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The behavior of the electrons in a dense electron gas is analyzed
in terms of their density Quctuations. These density Quctuations
may be split into two components. One component is associated
with the organized oscillation of the system as a whole, the
so-called "plasma"' oscillation. The other is associated with the
random thermal motion of the individual electrons and shows no
collective behavior. It represents a collection of individual elec-
trons surrounded by comoving clouds of charge which screen the
electron Gelds within a distance of the order of magnitude of the
Debye length. This split up of the density Quctuations corresponds
to an effective separation of the Coulomb interaction into long-
range and short-range parts; the separation occurs at roughly the
Debye length.

The relation between the individual and collective aspects of
the electron gas is discussed in detail, and a general physical
picture of the behavior of the system is given. It is shown that for
phenomena involving distances greater than the Debye length,
the system behaves collectively; for distances shorter than this
length, it may be treated as a collection of approximately free
individual particles, whose interactions may be described in terms
of two-body collisions.

This approach is used to study the interaction of a specihed
electron with the remainder of the electron gas. It is shown that
the collective part of the response of this remainder to the Geld

of the speciGed particle screens this Geld within a distance of the
order of the Debye length; this furnishes a detailed description of
the screening process. Moreover, if the speciGed particle moves

with greater than the mean thermal speed, it excites collective
oscillations in the form of a wake trailing the particle. The fre-

quency of these collective oscillations and the energy emitted by
the particle are calculated. A correspondence theoretical method

is used to treat this phenomenon for the electrons in a metal. The
results are in good agreement with the experiments of Ruthemann
and Lying on the energy loss of kilovolt electrons in this metallic

Glms.
The generalization of these methods to an arbitrary inter-

particle force is carried out, and a criterion is obtained for the
validity of a collective description of the particle interactions. It
is shown that strong forces and high particle density favor col-

lective behavior, while high random the'rmal velocities oppose it.

L INTRODUCTION

N this paper we wish to develop a detailed physical
- - picture of the behavior of the electrons in a dense
electron gas. We do this with the aid of a collective
description of the particle motion. In a previous paper,
hereafter referred to as I, we used a collective descrip-
tion in treating the organized behavior of the electrons
resulting from the transverse electromagnetic inter-
actions. This was done by means of a canonical trans-
formation to a set of collective coordinates which were

appropriate for a description of the organized behavior.
In the present paper, we are concerned with the or-
ganization produced by the Coulomb interactions, which

are far more important quantitatively than the trans-
verse electromagnetic interactions. We stress the
physical picture of thc clcctI'on bchRV1OI' helc bccRusc

it is essential for the proper development and under-

standing of the necessary mathematical formulation.
In a subsequent paper we shall extend our results to the
quantum theory by developing the canonical trans™

formation for the Coulomb case in a manner similar to
that given in I.

In a dense electron gas, the particles interact strongly

because of the long range of the Coulomb force; in fact,
each particle interacts simultaneously with all the other

*'Now at Physics Department, University of Sao Paulo, Sao
Paulo, Brazil.' D. Bohm and D. Pines, Phys. Rev. 82, 62$ (t9$t).

particles. As a result the equations of motion become
extremely diKcult to solve. The usual perturbation
theory solution based on the assumption of a small
1nteI'Rctlon bctwccn pai1s of pRrtlclcs bI'cRks down. As
was the case in I, a collective description provides a far
better starting point for a solution than a description
in terms of the individual particles. For the collective
description makes possible a simple method of treating
the simultaneous interaction ot many electrons (as
opposed to the individual particles approach which

gives a simple method ot treating two-body collisions).
Certain examples of collective behavior in an electron

gas are well known from the study of gaseous discharges.
These are the organized oscillations of the system as a
whole, the "plasma" oscillations. 2 3 These oscillations
have been studied theoretically with the simplifying
assumption that the gas is composed of a distribution
of beams of charge, each beam having a well-de6ned
velocity at each, point in space. &~ This approach,
although it gives many useful and instructive results
concerning the oscillations, represents an excessive ab-
straction which is not capable of describing many other
important aspects of the organized behavior in the gas.

~ L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).
3 H. J. Merrill and H. W. Webb, Phys. Rev. SS, 1191 (1939).
4 A. Vlasov, J. Phys. (U.S.S.R.}9, 25, 13Q (1945}.
5 D. Bohm and K. P. Gross, Phys. Rev. 75, 1851 and 1864

(1949);Paper A discusses the origin of medium-like behavior, and
gives many references to the earlier work on plasma oscillations;
Paper B deals with the excitation and damping of oscillations.
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In this paper we start with a gas of interacting point
electrons. Instead of following the motion of the
individual particles, we describe the gas in terms of the
Fourier components of the electron density at each point
in space. These Fourier components are propor'&i~ nal to
the density fluctuations in the electron gas. We find
that the density Quctuations can bc split into two parts.
One part represents an organized oscillation with the
characteristic "plasma" frequency, and is clearly
associated with the collective behavior of the system.
The other part is associated with the random thermal
motion of the individual particles, and shows no col-
lective behavior. For wavelengths greater than a certain
critical length Xn (the Debye length), the fluctuations
are primarily collective. When this is the case a descrip-
tion of the behavior of the electrons solely in terms of
their collective motion is a good approximation. For
wavelengths smaller than ) g), however, the fluctuations
are primarily associated with individual particle
motion, and in this case the system is best described by
following the -individual paxticles.

We use the above split-up of the density fluctuations
to study the collective response of the electron gas to
the held of an individual charged particle moving with
a speci6ed velocity, vo. When vo is less than the mean
thermal speed of the gas, we find that the collective
response is just such as to screen out the 6eld of the
specified particle within a distance of order of )~. When
vo is greater than the mean thermal speed, a similar
screening occurs, but in addition a new phenomenon
appears: vis. , the excitation of collective oscillations in
the form of a wake trailing the particle. The phenomenon
resembles the Cerenkov radiation produced by fast
electrons in dielectric materials. Experiments by
Ruthemann and Lang, on the bombardment of thin
metallic films by fast electrons tend to verify our
theoretical predictions concerning this type of excitation
of collective oscillations. ' ~

On the basis of the above results we are led to the
following physical picture of the screening process. As

any electron moves through the assembly, the other
electrons are pushed. away from it by the Coulomb
repulsion. Each particle is thus surrounded by a cloud
of extent X~, in which there is a deficiency of electrons,
which is responsible for screening the field of the
particle in question. As a result of this screening, the
cross section for interparticle collision is so greatly
reduced that the mean-free path of an electron is con-
siderably greater than the interparticle spacing. Thus
for many purposes the electron plus its associated cloud
may be xegarded as an CGective free particle.

Tllc splitup of the density Quctuatlon 1nto collcctivc
and individual particles components may be viewed in
the following way. The collective part includes the
CGects of the long range of the Coulomb foxcc which
leads to the simultaneous interact;on of many particles.

6 G. Ruthemann, Ann phys. 2, &&3 (&948)' W. Lang, Optic. 3, 233 (1948).

The individual particles component represents the
density Quctuations arising from the randomly moving
individual particles plus their comoving electron clouds,
and thus includes the CGects of the residual short-range
screened Coulomb force, which leads only to two-body
collisions.

Our main conclusion is that neither the collective
description nor the individual particles description of
the electron gas is by itself entirely adequate. For not
only in each description needed in its appropriate
region, but also the interaction between collective and
individual aspects dete'rmines many important proper-
ties of the system. Xt is just this synthesis of individual
and collective aspects that makes the electron gas such
an exceptionally interesting medium.

There are a wide variety of systems to which the
methods developed 1n this pRpcl may bc applied. Some
of these are: (a) Ion gases of high density (plasmas),
which occur in gaseous discharges, interstellar nebulae,
atmosphere of sun and stars, ionosphere of earth, etc.
(b) The electrons and ions in a metal. The ions in a
metal are also susceptible to a collective description,
and, in interaction with electrons, they give rise to
sound waves, whose properties can be calculated with
the collective method. In this way, one can obtain an
improved treatment of the so-called "lattice-electron"
interaction, which is important in the theory of electrical
conductivity, and probably in superconductivity.

Xn Appendix II, we discuss the generalization of these
methods to an arbitrary interparticle force. Pre-
liminary considerations indicate that the collective
description may be applicable to the particles in an
atomic nucleus. 9

II. COLLECTIVE OSCILLATION

We begin by a study of the way in which the &ntcr=

actions in an assembly of electrons bring about organ-
ized behavior and coBective osciBation. We shall con-
sider an aggregate of approximately free electrons
embedded in a medium of Axed positive charges whose
average density is equal to that of the electrons. Fox
most purposes, this distribution of charge can be re-
garded as unifoxmly smeared out throughout the entire
system. Hence, it merely serves to neutralize the mean
electron charge. The previous simplifications are
adequate for the treatment of electron behavior in
gaseous discharges, as well as in those metals in which
the CGects of the lattice periodicity are not very im-
portant, The approximations used here will also pro-
vide a good starting point for the investigation of other
metals.

