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Theory of Antiferrornagnetic Resonance

F. KEPFER AND C. KITTEL
DeParAnent of Physics, University of California, Berkeley, California

(Received October 1, 1951)

The spin resonance condition ~/p=IIo+PPp(2II~+Hz)g& previously given by Kittel for a disk-shaped
single-domain uniaxial or cubic antiferromagnetic crystal at 0 K with H& parallel to the domain axis is
extended by classical calculations to cover finite temperature, ellipsoidal shape, orthorhombic symmetry,
generalized two-lattice anisotropy, and arbitrary static field direction. The normal precessional modes are
discussed. A quantum-mechanical derivation of the resonance equations is carried out by the method
developed by Van Vleck for ferromagnetic resonance; no new features are introduced by the quantum-
mechanical calculation. Several factors contributing to the line width are considered. Existing experimental
data on antiferromagnetic resonance are reviewed; the data are scanty and taken in circumstances not
closely related to the situation envisaged by the theory.

I. INTRODUCTION

E are concerned in this paper with the theory of
electron spin resonance absorption in antiferro-

magnetic crystals, and we find results exhibiting very
significant diGerences from the results with ferro-
magnetic and paramagnetic crystals. In an earlier'
paper it was shown that the resonance condition in a
uniaxial or cubic antiferromagnetic crystal at O'K is
given by

a)/y =Ho+ LB'g(2EI~+ Hg) ]&,

when the static magnetic field IJo is parallel to the
domain axis; here HE is the Weiss exchange field, H~
is the anisotropy field, and y=ge/2mc is the magneto-
mechanical ratio; g is the spectroscopic splitting factor.

A number of the better-known antiferromagnetic
crystals have Curie temperatures of the order of magni-
tude of 100'K, and we may for these estimate very
rouglily that Bz 10' oersteds and II'z 10' oersteds,
leading to a resonance frequency co 5 cm ' for zero
static field; to obtain resonance at a microwave fre-
quency ~1 cm ' it is necessary to apply a static field
IIO 5&(10' oersteds. We know also of antiferromagnetic
crystals with lower Curie temperatures, and resonance
experiments have been performed at Leiden' on a
crystal (CuC12. 2H20) with a Curie temperature 5'K,
so that here we should expect a zero field splitting
equivalent to 10' to 104 oersteds. It seems that a
splitting of this nature was observed, although the
published account of the measurements is very incom-
plete. Our frequency estimates may be quite badly oR',

as there are few data from which to estimate the
anisotropy field.

In Sec. II of this paper we carry out a classical
calculation of the resonance frequencies for a cubic
antiferromagnetic crystal at O'K with the static field
making an arbitrary angle with the axis of the anti-
ferromagnetic domains. We consider the nature of the
normal modes of motion of the spin systems, and

' C. Kittel, Phys. Rev. 82, 565 (1951}.
«Poulis, van den Handel, Ubbink, Poulis, and Gorter, Phys.

Rev. 82, 552 (1951).

calculate rf susceptibilities, which may be very con-
siderably larger than in paramagnetic salts.

In Sec. III the theory is extended to arbitrary
temperatures, and demagnetizing effects are considered.
As we approach the Curie temperature the phenomenon
comes to resemble ordinary paramagnetic resonance.
The demagnetizing eGect of the shape of the specimen
enters in a subtle way, but is only of interest when the
exchange field is not too much greater than the de-
magnetizing field.

In Sec. IV we consider the eGect of the anisotropy
energy when there is an anisotropic coupling between
the antiferromagnetic sublattices. We also extend the
theory to crystals of orthorhombic symmetry, of some
experimental interest. Section V is concerned with line
widths, and it is pointed out that polycrystalline speci-
mens are not well-suited to experimental work because
of the large orientational broadening.

