good as might be expected in considera-
tion of the various approximations which had to be
introduced, as well into the theory, as into the nu-
merical evaluations. At lower frequencies systematic
deviations set in. The curves for C„have been added
because they show more clearly than those for AC„ that
for lower frequencies (f(2X10' cps) a new group of
ions, of still lower mobility, makes its appearance. It
would not be 'dificult to represent this behavior by
adding a third group to the theoretical representation.

Finally, the experimental constants of Table II,
together with the extrapolated values of Table III,
permit of determining all ionic constants if the reason-
able assumption pii ——co ——ci+c2 is made. It means
physically that the number of mobile negative ions (in
the undisturbed state) is equal to the number of positive
holes. The following equations are available: two equa-
tions of form

/
Oi 65i Ciy z —12 (48)

(from Eq. (37)), two equations from (44), two equations
of form (47), and the one equation which results from
the substitution of (41) into the definition of P, (35).
These are seven equations for the unknowns c;, b, D
(i=1, 2), and li.

The values of the ionic constants, including l~, ob-
tained in this manner are contained in Table IV. The
concentrations of the mobile ions, c~ and c2, appear
quite reasonable, and the thickness of the depletion

layer, /&, is of the same order of magnitude found by
other observers. The mobilities and diRusivities are of
particular interest since the latter may be considered
as determined directly from a comparison with known
frequencies. The mobilities are distinctly of electrolytic
order of magnitude, the swifter ions having a mobility
slightly above that of simple electrolytic ions (the
mobility of the E+-ion is b=6.8X10 ' cm'/(voltXsec)
at 18'C), and the slower ions having somewhat smaller
mobilities. In all events, these mobilities are far too
small to be attributed to the positive holes. On the
other hand, the values found here appear somewhat
high for ions in a solid medium. This might very well
be due to the lack of accuracy in the determination of p
(see above).

With regard to the formation process the only con-
clusion which can be drawn with some certainty from
the numbers of Table IV is that the importance of the
swifter group of ions decreases by the application of the
forming potential. The ratio ci/c2 decreases from 0.54
to 0.23, and this result persists even when the experi-
mental constants A ~ and A 2 are determined in a slightly
different way (within the limits which will not seriously
aGect the agreement between experiment and theory).
The decrease of c& is easily interpreted; it indicates that
the fastest ions are electrolyzed out first by the forma-
tion process.

On the whole, we can summarize the analysis of the
experimental data by stating that the present theory
coordinates the observed facts in a satisfactory way. In
all events it shows the importance of the ionic com-
ponent in the conductance of semiconductors like
selenium, since the facts correlated here cannot be
explained on the basis of a purely electronic theory.

The usefulness of the theory developed in the present
paper is not limited to semiconductors. Either directly
or with slight modifications, it is applicable to all cases
where polarization eGects are caused by the motion of
ions. Work on such applications to electrolytes and to
poorly conducting liquids is in progress and will be
reported on separately.
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