Each electron in the assexnbly is acted on by the sum
of the forces arising from all of the other electrons plus

This problem is now under investigation by one of us (D.B.)
and T. Staver. Preliminary results are given in Phys. Rev. 84,
836 (1951).

9 One of us (D.P.) and M. I. Ferentz are currently investigating
a nuclear model based on a collective description of nucleon inter-
actions.
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that resulting from the smeared-out positive charge.
The potential energy of interaction between the ith and
jth electrons, e'/

~
x;—x, ~, may be expanded as a Fourier

series in a box of unit volume with periodic boundary
conditions, and is

by,

and

pi —— I dxp(x)e
—'~ *=+ e—'" *'

J i y

p(x) P . ~ik ~ (x—xii

(4)

(e'/Ix; —xtI)=4se'pr, (1/J't')e'" i*''*r& (1)

The equation of motion of the ith electron is given by

(2)

We shall find it more convenient to work with the
Fourier components, pI„of the density. These are given

"The exclusion of the term with k=0 takes into account the
uniform background of positive charge, and hence the over-all
charge neutrality of the system. This may readily be seen by
Fourier-analyzing the electron charge density and noting that
Fourier-component corresponding to 4=0 describes the mean
density of electrons which is canceled by the equal density of
uniformly distributed positive charge. The Fourier-expansion for
the potential at a given point there fore does not contain the term
with k=0.

where the prime denotes a sum in which k=0 is
excluded. " (In the previous sum, the term with j =i
should also be excluded. However, since 1/k' is a
spherically symmetric function of k, this term averages
out to zero and therefore does not have to be explicitly
excluded. )

Equation (2) is in general extremely dificult to solve

by following the motions of the individual particles,
especially when the assembly is so dense that many-

body collisions become important. Moreover, the range
of the Coulomb potential is so great that many-body
collisions are important even in an electron gas of low

density. Under these conditions, the electrons move
together in organized fashion, and one finds the well-

known phenomenon of "plasma" oscillations of the
system as a whole. ' In these cases the usual method of
approximation in solving (2) which involves the as-
sumption that the interaction forces produce small

perturbations on uniform straight line particle motion,
fails. Our approach to the equations of motion is aimed
at making use of the simplicity of the collective behavior
as a starting point for a tractable solution. We shall see
that this method leads to a far better description of the
motion than one based solely on following the individual

particles.
We shall be primarily concerned with two questions:

the description of the motion of the particle assembly
in terms of its collective behavior, and the limits on the
applicability of such a collective description, As a first
step, we study the fluctuations in the particle density,
because, as we shall see, their behavior provides a good
measure of the applicability of a collective description.
We assume, for all practical purposes, that we are
dealing with point particles, so that the particle density
in our box of unit volume is given by,

p(x) =g; 8(x—x;).

We note that po represents the mean electron density,
n, and the pj, with k@0 describe fluctuations about that
mean density. It is readily verified that the equations
of motion (2), may be re-expressed as

i = (4—s e'i/m)g'r, (k/k') pr, e'" *' (6)

The p~ thus determine the force acting on each particle.
We now obtain the equations describing the time

behavior of the pq. On di8erentiating (4), we have

p& —— ~ Q;(k v~)e
—'"'*',

d'pr/dt2= Q~—l (k v;)'jik ir;]e "*'
(7a)

(7b)

d'pi/dt'= Q (k v )'s '" *—' (4.erne'/rrt)P e-—'" *' (9)

The first term on the right-hand side of (9) is one that
would be present even in the absence of particle inter-
action, and arises simply from the r'andom thermal
motion of the individual particles. The second term
represents the eGects of particle interactions. For suf-
ficiently small k it is clear that the first term can be
neglected in comparison with the second. Under these
conditions, (9) becomes

d'pr/dP+(4sne'/rrt) pr, 0;——(10)

"Since we are working with a unit volume, e is numerically
equal to the mean density.

We obtain ir, from the equations of motion (2), and
d'pr, /dt2 becomes

d'pr/dt'= —g (k v )'e '" *'—g L4me'/rrt(k')'jk
k'ij

k'go
k'

I exp[i(k' —k) x;jI exp( ik' —x,) (8).

It is in the treatment of the second term on the right-
hand side of the previous equation that we encounter
one of the central approximations used in the develop-
ment of a collective description. For we split the sum
over k' into two parts. The first part, ,with k'=k, is
independent of the coordinate, x;, so that the sum over
i yields m, the total number of particles. "The second
part, (those terms with k'Nk) contains phase factors
expi(k' —k) x;, which depend on the positions of the
particles. These terms tend to average out to zero,
since there are a very large number of particles dis-
tributed very nearly in random positions. As a first
approximation, we neglect such terms. This procedure
we call the random phase approximation. The validity
of this approximation will be demonstrated in detail in
Sec. VI. Using the random phase approximation, we
then obtain
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Thus, as a result of the Coulomb interaction, the electron
density oscillates with the well-known "plasma" fre-
quency,

cup = (4irne'/m) l.

Thc cxc1tatlon of R par tlculRI pp coI'I'csponds to R wRvc-

like density Quctuation, analogous to a sound wave.
Let us now consider the physical significance of the

terms which determine the time variation of the py. In
the absence of interaction, each particle moves in a
straight line with a constant velocity, vo, . In this case
x;=xo;+vo, t, and pq takes the form

e (xo +vo ~)
k

In order that p~' be large at a particular time, say I,=O,
it is necessary that the xo; be so distributed that the
various terms e'"' 0' arising from each particle tend to
be'in phase. However, each of these terms oscillates
with an angular frequency k vo;, which is, in general,
diferent from that of any other. Consequently, even if
they initially have definite phase relations, the con-
tribution of diferent particles to pI, will soon tend to
get out of phase and cancel each other. This means that
in a gas of free particles a particular Quctuation cannot
persist for an appreciable length of time. The tendency
of the random motion of each particle to contribute a
term to the density variation having an angular fre-

quency, &o=k v;, is reflected in the first term on the
right-hand side of (9), which by itself would result in a
similar type of time variation of the p&. Ke conclude
then that a collection of free particles shows no organized
behavior, but that instead its characteristic property
is that a disturbance tends to die out as a result of the
random diffusion of the particles. On the other hand,
the effect of the Coulomb force of interaction, appearing
in the second term on the right-hand side of (9), is to
cause each particle to make a contribution to d'pI, /dP
which oscillates with the same angular frequency as
that of every other particle. Thus, if the random thermal
motions were not present the Coulomb forces would

produce perfectly organized behavior of the p~.
Actually, of course, both the Coulomb forces and the
random thermal motions are present simultaneously,
so that the net behavior of the electron gas will show
some collective aspects and some of the aspects of an
aggregate of randomly moving individual particles. To
the extent that the effects of the Coulomb forces pre-
dominate in determining d'p/dk', the gas will display
primarily its collective aspect because the pI, determine
the force on each particle and therefore the behavior of
the entire system. On the other hand, when the random
individual particle motions predominate in determining
d'pg/dP, the collective description will be inappro-
priate, and a description of the system in terms of the
motions of the individual particles becomes a better
starting point. A rough criterion for the applicability of
R collective description is therefore that for most
particles the collective term in (9) be much greater than

the term arising from the random thermal individual
particle motions, or' that

(4sne'/m)»((k v,)')A„. (13)

'2 The Debye length was 6rst introduced in connection with
screening processes in highly ionized electrolytes. P. Debye and
E. Huckel, Physik Z. 24, 185 (1923).

"See D. Bohm and E. P. Gross, Paper A, reference 5.
'4For this case XD clearly cannot constitute the minimum

distance at'which organization becomes important, since it is less
than the interparticle spacing. However, this indicates that the
organization is very important for the electrons in a metal, since
it does extend down to regions of the order of the interparticle
spacing. The appropriate minimum distance for a degenerate
electron gas will be discussed in our subsequent paper on the
quantum theory.

Thus wc scc thRt R high particle density favors oI'-

ganized oscillation, while high random velocities
oppose it. A strong force of interaction (as measured by
the e' factor) also favors organized behavior.

For an electron gas with an isotropic Maxwellian
velocity distribution at a temperature T, our criterion
becomes

k'(((12m.ne'/m(v )A,)= (4sne'/~T) =XD ', (—14)

where f~: is Boltzmann's constant, and )~ is the well-
known Debye length "defined by

XD ——(~T/4nne') =-(1/3) L((v ')A„)/(ui 'j. (15)

This means that in a collection of electrons, organized
behavior is most important in phenomena connected
with distances greater than X~, while for phenomena
connected with shorter distances the individual par-
tides point of view provides the best starting point.
This result has already been obtained by other inves-
tigators using diferent methods. "It is because of the
long range of the Coulomb force {as expressed in terms
of the 1/k' in its Fourier component) that the collective
approximation is sure to apply if one goes to large
enough wavelengths (X& Xn). A long-range force favors
the collective approximation at long wavelengths,
because a large number of particles can be made to con-
tribute cumulatively to a collective oscillation in the
charge density.