In Sec. VI the resonance Eq. (1) is derived quantum-
mechanically, employing the powerful and general
method used by Van Vleck' in treating ferromagnetic
resonance. It is reassuring that the quantum-mechanical
calculation agrees with the classical results and intro-
duces no new features. We may note that both the
classical and quantum calculations given in this paper
utilize implicitly the two sublattice model of antiferro-
magnetics which was employed previously by Van
Uleck' for static calculations. This model assumes in
eGect that the antiferromagnetic ground state is ade-
quately approximated by a spin function of the char-
acter nithn&P4a& ~ ~ ~, it is satisfying in this connection
that Anderson' has proved that the exact ground-state
eigenvalue must be close to the energy of the two
sublattice approximation. For structures such as MnO,
where the paramagnetic ions form a face-centered cubic
lattice, there are eight sublattices. Shull, Strauser, and
Wollan' have found by neutron diGraction that four

' J. H. Van Vleck, Phys. Rev. 78, 266 (1950).
4 J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941). For a general

review of antiferromagnetism the reader is referred to J. H. Van
Vleck, J. phys. et radium 12, 262 (1951).' P. %. Anderson, Phys. Rev. 83, 1260 (1951).

6 Shull, Strauser, and eolian, Phys. Rev. 83, 333 (1951).
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sublattices are magnetized in one direction, and four
in the opposite direction. In this case in a resonance
experiment we deal only with the two groups of spins,
as within each group every spin sees the same exchange
and anisotropy Gelds. In Sec. VII we review the
experimental situation.

IL CLASSICAL CALCULATION FOR O'K, CUBK
SYMMETRY

A. Static Field Parallel to Preferred Axis

This case has been bricQy treated in an earlier paper. '
The equations of motion for the two sublattices are

dM p/ch= y(H'+Ho+ H~ —),M'p*)M p
q(H~ —)Mp)—M &*,

dMg"/dt= y(H*+Ho —Hg 'AMg')M—p
—q(H~ —) Mp)M2'

cMg "/dt = p(H*+H—0+H~ X3E2*)M—g*

+y(H XM2 )My' —(2)
dM2'II/ch= y(H*+Ho —Hg XiVg*—)M2*-

+y(H —XMg*)M2*,

dM, */dt= ~(H~—XMp)M; y(H XM—&')Mi-",

dM, '/dt =7(H& XIVp) M2*—y(H XM—g') M2"—,

where Ho is the static Geld, assumed in the preferred
(s) direction, H is the rf field. ; —XM2 and —XM~ are
the exchange Gelds acting on M» and M2 respectively;
H~ and —H~ are the anisotropy fields; and y= ge/2mc.
For antjtferromagnetism ) is positive. Ke assume small
deAections from the preferred axis so that the anisotropy
may be- treated as an CGective field directed along the
RX1S.

To Gnd the resonance frequency we set H=O.
Products like M~'II'»* can be taken as zero since the
magnetization. is assumed to be predominantly in the s
direction. ' Let II~= XM»'= —U/t2' and assume 3f»
M2, Mp, MP all proportional to exp(iud). ' The reso-
nance frequencies are then the eigenvalues of the
resonance matrix A:

ls satlsGcd by

gHz H~—+—He+ L&~(2Hs+H~)7', (6)

and hence the columns of S are eigenvectors of A and
represent the four normal modes S;.The corresponding
resonance frequencies (eigenvalues) are

~i= —~2= WHO+ vP4(2Hz+H~)7~,
~3= —~4= WHO

—vga(2Hz+H~)7~.

The normal modes are shown in Fig. j.. S» and E2 are
equivalent and represent M» and M2 in a circular
clockwise precession of frequency cu& about +s, i.e.,

looking along the s axis one sees Mq and M2 describing
unequal size circles in the same sense.

To obtain a better picture of this motion consider
Fig. 1(a) with Hg=o. H the precessions are to be in

the same sense and of magnitude cu, and with M =
~ M~~

= ~M~~, the following equations of motion must be
SRtlsGcd:

~M sin8~ ——yH~M sin8~+yM'X sin(8~ —82),

G&M S1I182= —"tH~M s11182+'rM X Sill(8y —82).

Assuming 8»' and 82 small, these equations may be
solved for 6) and for 8y/82. They yield

a&= 7LHg(2Hg+Hg)7&; 8g/82= rt

%hen IIO is added, the precessional frequency of both
M, and M, is simply increased by 7HO. Figure 1(b)
can be interpreted in an analogous manner.

For Ho =0 wc hRvc degeneracy& Rnd G)» =M4, M2 =GP3.

%c may coIBblnc E» with g4, E2 with g3 into thc
linear combinations I'; as follows:

Pg qNg N4, P3 gN——x+N4-, ——
P2= gNg N3, P4= q—Np+Na,

giving rise to a transformation
0 0
0 0
iu ib

—ib id

—ia —ib
ib —id
0 0
0 0

where a=y(HO+H~+H~), b=yHs, d=y(H, H~-
HJ, ). The matrix —equation ~ = (n+ &)/(n &) =+L(2H~+—H~)/H~]'.

AS= SA' (A' diagonal)

~ Also because, for quantum-mechanical reasons, @re seek
transitions for vrhich 3f~' and 3128 are constants of the motion—
other transitions giving us multiples of the fundamental frequency.
For a discussion of this point see J. H. Van Vleck, Phys. Rev. 74,
@68 (&948).

They are actually proportional to since' or cosset. This can be
taken care of, and the phase relations identi6ed, by noting the
complex amplitudes of the normal modes in, e.g., Eq. (5).

I'» and I'2 are now equivalent, as are I'3 and E4. In
these modes M~ precesses clockwise, M2 counter-
clockwise about +s, i.e., looking along s one sees M&

and M2 describing equal size ellipses in opposite direc-
tions, with the ratio of major to minor axis equal to ~.

A discussion of this motion. is illuminating. In mode I'»

(or P2) the vectors Mq and: M2 are colinear as they
cross the ys plane and each is acted upon by only its
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kM~

M

Ho

&M

AM)

(b)

Fxo. 1. (a) The normal modes XI and E2. |t1/82= g. (b) The normal modes $3 and N4. 82/01=q.

anisotropy field, Hz. One-quarter cycle later as the
vectors cross the xz plane they will be noIi-collinear,
pointing in the same direction along x, and hence
making an angle with H~ of twice that made with H~.
Each will be acted on by a field equal to 2Hz+Her.
We compare the situation to ferromagnetic resonance
in a plane surface, where the fields seen one-quarter
cycle apart are 8 and H, and the resonance frequency
is y(BH)&. Similarly we have here &y[Hg(2Hz+ H~))'.
The + arises here since we deal with two magnetizations
precessing in opposite directions. In mode P3 (or P4)
we have the same argument, except the vectors are
colinear as they cross the xz plane. One can, of course,
form analogous combinations of the X, using arbitrary
axes x, y, resulting in a similar motion. That is, the
elliptical paths cut out in the xy plane are of arbitrary
orientation.

B. Susceytibilities

By solving Eq. (2) with the rf Geld H left in, it is
found that, for a circularly polarized field H =H —iH&,

and defining M =M' iM", M= ~Mi~ =—[Mi~, the
susceptibility is

polarized rf field

M* 2y'H gM((a'—+(op(o 3)

H (CO
—(di )(OP—(d3 )

These susceptibilities may be quite large compared
to those of paramagnetic resonance. Assuming a
relaxation frequency 6 we have for the antiferromag-
netic susceptibility at co= ~~.

yg p= iyHgM/[(2Hg—Hii)&h j,

and for the paramagnetic susceptibility at co= pHp.

xi=—iyM p/h.

If the 6's are the same, and with Mi =X 'Ho (near the
Curie point the static susceptibility is X '), we have
for the ratio of the rf susceptibilities at O'K and just
above the Curie point:

yg p /x p (HgH~)&/H—o,
—— (12)

this ratio is ~10 for H p 10', H~ 10', H~ ~10'
oersteds.

C. Static Field Perpendicular to Preferred Axis

M—/H
— 2~2H M/[( ~,)(,)~ (1O) Here Mi and M2 find new equilibrium positions at

angles @ from the preferred axes. Assuming now Hp
with cubi and ~s as given by Eq. (7). For a linearly along the x direction we introduce two new sets of
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x D. Static Field at Arbitrary Angle to Preferred Axis

Let H2 be in the enplane at angle 8 to +s. (See Fig. 2.)