It is of interest to evaluate XD for a few examples.
Thus in a typical gaseous discharge of density m= 10",
and. a mean electron kinetic energy of 3 ev, we obtain
&I ——5&10" and XD—10 3 cm. For an electron gas
density 4023, such as one finds in a typical metal,
al —2g 10'6, and X~—0.4'A, as compared with an
interparticle spacing of 2A. '4

We have seen that the time variation of the pj, reQects
both the collective and the individual particle aspects
of the assembly, so that the pI, do not oscillate har-
moniically for appreciable values of k, and therefore do
not consistitue a satisfactory set of collective coor-
dinates. We might expect that somewhat different
functions of the particle coordinates arid velocities
exist which do oscillate harmonically for nonzero k,
despite the CGects of random thermal motion. For small



We shall find it convenient to introduce the quantities

Pp, „=+,L1/(id —k v;)]e—"*',
in terms of which the q& may be expressed as

We shall show that the qI, satisfy the harmonic oscillator
equation

(19)QI+ (1=0&
by proving that

$p, +iragi, „=0 (20)

That (19) is a consequence of (20) may be readily
verified-by differentiating (18).

To prove that the $z, „satisfy (20), we diA'erentiate

(17), obtaining

+(k v)/(~ —k v)'}e—*'" *'. (21)

Using the equations of motion (2), we find:

(k k')4n-e'
Pg, „+iorPi,, „=-i+;e "*'—i P—

~' mk'(ie —k v;)'

X Lexpi(k' —k) x;] exp( ik—x;'). (22)

As in Kq. (8), the terms with k'Ak in the sum on the
right hand side will be neglected in the random phase
approximation. Retaining only the terms with k'=k,
we then obtain for the right-hand side, after inter-
changing i and j.

In order that )i,, „shall oscillate harmonically, the
previous expression must vanish for abitrary x;. Thus
we find that the t~, , and hence the qi„oscillate har-
monically, provided co satisfies the following dispersion
relation

1=(4ire'/m)g; 1/(id —k v;)'. (23)

This same dispersion relation has already been ob-
tained by other investigators using the beams treat-
ment. '5 It is an integral equation which is difBcult to
solve exactly. However, for sufFiciently small k, the
denominator in (23) may be expanded in a series of
powers of (k v;)/~, and we obtain the approximate
dispersion relation

i0 = avdp +k (e )A (24)

'5 For a more detailed discussion of the dispersion relation (Eq.
(g3) j see Bohm and Gross, Paper A, reference 5.

k, these functions should. approach pl, . We now demon-
strate that such functions exist and are in fact propor-
tional to

(16)

provided we assume an isotropic distribution of veloci-
ties."We note that for small k this reduced to our earlier
dispersion relation, (11).The condition for the validity
of (24) is essentially our criterion for the applicability
of the collective description, (14).We also note that for
L(k v)/au]«1, q& approaches proportionality to p&.

Where the described expansion is not very accurate,
&o can be obtained by a numerical solution of (23).
Other investigators have shown that no solution exists
for k larger than a critical value of the order of XD '."
This r'esult con6rms our general physical picture in
which the collective description is to be used only for
distances )X~. Furthermore, over almost all values of
k for which (23) has a solution, the approximate dis-
persion relation (24) is valid.

Pi = ii~ili+ili, (25)

where uI, is a suitable constant, which will be chosen by
methods to be developed presently. The first part, u&ql„
is clearly a collectively describable part of pI, . We shall
see that a choice of aI, is possible such that gI, describes
fluctuations associated only with the random thermal
motions of the individual particles. Moreover, the gA,.

will be shown to be the Fourier coeKcients of a density
distribution in which each electron is surrounded by a
comoving cloud containing a deficiency of electrons,
which screens the field of the given electron within a
distance of the order of ~~.

We begin with a consideration' of (25) for k kD,
where kg&=(1/Xn). Using our definition (16) of qi„we
may express &I, as

rj&=Q;{1 ui./I id' —(k v;)']—}e
—"*'. (26)

' The mean kinetic energy will depend both on the tem-
perature, which determines the random thermal motion, and on
the amplitude of organized oscillation. Normally, the thermal
energy is much greater than the organized oscillation energy, so
that for all practical purposes, the frequency does not depend
appreciably on the amplitude of organized oscillation. The slight
dependence on amplitude resembles a similar phenomenon ob-
tained in connection with sound waves, which likewise increase in
frequency as their amplitude increases. In any case, the entire
effect is in the domain of the nonlinear aspects of the problem, and
therefore can be neglected in a linear approximation. Within the
linear approximation, the (v')p„appearing in the dispersion relation
should be the value existing in the absence of organized oscillation.

IIL SEPARATION BETWEEN COLLECTIVE AND
INDIVIDUAL COMPONENTS OF DENSITY

FLUCTUATIONS

We have seen that the density fluctuations, pI„can,
for su%.ciently small k, be described almost entirely in
terms of the collective coordinate, q~. On the other
hand, since there are no collective coordinates for
k~X& ', the density fluctuations here must be asso-
ciated primarily with the random thermal motions of
the individual particles. For intermediate values of k,
both types of Quctuations may be expected to be sig-
nihcant. In this section, we shall treat the problem of
separating individual and collective aspects of a general
Quctuation by splitting p& into two parts as follows,
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pk g)r+)))r (~ +7(D) ~ (32)

With these definitions, we see that the charge density
has split into two independent parts. One of these, qk,
oscillates harmonically with frequency co, and can be
given an arbitrary amplitude of oscillation dependent
on the boundary conditions. The other part, qk, has no
collective behavior, and is therefore best regarded
simply as the sum of independent contributions from
individual particles. This part is present even in the
absence of organized oscillation.

When k&k~, there are no collective coordinates, so
that pq=))q. However, p)„(or )))), in this region does
not satisfy an equation of motion like (27) since we still
have the second term on the right-hand side of (9), ()is.,
ap'pk, in the expression for jk. However, for values of k

appreciably greater than k& this term is negligible, and
hence, except for a region of k ka, which we shall see
is of no great importance iii most problems, we may
regard ))& as satisfying (27) for all values of k.

We now wish to investigate in detail the meaning of
the density fluctuations. To do this, we consider the
contribution to the spatial distribution of electron
density arising from that part of yk associated with the

With an arbitrary choice of a), , ii)„ like d'p), /dP in Eq. (9),
may be expected to have two kinds of terms. The first
kind are those we obtain in the absence of interparticle
forces, (in which case i),=0), and are

ij), "=Q; (—k v;)'I1 [—a),/[0)' (—k v;)']]}s-'"*'. (27)

These arise from the random thermal motion of the
particles, and can in no way possess an organized com-
ponent. The second kind arise because of the inter-
particle forces, and, like the second term on the right-
hand side of (9), represent the organized behavior of
the system. To insure that pk has no collective com-
ponent, we must choose ak in such a way that terms of
this second kind vanish and ij), is given by (27).

Using Eqs. (9) and (19), we obtain

d 'il)r/dl =d p)r/d'i c)rd (f)r/—di

=P;I—(k v;)'-(0p'

+a) I(0'/[(a' —(k v,)']}}e—'" *' (2g)

where we have continued to use the random phase
approximation. This may be rearranged as

S.=~.'"+Z I("- ")/[ '—(k')']} -'" *' (29)

Hence, if we choose uk=co~2, we obtain the desired
separation with

[(ax—(o).x —(k v;)x]
(,—i)r ~ xi (30)

(a' —(k v;)'

It will be convenient to include the coefFicient co~2 in our
basic definition of qk so that we have

q), ——P;I(og'/[aP —(k v;)']}(,—"*' (31)

and

rth particle,

))„(x)=gq )))„e '("'*'

k&kD

(o'—(0g '- (k v„)' )
I, &~h (x—x,)

cv' —(k v,)'
~i)r (x—xr) (33)

k)k~

In the first term on the right-hand side, since we are
limited to k(kn, we may expand &v' according to (24),
obtaining,

k'(()')Ar —(k v„)'
i)„(x)= Q

) &» (vI*2+k'(()2) —(k v,)'
&ik (x—xq)

We note that for k»kD,

+ p ~i)r. (x—x„) (34)
k&kL)

k (() )Ar (k'vr) =M)r +k ('v )Ar
—(k v„)

Hence, as an approximation, we can take

k'(()')x, —(k v,)'
n.(x)=—Z &ih (x—xr) (35)

x»)' ~p'+&'((I')a. —(k v„)'

((()')x,—(),')k, ' = (()')x,(k, ')'

P2
A g g 2 g2

A P 2 g g
I 2

together with k,=k, ', k„=k„', x=x', and y= y'. We then
obtain, on changing the sum over k to an integral,

(k')'(()')x,1 (()')A„

))„(x)= —
' dk'

(2m)' (v'),„—v, ' a)~'+ (k')'(v')A,

&&exp[it' (x'—x,')]. (36)

This may be re-expressed as

(")
))„(x)= —

}
—

} V '
& 2~) (v')„—v„'

exp[it' (x'—x„')]
}X ~ dk' . (37)

(&')'+( "/(");)
The integral over k' is readily evaluated, and we obtain

expI —(~~'/(")")'I x' —«.'I }
X

4'�}x' —x,'f
~ (3g)

This is an accurate description of g„(x) for k»Pn and
k&&k~. It is not far oG in the region k—k~.