Balancing torques at equilibrium we have

H2 sin(8 —QI) =HE sin($1+ $2)+HA sin&I,

Ho sin(8+$2) =HE sin($1+4t'2)+HA»n42 ~

Assuming p, and p2 small these give

PM& H2 sin8(HAWH2 cos8)
1, 2

HA'+2HAHE Ho2 co—s'8

Fro. 2. H0 at arbitrary angle. Then
Hp'«2H APE/cos'8,

axes: x'y'2' for Ml (with s' in the equilibrium direction)
and 2:"y"s"for M2 (with s" in the equilibrium direction
of M2):

Ml =M 1 cosf —MI sill/)
MI*' Ml sing+—M—I* cosP,

M2"'= M2 cosQ+M2' sin4t,

M2*"———M2* sing+ M2* cosP.

(13)

4'—H2/2HE,

which gives for the static susceptibility

X~=(MIg+M2~)/HP=X ',

(14)

(15)

a well-known result.
On using Eq. (14) the transformed equations of

motion simplify to equations similar to Eq. (2), but in

diferent coordinate systems. The resulting resonance
matrix yields the frequencies

(40/y)'= 2HEHA+ HA'+-,'HP2

& (HE+ H„)(H22/2HE). (16)

Recalling that since p must be small for our approxi-
mation, Ho must be «H g, and using H~&&H g.'

and
(a/y a t 2H EH A+H, 2]—&, (17a)

co/y a(2HEH„)— (17b)

On solving the equations of motion for the rf suscepti-
bilities one finds that, if the rf field is in the usual y
direction, only the frequencies (17a) will be excited.
To excite the frequencies (17b) the rf field must be in

the direction of Ho."
"We are indebted to Professor T.Nagamiya of Osaka University

for calling our attention to the existence of the frequencies (17b).

This transformation is applied to Eq. (2) in absence of
H. Terms like M2"Ml*' are dropped. Setting dMI*'/dt
=dM2*"/dt=0 gives the equilibrium condition on p
and hence the fundamental frequencies. ' This gives

H2 cosp+H—A sinp+2HE cosp sing=0.

When Ho«Hg, and since H~&&H~, p will be very
small and hence

$1,2
—Hp sin8(HAWH2 cos8)/2HAPE. (19)

It is to be noted that although Eq. (18) only requires
Ho«H~ at 0 90', it requires the more stringent
Ho«(2HAHE)& at 8&45'. This is because Ml and M,
attempt to become perpendicular to Ho for minimum
free energy and have weaker fields to overcome when 8
is 45' or less. In order to remove the restriction of
Eq. (18) it would be necessary to depart from the small
angle approximation we have used throughout, arid the
equations would become much more involved.

The resonance frequency may be found by a transfor-
mation similar to Eq. (13).Let

y =H22 sin'8/2HAHE. (2o)

Thus the resonance frequencies are

(co/y2) 2—2HEHA+ H22[cos28(1 —y)'+-,'sin28]
+2IH2LH22 sin48+16HEHA cos'8(2+y) (1—y)2j&. (21)

The normal modes and rf susceptibilities are quite
involved. %'ith the rf field in the usual y direction all
frequencies should be observed if t3 is appreciably less
than 90'.

III. EXTENSION' TO ARBITRARY TEMPERATURES,
CUBIC SYMMETRY

A. Static Field Parallel to Preferred Axis

We assume the ordering suKciently strong for vectors
M» and M~ to have a meaning. First the case of 6eld
along the preferred axis is worked out, then the methods
of Sec. II are used to extend the result to arbitrary
field direction. The equations of motion (2) are still
valid providing we can assume H~ the same for both
sublattices. This is adequate since near the Curie point
where, as we can see from microscopic models, the
anisotropy fields will be noticeably diGerent, they will

also be negligibly small. If Ho is large enough to cause
an appreciable diGerence in the two anisotropy fields,
it mill also be large enough to dominate the resonance.
We assume HA/HE«1 at all temperatures.