To evaluate the sum over k we choose the direction
of v„as the s axis in k space. We also make the following
change of variables in k and x space
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Using the well-known result, (7'—¹)Ie "'/-r} = —4«8(r) we get

(v')a„& imp' exp t
—(&op'-/(v')av) ~

I
x —x„

I }
I

((v')a„—v„')& 4«.(v')a,
I

x' —x,'I

Returning to our original coordinate system, we have:

'
~ expI —( '/(v')")'[(~ —~.)'+(x—x.)'+ .'(«—«,)']'}

Iq„(x)=h(x —x„)—
4«(v')a, [(&—x.)'+ (X

—X.)'+~.'(« —«.)']'

(39)

(40)

where n, '= (v')av/[(v')av vp ].
This represents a particle at x=x„surrounded by a

comoving cloud in which the electron density is
reduced below the average. The cloud is elliptical in
shape, being shortened in the direction of particle
motion by the ratio (n„) '. It should be noted that for
those particles with v„')(v')a, the present treatment
fails. This case will be discussed in Sec. IV. Here we
restrict ourselves to those particles moving with less
than the mean thermal speed, [(v')a, ]&.

The computation of the potential arising from the
charge density —ep„ is complicated by the elliptical
shape of the electron cloud. To get a rough estimate of
this potential, we consider the special case of a particle
at rest. For this case the cloud is spherical and the
potential is found to be

exp I
—

I
x—x,

I
(cop'/(v')a )«}

Ix—x,
I

This is a screened Coulomb potential with a screening
radius of the order of X~.

More generally we can. see that screening still takes
place in a distance of the order of XD when v„ takes a
nonzero value. We recall that the electrons are em-
bedded in a uniform distribution of positive charge. If
the negative charge distribution were perfectly uniform,
the electric field would vanish. However, the field does
not vanish since we have a collection of negative point
charges which produce local fluctuations whose Fourier
components are the pI, . Let us fix our attention on the
individual particles component p„(x) of the density
associated with the rth particle as given by (40).Without
the comoving cloud described by the second term on
the right-hand side of (40), the density is a 8-function,
which gives rise to a simple Coulomb potential—e/Ix —x„I. The comoving cloud represents a region
from which electrons have been displaced by the re-
pulsive Coulomb potential of the rth electron. As a result
this region contains a net positive charge. In fact the
total net positive charge may be obtained by integrating
our expression for the electron deficiency [as obtained
from (40)7 over all space, and the result is readily seen
to be unity. Since most of this charge is clearly within
a region XD surrounding the electron, we may deduce
from Gauss' theorem that the electric field associated
with this electron becomes negligible at distances
greater than )y from the electron. This constitutes a

ga = (i0i /2&) ($a, ~—$a, —~). (42)

We erst find the response of the $a, „to p, . We have

—i(k v~) k.v;
b,.=Z + -'"*'. (42)

ai kv; [(o- (k -v;)]'

The force on the ith particle arises from two sources:
the other particles in the electron gas, and the specified

striking demonstration that the individual particles do
not produce important eGects at distances greater than
the Debye length, so that in this region, the collective
coordinates qI, provide an adequate description of all
important properties of the electron gas. Although this
result has thus far obtained only for these particles
moving with less than the mean thermal speed, it will
be shown in Sec. IV that similar conclusions apply to the
remaining particles.

IV. EXCITATION OF COLLECTIVE OSCILLATIONS
AND SCREENING

In this section, we study the collective response of
the electron gas to an individual particle moving through
the system with velocity vp. We first show that if vp is
less than approximately the mean thermal speed, the
particles of the electron gas respond in such a way that
when a steady state is finally established, the Geld of
the particle is screened out within a distance of the
order of X&. In this way, we obtain a more detailed
understanding of how the screening, discussed in Sec.
III, is brought about. We then show that if vp is more
than approximately the mean thermal speed, the field
of the particle continues to be screened, but a new phe-
nomenon appears, vis. , the excitation of a wake con-
sisting of collective oscillations that carry energy away
from the particle. This wake resembles the Cerenkov
radiation obtained when fast electrons go through a
dielectric. We find that the energy loss to the collective
oscillations is of the same order of magnitude as the
loss caused by short-range Coulomb collisions with the
individual particles.

We begin by Fourier-analyzing the charge density of
the specified particle, moving with a constant velocity,
Vp —ep, = —eb(x —vo f) = —e pa eia &*—«'& (41)

Our problem is to calculate the response of the qI, to the
field produced by p, . We recall that
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Thus we obtain, using the random phase approximation,

(i, al $G7$$, gy

—(4vre'/m)i P;[1/(&e—k v,)'je '~'"'. (44)

Applying the dispersion relation, (23), we have

i(s)—„ie,
—'"

From (42) we then get

qi= &(&z'/2)—(4, +4, ). —

To obtain jj„we diR'erentiate again, obtaining

qa= ~(~'~/2)(4, - 5+k.=—) »'e —'" "',
and hence

qi:+ ie qk = &p e

(45)

(46)

Equation (46) describes a forced harmonic oscillation.
A particular solution which describes the steady-state
response of the Fourier component of the collective part
of the charge density to the field of the specified par-
ticle is given by"

q~
— [ie~2/I ~2 (k.v )2I]e—ii: v oi (47)

We exclude for the time being the case in which the
denominator of (47) vanishes. To obtain the Fourier
component of the total charge density associated with
the specified particle, we must add the density (45)
coming from the charge itself. We get

t~ =(1—[~~'/I '—(k vo)'I3) ""' (4g)

The charge density as a function of position is

[or'—hei
'—(k vo)']

t.(x) =2 ~ik (x—vpt)

ie' —(k vo)'
(49)

However, Kq. (49) is formally equivalent to it, (x) (see
Eq. (35)). Thus we can conclude that when a particle
moves through the electron gas with less than the mean
thermal speed, the collective response to its electric
field is just such as to screen out that field within a
distance of the order of magnitude of )~. This is the
origin of the screening cloud discussed in the previous
section.
"In obtaining this solution we have taken vp as constant. This

will be a good approximation as long as the change in velocity
during the period of an oscillation is small compared to vp, which
is the case in most electron gases. See Section V.

particle. When the latter is not present, we have, ac-
cording to (20),

It:, (jy
= ZGOQk, (yo

The external particle changes v;, according to (6) and
(41), by

ii;&»= (—4~e'/m)i Pi, [k'/(k')']
Xexp[ik'. (x;—vot) j. (43)

»'&~ (4/3)(e')A. , (52)

where we have used (15).
We must now solve (46) with the correct boundary

conditions for the resonant case. The proper cho'ice of
boundary conditions can be seen from the following
considerations. The group velocity of the collective
oscillations, which measures the speed with which a
disturbance is propagated, is given by

v, = (die/dk)=[k(v')A„/ie'j

The maximum value of e„obtained by setting k= k~, is
[43(v')„„j&.A particle moving with a speed high enough
to excite oscillation therefore runs ahead of the dis-
turbance that it creates. Hence, as is well known, the
disturbance will take the form of a wake trailing behind
the particle. The correct boundary condition for excita-
tion is, therefore, that no disturbance exist ahead of the
particle. This situation can be contrasted to that
existing when v02(4(v')A, . In the latter case the dis-
turbance can propagate ahead of the particle, so that
the field around the particle ultimately reaches a
steady state. (Actually a steady state is reached as long
as the condition (50) cannot be satisfied, but the use of
the expansion (24) for &o' is not permissible near the
Debye length. This is the origin of the discrepancy
between our estimated maximum speed of transmission
of a disturbance [4(v')i„l~ and minimum speed,
(vo

——[(4/3)(v )i,j'), at which excitation of collective
oscillation can occur. )

To solve the boundary condition problem, we Grst
consider q(x) obtained from the q& given in (46) by

q(x)= Q qie'" *
k&k~

= g f
—~ep'/[~e' —(k ve)']Iei&" *-"&. (52a)

We now consider a particle moving with a velocity
vo such that the denominator of (47) can vanish for
some k&kD, i.e., such that

(k vo)'= ie'=(op'+k'(ii')A„ (50)

For those values of k such that (50) is satisfied, a
steady-state solution for q& is impossible, since as can
be seen from (46), the correct solution corresponds to a
resonant excitation of the appropriate ql, . I et us now
find the value of k and vo such that (50) can be satisfied.
Taking k, in the direction of vo, we obtain

P 2(e 2 (v2) )—~ 2+(P 2+t't 2)(v2)

It is immediately evident that real solutions of (51)
cannot exist when v02 is less than (e')i„so that particles
moving with less than the mean thermal speed will not
excite collective oscillations. The minimum value of eo

for which collective oscillations can be excited may be
found by setting k =k„=0, and k, equal to its maximum
value kD. The criterion for excitation becomes
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larities, and the residues yield,

q(x) = —
~t )t dkgk„

4v'LvQ' —(v')A, ]& ~

I smLk '(» —
vQi) j}e'""+"Q»

X . (55)
~ Q+(k.&yk„»)(v&).,

FIG. 1. Contour for the evaluation of the integral in Eq. (54).

When we choose k, in the direction of vp, we obtain:

—o)&' exp I iLk~+ k„y+k, (» vQt) j—}
q(x) =Q, (52b)

Q&Qv co '+ (k '+k ')(v') +k 'Dv')A —vQ']

where we have expanded co' according to (24). The
denominator in (52b) vanishes for k, = k.', where

k, '—a} (&op'+(k '+k ')(v')A, )/(vQ' —(v')A, )j&. (53)

In the summation over k, it will be seen to be mathe-
matically convenient to extend our limits from
& (kn» —k,'—k„')~ to & Qo. This will certainly be

justified for vQ sufliciently larger than (v')A„& and will

provide an order of magnitude estimate for all values
of vp. For with vp sufFiciently large, almost all values of
k, ' will lie within the limits &(kn' —k,'—k„')&, and the
denominator of (52b) will be large for the values of k,
outside these limits. Hence, in this case a negligible
error is introduced by extending the range of integration
to + QQ. (For vQ comparable with (v')A„&, the error may
become appreciable, and a more detailed calculation is
required. ) Thus we obtain, on changing our sum to an
integral,

&az'e pxi}( kx +ky +k(» vQt)5—
X ~ (54)

~ +(k'yk )(.).+k ((").—v, ')

The boundary conditions may be introduced, ac-
cording to well-known techniques, by integrating over
the complex k, plane and choosing a suitable path of
integration. It has been shown that q(x) should cor-
respond to a. wave moving behind the particle. To
insure that there is no disturbance ahead of the particle,
we require that q(x) vanish for positive (»—vQ/). It is
readily verihed that the proper contour is that given
in Fig. 1. For positive s—vpt we close the contour by
integrating over a large semicircle in the upper half-

plane, and thus obtain zero in accordance with our
boundary condition. For negative s—vpt we close the
contour with a large semicircle in the lower half-plane.
The contour can be shrunk down to the two singu-

The precise form of q(x) is of no great interest to us
here, as we shall be mainly interested in computing the
energy given up by the incident particle to the wake.
This is determined by the reaction of the electric held
of the wake on the emitting particle located at x=vph
or x=0, y=0, s=vpt. ' %e need only consider the s
component B„since by symmetry the x and y com-
ponents vanish. h, vanishes for s) vpt and is finite for
$ &vpt. There is a discontinuity at 2' =vpt, and hence,
according to a well-known property of Fourier series,
the correct value at z=vpt is the sum taken by ap-
proaching this point from both sides. Thus we take
(~»)8, (vQt) as approached from the left. A little algebra
shows that

8, (vQt) =— " "dkgk„
u&g'+(k '+k ')v ' (56)

The force on the particle caused by the wake is thus

F,= —e8, (vQt). (57)

On performing the integration, using polar coordinates,
and taking

(k '+k„') —(-', )kD'= 2QQg '/(v')A„,
we get:

Fg= (e'Mp'/2vQ') In(1+2vQ'/(v')Ay). (58)

The limits of integration of (56) were loosely de6ned,
but since the integral has a logarithmic dependence on
the actual limits the result is insensitive to the exact
limits taken. Thus the rate of energy loss per unit
distance dE/d» which is equal to F, is

(dE/d») '"= (Qrne'/EQ) ln(1+ 2vQQ/(v')„„), (59a)

where Ep is the energy of the incident particle.
Thus far we have only considered the energy given

up by the specihed particle to the collective oscillations.
It can also transfer energy to the individual particles in
short-range collisions. The local electric held around
each particle in the electron gas, as we have seen, cor-
responds to a screened Coulomb potential of range XD
arising from the p& contribution to the charge density.
"We here are calculating the eBects of the q{x) on the particle

at a distance for which the concept of a q(x) is clearly not applic-
able, since we are certainly less than a Debye length removed from
the particle. Nevertheless the reacting force may be obtained
correctly in this way. For the energy is carried away by the radia-
tion at long distances, where the q(x) can correctly be applied.
Because energy is conserved, this energy can come only from the
incident particle. Therefore, by formally extrapolating the theory
into distances below those for which its physical application is
correct, we are able to obtain the correct energy loss.

'
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When the specified particle enters the range of this
force it can transfer energy by means of a collision.
This transfer is essentially independent of the excitation
of collective oscillations, and can best be calculated
with aid of the usual collision theory applied to the
individual particles. One finds that the energy loss
resulting from these short-range collisions is ap-
proximately

(dE/ds) &'& = (27rne4/E0) in(XDE0/e'). (59b)

It is clear that the two modes of energy loss, described

by (59a) and (59b), will generally be of the same order
of magnitude.

Experiments by Ruthemann and Lang' on energy
loss of electrons of energies of the order of 1 to 10 kev
in thin films of metal tend to confirm our theoretical
prediction of Cerenkov-like radiation. Although the
quantum theory should be used in a rigorous treatment
of a metal (and will be used in a subsequent paper), the
right results for this problem can be obtained by using
a correspondence principle argument. We first note
that electrons must emit energy in the form of quanta
with E=Lr. The probability of emission of a quantum
may be estimated from the requirement that the mean

energy radiated be equal to the classically calculated
value. We then obtain for the number of quanta
emitted per unit path length,

(dX/dh) = (1/kryo) (dE/dx).

The mean free path for emission of a quantum is the
reciprocal of this expression, and is thus given by

srne4 ln(1+ 2p00/(p')A, )

We might expect that the fundamental quantum of
energy loss should be quite close to korI. To see this,
we note first, using Eq. (53), that for large p0, k, must
be close to 00p/p0, which is small. From Eq. (56) we see
that the major contribution to the decelerating field
comes when (k,'+k„') & (&pi%0'). Thus we conclude that
40'=00p'+k'(p')A„must be close to 00~'[1+((p')A/v00)7
=co&'. The experiments quoted previously indicate that
the electrons actually do lose energy in integral mul-

tiples of a fairly sharply defined basic unit. For Al this
unit is 14.7 ev, and for Be 19.0 ev. Our calculated k~~
for these metals, under the assumption that the valence
electrons are all free, is 15.9 ev for Al and 18.8 ev for Be.
These results are in remarkably good agreement with
experiment, since the e6'ective number of free electrons
probably differs somewhat from the number of valence
electrons.

Lang has given data on the thickness of his films, from
which one can conclude that the mean free path for
emission of a quantum is somewhat less than 185A.
This compares favorably with our theoretical value of

150A for this case. A more detailed study of these
problems will be given in a subsequent paper.

In conclusion, we now show, without giving a
detailed calculation, that the collective response q(x)
screens the field of a specified particle of any velocity.
To do this, we show that th, e total responding charge
—eq(x) integrated over a small sphere surrounding the
incident particle is nearly equal to, and of opposite sign,
to that of the incident particle.