The analog of Eq. (7) when ~MI*~ 4 )M2*~ is

~/7 H0 271(M1 +M2 )~ IHALHA+)I(MI M2 ))
+ (X/2)2(MI'+M2*)'I &. (22)
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This may be simpli6ed by noting that since Mi*+Mp*
=x»Ho, and on using Eq. (15),

C. Temperature Dependence of n(= y, „/g~)

X(Mi*+Mp*) = nHp,

Van Vleck4 has derived expressions for the suscepti-
(23) bility of antiferromagnetics in small 6elds. His results

X1I/XJ. n/2=(1+2) ', (32)

n increases from 0 to 1 between O'K and the Curie where, in particular, for spin 5=1/2
point. We de6ne a temperature-dependent average H~.'

T
2He=X(M '—M *)

Thus Eq. (22) becomes

/& —-H.{1- /2)~[2H. H.+ ( /2) H:y. (26)

H. Static Field at Arbitraxy Angle

»g«e 2 app»es, except IMil&IMpl
torques at equilibrium and solving for p, and Pp,
assuming them small

Hp sln8[Hg~ (1—n)Ho cos8j
1, 2

2H~H g+ H~' (1—n) Ho'—cos'8

1—(M/Mo)'

T/3T,

1 (M/M—o)' 2T/3T—,

In these relations T, is the Curie temperature and
M/Mp is the ratio of the spontaneous inner magnetiza-
tion of one sublattice at temperature T to that at
absolute zero. This ratio rises rapidly to 1 as T goes
below T, and is plotted in books on ferromagnetism.

Ho'&(2HgHs/[(1 —n) cos'8j,

Qi, p—Hp sin8[H~%(1 —n)Hp cos8$/2HgHs. (28)

Equations (27) and (28) are analogous to (18) and (19)
and the remarks given below the latter apply here also. 'b

Proceeding as in the O'K case we find the resonance
frequencies by solving the characteristic equation. The
result is quite complicated algebraically unless we make
the assumptions

H~(T)«E4(T)

Ho'((ZH~(T) Hg (T).

(29)

(30)

Under these restrictions the resonance frequencies are

(&o/y)'=2H~Hip+-', Hp'[1+ (1+n)' cos'8)
+-', Ho I SHgHs(Z —n)' cos'8

+Ho'[sin'8+cos'8(Z —n)'(Z sin'8+ n' cos'8)] }& (31)

This equation, in the form of IJO as a function of co, has
been given by Nagamiya. 9 It is to be noted that his 0.
is equal to our (1—n).

@"It should be noted that 2EIgH g/(I —a) may well increuse
with increasing temperature. If it does, it should take larger
Gelds II0 as the temperature rises to cause the parallel suscepti-
bility suddenly to jump to a high value, indicating that the
magnetizations have flopped over to the hard axis (or to a perpen-
dicular axis in case of cubic symmetry). Such an increase with
temperature has been found at Leiden in CuC12 2H20. See
reference 2. This type of experiment, incidentally, offers an
independent method of determining some of the quantities
entering into the resonance equations, since from free energy
considerations it is seen that the threshhold strength of Geld
applied parallel to the easy axis and causing a Bop is

Ho' 2agPe/{1 n). =—
9 T. Nagamiya, Prog, Theor. Phys. 6, 342 (1951).

D. Demagnetizing EQ'ects

We show that the central maximum of the resonance
line is essentially unaRected except in materials with
very low Curie points (small exchange fields). Effects
on line width are considered in Sec. V.

Assuming an elliptical specimen with demagnetizing
coeKcients E, E~, E', we take account of demagnet-
izing effects in the resonance equations by replacing 8
in Eq. (2) by

I—[iN (Mi +Mo )+jS"{Mio+Moo)
+ 1 X*{M,*+M,*)j

The general solution at arbitrary temperature and
angles of IIO is quite involved algebraically. We give
two special cases.

(I) O'E, Hp aforpg preferr'ed axis

{oo/y)p=Ho'+Ha'+HgHe[2+(E&+E )/X$
~ I 4Ho'H~'+ 4Ho'H ~Hz[2+ (&"+&')/&]

+H~'He'(A'& E*)/X I
*'. (33)—

This reduces, for IIO=O, to

&o/y= &[2HgHg(1+X*X ') j&

and
+[2H,H.(1+X l-) j&. (34b)

With X~4S there are four resonance frequencies. The
difference between Eq. (34a) and Eq. (34b) may not be
resolveable, but may serve only to broaden the lines by
hoo/&o (X'—1Vp)/2X. In MnO, e.g., where X '=x~

10 4 we have h&o/oo 10 ' {or smaller) Hthe Cu.rie
point is 1'K, then Aoo/oo 10 '. The ideal shape for
single-crystal experiments is one with S =Ã&, i.e.,
with cylindrical symmetry. The normal modes of Kq.
(34) are the same as those given by Eq. (42) of Sec. IV.
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IV. MACROSCOPIC aracUSsrom oz AzlSOTROpv

A. Cubic Symmetry

Since the anisotropy is of extreme importance in
determining antiferromagnetic resonance, some of the
possibilities are examined from a macroscopic point
of view in this section. Microscopic analogs, from a
quadrupolar-coupling point of view, are given in Sec.VI.

For cubic symmetry we define macroscopic anisotropy
constants in the usual way. Only quartic (or higher)
forms in the direction cosines of the magnetization are
consistent with cubic symmetry. However, for small
displaceInents from a preferred axis, these forms will
have quadratic terms which give rise to CQ'ective

RnlsotI'opy Gclds.
The form

f~ = (KI/2) (~I'PI'+ ~I'V I'+PI'V I'

+~s Ps +~s ys +Ps Ys )

wllcl'c txI, PI, 'yI RIld txs& Ps, 'ys Rlc tllc dIrectIon coslllcs
of MI and Ms respectively, has a quadratic term for
small displacements from the s-axis

f~'=(KI/2)(~I'+PI'+ ~s'+Ps').

This is analogous to ferromagnetics. In addition, we
have in antiferromagnetics the presence of forms
depending upon the relative positions of Mq and M2,
involving terms coupling the direction cosines. For
small displacements from the s-axis these can all bc
reduced to

f~"=(Ks/2) (~I'+PI'+ ~s'+ Ps') (35b)

f~'"=Ks(oI~s+PIPs) (35c)

We may readily identify the H~ used in Secs. II and
III:

HgMI*= (O/OnI)(fg'+ fg")= (KI+Ks)Mp/M;'
'P These substitutions can also be found by considering the free

energy (less anisotropy):

F= —H0(3EI*+3fg')+) Mq Mq+~E(3SII +3f2 )~

+~sr(m ~+my)2+-'(4~ —2x}gr, +M;)'
which may be rewritten

F= ssN(M B+Mss) t'Ho+ tt(3S 4s) (Mi'+—)Vs') j(Mi'+—Ms')
+(X+X)Mg Ms.

(2) E =Xs=E, arbitrary temperatlre, and arbitrary
directioe of Hs. W—e have X'=4Ir —2X. By means of
the substitutions'0

Ho"= He[1+ (XV 4—Ir) o./X7,
2HS"= () +Ã)(MI' —M,~),

we restore the equations of motion (2) in absence of
dcmagnctlzlng factors but now ln terms .of thc prlIQcd
fields. Hence Eq. (31) now holds with Hs replaced by
Ho" and HE replaced by Hg". The change is not
important if )I,))E. If E=4Ir/3 (spherical sample) the
only change is in the size of e&ective H g.

so that
(XMIMs+KI+Ks)s) (XMIMs+Ks)',

KI+Ks&Es

Quantum-mechanical cxpl'css10Ils fol' EI, Ks, Rlld Ks
ar g'e, i ter sofq d pla pl gc t t,
in Sec. VI.

B. Temyerature Dependence of H~"'H~'"
(—XI+Vs —Xs)

Here we have little to go by. As noted by Van Vleck"
his calculations for ferromagnetic anisotropy exhibit
the general trend with temperature that is observed
experimentally, but do not give anywhere near as rapid.
a diminishment of anisotropy near the Curie point as is
observed. In addition, some ferromagnetics, e.g., MnBi,
exhibit an Ascreuse of anisotropy over a wide range of
increasing temperature, "quite contrary to the predic-
tions of the quadrupolar coupling model. Presumably
antiferromagnetics are subject to the same vagaries.