From (52a), we obtain for such an integral over a
sphere of radius R surrounding x= vpf

—eg8 fI= — I dxq(x)e= P r'dr
si sphere 0&"& 00 (lr ' V0) ~ 0

2%

X t d(cos8) I d0e+s" eese. (60)
0 0

Carrying out the angular integrations, we have

I= P —e[~~'/{~' —(lr v,)'I]

&& t dr47r{r[sin(kr)]/kI, (61)

and hence,

I= 2 e[~~'/{~' —(& v0)'I]

&& (40rR'{[cos(kR)]/(kR) I ). (62)

The expression inside the bracket is a sharply peaked
function of k which approaches a Dirac 8 function in k

space at large R, and is negligible for kR&1. For suf-

ficiently large R, the sum over k yields just the value
of 40+'/[&0' —(k.p0)'] at k=0, which is unity. Thus for
a sufIiciently large R, which we denote by R„ the total
charge associated with the collective response is equal
in magnitude and opposite in sign to the incident
charge. Thus the incident charge is screened out within
a distance R,. The order of magnitude of R„the effective
screening radius, may be seen from the following argu-
ment. In order that the charge be screened, the half-
width k=(1/R, ) must be sufficiently narrow so that the
ratio Mi '/[00' —(14 v0)'] shall be close to unity. If there
is no singularity in the denominator, this ratio will be
close to unity for k up to k~, so that R,—XD. If there
is a singularity, then the ratio will be unity only up to
the neighborhood of k=k, or kD, whichever is the
smaller. Thus R.= An or 1/k. , whichever is the larger.
Since high velocity incident particles may have a small

k„ in these cases the screening will not be as good as
for a low velocity particle.

We conclude that the field of each particle in the
electron gas is screened as the result of the collective
response of all the other particles. For most particles,
the field is e6'ectively screened within a distance of
approximately AD. For those few particles with much

higher than mean thermal speed, the screening radius

may be somewhat greater than XD. These particles also
excite collective oscillation, and in fact this excitation
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is one of the means of bringing such particles into
therIDRI equilibrium with the rest of the assembly. The
excitation of collective oscillations is a consequence of
the long-range part of the Coulomb interactions; one

'

may regard it as a description of the CGect of the simul-
taneous many-body collisions brought by the long range
of the force. The remaining screened short-range
Coulomb interactions can, as we have seen, be described
in terms of the usual two-body collision theory. Thus
we see that the use of an individual particle model for
an electron gas is just~fied in the treatment of phe-
nomena involving distances less than the Debye length.

V. THE ROLE OF INDIVIDUAL PARTICLES IN
ORGANIZED BEHAVIOR

In this section we wish to develop a physical picture
of the motion of the individual particles as they take
part in the collective motion. We first consider the state
of the electron gas in the absence of co11ective oscilla-
tion, i.e., when the ql, and jI, a,re zero for all k. In this
state, we have

'/I '—(k ')'Ij ""'= ( )

p'L(k vo )s&zo/I&a —(k vo;)oI]e '"'*"=0, (63b)

where xo; and vo; are the position and velocity of the ith
particle in the absence of organized oscillation. The
state of no collective oscillation described by (63a) and
(63b) differs from a state in which the particles move
in a completely random way, as would exist in the
absence of interaction.

In the absence of interaction the particles move in
straight lines with constant velocities. This n1otlon
produces random Quctuations in the particle density
which make the most likely absolute value of q& dif-
ferent from zero. To see this, consider (l q~ l

')A, which is,
according to (31),

~

~

~

a)p'expLik (x;—x;)]
(le~i'&. = 2 (64)

'~ Loo' —(k v,)'$l oo' —(k v,)']
Since the particles are distributed at random, only
those terms with i=j contribute to the average, and for
small k one then obtains approximately.

(l~ I'&"=~

Thus we see that the particles in the state of lowest
collective energy cannot move in straight lines and
possess a randon1 distribution of positions. Instead
there must be Quctuations in particle velocities resulting
from the Coulomb interaction which 1ead to just such
correlations of particles positions as to make qI,

——0. For
this state, the charge density pg, reduces to qp, the
individual particles part, which for small k is much less
than p~. Thus these correlations produce the screening
of the field of each individual particle by the electron
gRS.

Since for small k, qg is very nearly equal to pg„wc

Xo'= ~os& Vo;=0.

For small amplitudes of collective oscillation, there is a
correspondingly small disturbance of the motion of each

'9 For a discussion of damping, sec D. Bohm and K. P. Gross,
Paper 3~ refclcncc 5.

see that the state with qr, =o corresponds to one in
which the density Quctuations are greatly reduced
below the values to be expected in a random distribu-
tion. The state qI, =O corresponds to the state of lowest
possible collective energy, but does not correspond to
R state of thermal equilibrium. It will be shown in
Appendix I, however, that the state of thermal equi-
librium is not far from the state of lowest collective
energy. There we evaluate the probability of Quctuation
in the charge density for a state of thermal equilibrium,
and show that as a consequence of the Coulomb repul-
sion, trolls probability. ls gI'catly 1educed below thRt
present in the absence of interaction. Thus we verify
in an independent way the reduction in density Quctua-
atlons ln1pllcd by qua= 0.

It is dificult to solve in detail for the motion of the
particle in the state of zero oscillation. One of the
advantages of the collective description is that. detailed
solutions for this motion are not required. Since each
particle moves in the screened Coulomb field of the
other particles, its motion will usually not diGer
markedly from straight line motion. An estimate of the
validity of the uniform straight line motion assumption
may be obtained by comparing the mean-free path for
collision (because of the screened Coulomb force) with
the interparticle distance. It should be emphasized
here that the assumption that the particles in an elec-
tron gas are approximately independent (free) is valid
only because the organized behavior acts to screen out
the long-range part of the Coulomb interparticle force.

I.et us now consider the way in which the motion of
the individual particles changes as a result of collective
oscillation. We solve for the motion of the particle
under the assumption that its motion in the absence of
oscillation can be approximated as uniform, rectilinear
motion. This approximation will be suitable when the
fractional Quctuations of the particle velocity resulting
from the short-range screened Coulomb interparticle
forces are sma11 during the period of an oscillation.
These Quctuations will be small provided the mean-free
path for short-range collisions is considerably greater
than the distance covered by the particle during this
period, which is approximately X~. This criterion is
satisfied in all electron gases of interest. Under these
circumstances the short-range collisions give rise only
to a small damping of the organized oscillation, with a
damping time r= o.o(l/Xz), where ro is the period of an
oscillation and / is the mean free path. "When l is of
the order of magnitude of XD, the wh, olc concept of
organized oscillations becomes doubtful.

In the straight-line approximation we have, in the
absence of oscillation,



particle. Thus we may write

x;=xo,+hxi, vi=voi+8vi. (67)

We obtain the equations of motion for bx; and 6v; by
substituting (67) into the equations of motion (6),
using p~ ——q~+qi. However, the use of the straight-line
approximation for the motion of the particles in the
absence of oscillation is equivalent to neglecting the
force arising from the individual particles part of the
charge density, qJ,. Thus we may write

tion (75) is identical with the dispersion relation (23)
derived earlier. Thus our dispersion relation guarantees
the self-consistency of our assumption of the collective
oscillation arising from the cumulative small response of
the individual particles to the collective 6eld.

The consistency of the separation of the charge
density into qq and-gq further requires that gl„ in the
linear approximation, be independent of qI, . Thus the
change in qq resulting from the 6x; and the bv; should
valllsll. Tllls cllallge is, by Gill' definition of 'qp, (30),

8x,= 6v;, (68)

6v = (4—~e'/m)i Q (k/k')q e'" &*"+'*'& (69)

We may expand the exponential in (69), and, in the
linear approximation, neglect terms hke qi, (k 8x,) and
(k 8x;)'. Thus (69) becomes

N;= (4se'/—m)i Qg(k/k')qge'" *". (7(1)

U»ng qi=(pep'/2~)(PL —
P&, ) one can. then easily

verify that the following represent an approximate
steady-state solution of (68) and (69),

Q~ik Xos21M Mp
8x —i

4, 4, —

m & (io—k.vo;)' (ia+k vo;)' k'c0
(71)

2s.e'imp' k
+

mG) & Glk (d k'voi Gl+k voi

eik xoi (72)

From (71) and (72), we see that in a state of collective
oscillation there is a small wave-like perturbation in the
position and velocity of each particle, possessing a
definite phase relation to the collective coordinates $i,, „
and $q, „(i.e., qi, and. q~). We may calculate the addi-
tional contribution to the charge density resulting from
this perturbation. This is

I
—ik bx;}

ie' —(k vo,)'

2iop'k vp k bv.
e
—ik xoi (76)

[(u'- (k vo;)']'

On substituting for 8x; and 8v, from (71) and (72), and
using the random phase approximation it is readily
established. that byI, =O.

VI. RANDOM PHASE'APPROXIMATION

In this section we justify our use of the random phase
approximation, which is perhaps the central approxima-
tion in our treatment of the electron gas. %e justify
this approximation in detail for a specific ease. The
justification of the approximation as used elsewhere in
the paper can be carried out using similar methods.

%e first encounter the random phase approximation
in Eq. (8), where we neglect the term

4mt. ' Iq. k'
R= P — exp[i(k' —k) x;] exp[—ik' x;]

e~' m (k')'
k' &0

4vre'
-~v ~w", (77)

m i' (k')'
k' gk

=Q;e '~ *"(—ik bx;) (73)

in comparison with the term

5= (4vre'/m) Q; e—'" *~'. (78)

in the linear approximation. Substituting for 6x; from
(71) and using the random phase approximation, we
obtain

2%8 (dp
~PI= 4. 4, —

P4)
(~—k»')' (~+k vo;)'

In order that the part of the charge density arising from
the response of the individual particles to the collective
part of the charge density ql, should be equal to this
same collective charge density, it is necessary that the
dispersion relation,

1=(4~e'/m)g;{1/(ie —k.vo,)'I, (75)

be satisfied. for both Hie, as may be verified using (42).
But within the linear approximation the dispersion rela-

If the particles were distributed at random, the average
of E would be zero. However, the value of 8 would tend
to undergo random Quctuations as a result of the
random motions of the particles. These ftuctuations
would produce a corresponding random wavering of the
frequency of plasma oscillations, and would lead to
coupling between oscillations of different wavelengths,
(as can be seen from (77) and (8)). The random phase

approximation will be justified provided. we can show
that the effects of these Quctuations can be neglected.

Before we attempt to estimate the size of R, it will be
convenient to rewrite it in a form which groups
together certain pairs of terms having dehnite phase
relations. To do this, we interchange i and J in (77)
and replace k' by k' —k. Since the substitutions do not
change the value of the sum, we can re-express R as the
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mean of the two expressions. We obtain

k k'(ks —2k k')
R= (2v.e'/m) P +

rim (k—k')' (k')'(k —k')'
A.' gA.

Xexp[i(k' —k) —(x;—x;)] exp( —ik k,). (79)

&& exp[ik "(x,—x,)]exp( ik—x,). (80)

The expression

g [1/(k")'] exp[ik "(x;—x,)]
])')It

P'yo

is proportional to the potential of the jth electron in
the Geld of all of the other electrons plus that of the
"smeared. out" distribution of positive charge. This
potential is

q(x;)=4~e Q (p,/k')e'" *r.

%&0

(81)

Now we wish to calculate the mean fluctuation in this
quantity. To do this, we first obtain [ie(x,))', and then
average over-all values of ps. We have, from (81),

[p(x;)]'= (4v.e)s p [psps /k'(k')'] exp[i(k+k') x,)

We shall average pq under the assumption that the
system is in thermodynamic equilibrium. This is close
to the situation, usually present in practice, in which
there are organized oscillations of small amplitude
superposed on a background of random thermal
motion. "From Appendix I [Eqs. (A10) and (A11)) we
find that the probability of a given set of p& is

W( ps ) exp t
—P/, ~

ps
~

'[(47re'/k'KT)+ (1/s)] I

XI d(rs'/1) I I des .
I

where p~=r~e'&'. As shown in Appendix I, this ex-
pression includes the e6'ects of the correlations in par-
ticle positions brought about by the Coulomb force.
Since 8' does not depend on qI, products like pl, p~
=rI,rI, e'«'+&" average out to zero unless k= —k'.
Using this fact, we And

([~('))').= (4-e)' 2 ("');/k .
k~o

"The assumption of thermal equilibrium in the estimation of
Lrp(x;)P necessarily negiects those irreversible effects associated
with the damping of the collective oscillation. Actually, the effects
of damping must be contained in terms like R, since these effects
are not included in the terms we retain in the random phase
approximation. However, as was pointed out in Sec. V, for electron
gases of interest this damping will be small.

Let us begin with first term in the above expression,
which we rewrite with the aid of the substitution,
k' —k=h", as

R'= (2 ve'k'/m) P [1/(k")']

On substituting for (rs )s„its valuetsk /[k +(4vtse /KT))
as obtained in (A12), we obtain

(L ( )]')"=(4 )'2 (83)
~ ~o k'[k'+ (4v.es/KT) I]

We transform the sum over k to an integral, and obtain,
after integration,

(L ( )]')"=(4 )'(lt /4 ) . (84)

From (80) and (84) we see that the fluctuation in R',
bR' is thus given by

8R'= (irish')iesps(ks/m). (»)
This must be compared with the term S given in (78).
The ratio is

bR' bR' ksailtD& k'(v')s ( u ) & 1
(86)

S air 'ps 4v & nips E XD) 12v'

where ts.= 1/as.
We see that the modification in the equation of

motion (8) resulting from the Quctuation in R' is of
order [ks(v')»/&0&'], but is multiplied by a term of order
~(1/20)(a/Xn)i, which is very small in most electron
gases.

For a typical density of 10" per cm', we have
10 ' cm and u= 10 ' cm. Thus not only does the R'

term introduce a very small correction to the net fre-
quency, but this correction is much less than the
[k'(v')s, /a&p'] correction which a,rises when we consider
the e8ect of thermal motions. In the case described, the
Quctuations produce a fractional correction of about
10—' in the [k'(v')A, /a&i s] term

The correction (1/20)(a/XD)& would only become
appreciable for X&«a. Such cases occur in practice only
for degenerate electron gases. In these cases, however,
Fermi statistics reduce the eBects of the fluctuations
relative to the Boltzmann estimate, so that the random
phase approximation will still be justified. This problem
will be considered in our paper extending these results
to the quantum theory.

It can be shown by arguments similar to the foregoing
that the remaining terms in R are of the same order of
magnitude as R' or smaller. A similar justification can
be applied for the use of the random phase approxima-
tion elsewhere in this paper.

VII. CONCLUSION

In conclusion we give a brief summary of our results
in terms of a physical picture of the behavior of the
electron gas. As we have seen, the density Ructuations
can be split into two approximately independent com-
ponents, associated, respectively, with the collective and
individual particle aspects of the assembly. The col-
lective component, which is present only for wavelengths
& X~, represents organized oscillation brought about by
the long-range part of the Coulomb interaction. When
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such an oscillation is excited, each individual particle
suGers a small perturbation of its velocity and position
arising from the combined potential of all the other
particles. The contribution to the density Quctuations
resulting from these perturbations is in phase with the
potential producing it, so that in an oscillation we find
a small organized wave-like perturbation superposed on
the much larger random thermal motion of the particle.
The cumulative potential of all the particles may, how-
ever, be considerable because the long range of the force
permits a very large number of particles to contribute
to the potential at a given point.

The individual particles component of the density
Quctuation is associated with the random thermal
motion of the particles and shows no collective behavior.
It represents the individual particles surrounded by
comoving clouds which screen their fields within a
distance )L. Thus it describes an assembly of effec-
tively free particles interacting only through the short-
range part of the Coulomb force. The screening of the
field of a given particle is actually brought about by the
Coulomb repulsion which, leads to a deficiency of elec-
trons in the immediate neighborhood of the particle.
This same process also leads to a large reduction in the
random Quctuations of the density in the electron gas
for wavelength larger than X~.

When we fix our attention on a specific individual
electron in the assembly, we may study its interaction
with the other electrons by applying our split-up of the
density Quctuations to the remainder of the gas. The
response of the collective part of the density Quctuation
to the field of the specified particle leads to two sig-
ni6cant eBects: the screening of this particle's 6eld
within a distance X~, and the excitation of collective
oscillations when the speed of the particle is greater
than mean thermal speed. The particle also interacts
with the individual particles component of the density
Quctuations. However, the 6eld that is the result of this
component may be viewed as the sum of the screened
fieIds of individual particles. Thus the interaction of
our speci6ed particle with the individual particles com-
ponent of the density Quctuation can be described in
terms of short-range collisions between pairs of particles.

We have used the random phase approximation
throughout this paper. The use of this approximation is
equivalent to the neglect of the damping and wavering-
in-frequency of the collective oscillation resulting from
the individual particles character of the electron gas.
When the random phase approximation is justified, the
collective component and the individual particles com-
ponent of the density Quctuations will not be sig-
ni6cantly coupled, and thus can be treated inde-

pendently.
The authors wish to thank Dr. Conyers Herring for
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vv" (xq x2 x„pq p )TENT/ f

e & ~"r&dx~dx2 . dx„dp~ dp„. , (A1)

where E is the total energy of the system, kinetic plus
potential,

E=g„(p„'/2m)+-', P V(x„—x„).

We can carry out the integral over momentum space,
obtaining

W(xg~ x2' ' x„)

exn j —-',[P V(x~—x~)7/~T ]dx~ dx~ . (A2)
tnn

mWn

Let us now divide the available space into cells of
volume e so small that no important physical property
changes within them, but large enough to contain
enough particles so that the number of particles in the
cell can be regarded as approximately continuous. The
smallest suitable value of e corresponds to about 4 or
5 inter-atomic spacings. The state of the system can
then be specified in terms of the number of particles
(N&, Nm ~ N; ) in each cell. It is readily shown by
methods well-known in statistical mechanics that

W(Ng N," )

[exp [ —(1/2~T) PN~;V(x; —x;) ]7N!

(N~) l(N2)! "(N')'". (A3)

where N =+,N;. Here, x; refers to the mean coordinate
of the ith cell. For the Coulomb potential, we can, as is
usually done in electrostatics, neglect the interaction of
particles in a given cell. Using Stirling's approximation
for X;~ we obtain

W(N~ N;. ) expjN lnN —P, N; lnN;
—(1/2zT)g N;N;V(x; x;) f. (A4)—

Let Eo be the mean number of electrons in a cell. We
shall be interested in the small Quctuations, 8E; about

APPENDIX I. STATISTICAL MECHANICAL
TREATMENT OF DENSITY FLUCTUATIONS

IN THE ELECTRON GAS

In this appendix, we shall calculate the mean am-
plitude of Quctuation of the Fourier components, p~, of
the density in an electron gas. The method used here
provides an alternative approach to the screening
problem, and yields certain results that we apply in the
verification of the random phase approximation.

We begin with th, e well-known statistical mechanical
expression for the probability that the electron gas is
in a "microscopic" state in which the eth particle lies
between x„and x„+dx„, while its momentum lies
between p„and p„+dp„,
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this mean number. Thus we can write values of k. We get

X;=No+ LV;. (AS)

We now substitute (AS) into (A4) and expand the argu-
rnent of the exponential in a series of powers of blV/N,
retaining only second-order terms. In doing this, we
note that since the electrons are embedded in a uniform
distribution of positive charge of density No/e, the
electrostatic energy is

(ra')A =
"«~'( "d("')" )( "d9" )

ek'
(A12)

(4s nt, '/xT)+k'
s' P(Ã~ —No) (»—No)/l x'—x

I
="P bN'u'~/I x'—x~ I.

—2 '(RV )'/2No} (A6)

We now expand 8Ni as a Fourier series with periodic
boundary conditions in a box of unit volume.

8N;=Q payee'"'*'
kgo

(A7)

with pI, =p g,. Since p~ is complex, it will be convenient
to write it as

pI rj gsgk (A8)

with r~ ——r I„qf,= —y I,. Only half of the pI, are inde-
pendent. It is readily verified that we obtain

(em/2)Z[BN~KVi/Ix*' xil j=2me' PA(1/k')
I
p&l'i'

=2s e' Qp(1/k') rl, '
and

(A9)

W~exp{ gI [(27re'—/k'KT)+(1/2n)]rim}) (A10)

where e is the average electron density.
We obtain the volume element in the space of rI, and

cpI, by regarding the N; as continuous variables, and by
assuming that we have chosen dN;=1 in Eq. (A6).
(A6) may therefore be multiplied by the volume element
in N, space (dN&, dN2 dN& ), which is also unity.
The volume element in the space of rj, and q~ is then
given by the Jacobian of the transformation from the cV;
space. This is

J~[d(rl P/2) d(r122/2) ~ d(rq;2/2) ]
X[dq ~i" .dq ~,""]. (A11)

The probability 5'J is a product of separate functions,
one for each k. This indicates that in the approximations
used, the statistical Quctuations associated with each k
are independent.

We now calculate the mean value of l p~{
'= (rq)'. In

obtaining this, we note that r ~'=r~', so that we must
replace r&' in (A10) by 2r&', but sum only over half the

We then obtain (using P, 8X,=O and leaving out
constant factors)

W(Nq ~ N,' ) exp{—(e'/2xT)P 8N;8X,/l x;—x; l

For k'&)ko' we see that (rj, ')A, reduces to n, the value
which wouM exist in a random distribution. For k'«kg)'
we obtain (r~')A„=nk'Xn'. Thus, we see that for long
distances, the Coulomb forces cause the Quctuations to
be greatly reduced.

We can now write down the mean Coulomb potential
energy associated with each k, noting from Eq. (A9),
that the contributions of diferent k are independent.
This mean potential is

p"~)A —(2s.g2p~2/ka) = ~(KT/1+k2$~2) (A13)

For k((ko the mean potential energy is just xT/2. If we
recall that for long wavelengths, the pq act almost
entirely collectively and undergo simple harmonic
motion, then the previous result can easily be under-
stood in terms of the equipartition theorem which states
that the mean potential energy of a harmonic oscillator
is xT/2. For k)&kn, (Vq)A„becomes 2s.ne'/k'. This is
just what is obtained by assuming that the particles
move with a random distribution in space. These results
show in another application that for short distances, the
individual particles point of view gives the right results
while for long distances, the organization resulting from
the Coulomb forces must be taken into account.

In thermodynamic equilibrium, the energy is actually
distributed partly in the collective oscillation and partly
in the random thermal motion of the individual par-
ticles. Each, of the collective modes will have a mean
energy of ~T, This energy is usually very small in com-
parison to the collective energy that would be present
if,one of the modes were excited systematically. For
even though each particle makes only a small con-
tribution to the collective modes, the cumulative con-
tributions of all the particles to a given mode may result
in energies very much greater than aT. It also follows
that the collective coordinate g~, is not quite equal to
zero in the state of thermodynamic equilibrium. But
since xT is very much less than what would be present
if a given q& were systematically excited, the state,
hz=0, is not far from the state of thermodynamic
equilibrium.

Finally, let us note that the approximation of re-
garding N; as continuous can be justified rigorously
only for values of k appreciably smaller than 1/a, where
a is the interparticle spacing. Nevertheless, it turns out
that for large values of k, this procedure still gives what
we know to be the right value of (rq')A„, vis , n. This.
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indicates that (A12) is essentially correct over all
values of k.

V(~ x; x;—~) =ggVie"'*' *~' (A14)

The equation of motion of the ith particle is thus

x,= —(i/m)Qi, kUge'" &*'—*ii. (A15)

The time variation of the kth density fluctuation is
given by

d'pI:/dP = —P;(k.v,) 'e

—Q (Vi/m)k k'{exp{ i(k' —k) x;]}

X I exp( —ik' x,) I. (A16)

We now assume that the random phase approximation
may be applied to this case. The use of this approxima-
tion cannot be justified in general, but must be con-
sidered separately for each law of force. When it is
valid Eq. (A16) may be reduced to

d&p~/dP= —P.(k.v.)2e—i& *a

Q;(eUg/m)k—'e '" *~' (A17)

The physical significance of the terms on the right-hand
side of (A17) is the same as for the corresponding terms
in Eq. (9): the 6rst term represents the contributions
from the random thermal motions of individual par-
ticles; the second term represents the eGects of particles
interaction and can lead to organized behavior.

Vnder conditions such that the individual particles
term can be neglected in (A17), we have

. APPENDIX II. COLLECTIVE DESCRIPTION OF
PARTICLE INTERACTIONS

The approach used in Secs. II and III to study the
organization brought about by the Coulomb inter-
actions can be extended to a general repulsive particles
interaction. In this appendix we indicate briefly the
appropriate generalization of the results obtained in
the above sections. We assume the interparticle poten-
'tial is V(~ x,—x,

~ ) and express it as a Fourier series in a
box of unit volume with periodic boundary conditions
as:

(A22)

where co satisfies the following dispersion relation

1=P,(k'Vi/m)/[(a —(k v;)$', (A23)

We may obtain an approximate solution for (A23) in
the limit of small (k v;/~e) which is essentially the same
limit as that in which the criterion (A21) is satisfied.
The expansion of (A23) in powers of (k v;/&o) yields

oP = (mk'Vi, /m)+ (m(v')A, /I Vi,), (A24)

which for sufficiently small (9"/I Vi,) reduces to the dis-
persion relation obtained earlier (Eq. (A19)).

It is also possible to split up the density fluctuation
into its collective component q~, and an individual par-
ticles component p&. It can easily be verified that with
the choice (A22) for qi, one obtains:

with
p~=qi+gi, (A25)

~o' —(k v;)' —(7e'Vi,e/m)
(A26)

~e' —(k v;)'

The criterion that the p& display predominantly col-
lective behavior, and hence that a collective description
be appropriate, is

(iik'Vq/m)»((k v, )')A,. (A20)

For an isotropic velocity distribution, Eq. (A20)
becomes

~V»&(2/3) v, (A21)

where v denotes the mean particle kinetic energy. Thus
we see that a strong interaction and a high particle
density favor organized behavior, while high random
thermal velocities oppose it.

Just as was done for the Coulomb interactions, we
can find a collective coordinate qI, which oscillates har-
monically when random thermal motions are considered,
and thus obtain a more exact dispersion relation than
Eq. (A19). The appropriate normalized, collective
coordinate is

d'pi, /dP+ (nk'V i/m) pg 0, ——

and the pI, carry out oscillations of frequency,

co = (lk'Vi, /m) &.

(A18)

(A19)

It may be seen that when the criterion for collective
behavior (A21) is satisfied, the corresponding density
Quctuation is essentially collective, and may be de-
scribed by ql, .