"J.H. Van Vleck, Phys. Rev. 52, 1178 (1937)."C. Guillaud, Ferromagndt~srne des alliages bina~res de manga-
nese, thesis, Strasbourg, 194$,

Rnd wc now hRvc Rn RddltlonR1 Geld kg

k~MI Of——g'"/OnI =KIMs'/M,

which adds new terms to the equations of motion (2).
The original equations of motion are restored by

redefining

Hs"' Hg+——(Ks/M), Hg"' (KI+——Ks Ks)—/M. (36)

The change in Hg may be neglected. Thus all the
results of Secs. II and III hold with HgH~ replaced by
)j,(KI+Ks—Ks). We have assumed anisotroPy fields of
the same magnitude acting on the two sublattices, and
we have made use of Eq. (25).

As redefined H~'" cannot become negative as can be
seen from the following argument. For small displace-
ments from the s-axis, and with Ho ——0, the free energy is

F=XMIMs[aIns+ PIPs
-(1-!'-!P ')(1-!-'—:P")7
+[(KI+Ks)/27(~I'+ ~s'+PI'+ Ps')

+Ks(&I&s+P IPs) .
This may be written as

F=()MIMs+Ks) [nIns+ PIPs
—(1--', '--', P ')(1-! "-!P")7

+[(KI+Ks Es)/27—(~I'+ ~s'+ PI'+ Ps'),

which immediately justifies Eq. (36). In order that F
have a minimum at nI ——ns ——PI——Ps ——0, as postulated
when wc assume 8 R pI'cfcrlcd axis~ P must bc R defi"
nite" quadratic form. The condition for this is

O'F O'F ( O'F
,&i

O(xI O(xs (OAIOo!sl

OI'
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Assuming, however, that the quadrupolar model is
followed, we have from Sec. VI below that the temper-
ature dependent part of K~+Kp —Kp goes approxi-
mately as

where
LS(S+1)—3((S *)')"5L(S. *) .5', (38)

8
(SU')4„——Bg(8)= P me"4

S
emp

with
m= —S

S
em 4

m=—S

C. Noncubic, but Orthorhombic Symmetxy

This case includes CuC12 2H20 which has been
investigated at Leiden, ' The anisotropy may be a
quadratic function of the direction cosines without the
small angle approximation. We have as the most
general quadratic term, after subtracting out the rota-
tional invariant dot product of the magnetization
vectors (which acts as an exchange term)

f~= (Ki'/2) (~i'+ ~P)+ (K.'/2) (P& +P~ )
+Kp'ngnp+K4'PgPp. (39)

We choose the s axis as the preferred (direction of
easiest magnetization). Hence, using arguments similar
to those leading to Eq. (37) we must have

E»'& E3' and E2') E4'. (40)

We treat two special cases, and include demagnetizing
factors.

(1) O'K, Hp ——0
The resonance matrix corresponding to Eq. (3) is

where

0
0

A2 ——
zc

—zd

0
0

—zc

—ia —ib
ib ia
0 0
0 0

(41)

a= yH~(1+X X ')+ yKp'/M, -
b=7He(1+XV. ')+yK4'/M,

c=yHs(1+1V X ')+yKg'/M,
d= 7He(1+X~X ')+yKp'/3/I

The diagonalizing matrix becomes

S2 —— —zv''
—zv '

(42)

8=gPHp/kT.

B,(8) is the Brillouin function, and it is to be noted that

B (8)=LB (8)5'+dB/d8.

Further details on this model as applied to ferro-
magnetics may be found in Van Vleck's papers. ' "

p=+ f(c+d)/(a b)—]&, r =+/(a+ b)/(c d—)5&

This is closely analogous to the S' of Eq. (9). The
eigenvalues are

4p, = pp p
—+——[(a b)—(c+d) 5&,

4pp
—— pp4—+——$(c d)—(a+ b) g&

(43)

The normal modes I'; are similar to those of Eq. (9)
except that the elliptical paths in the xy plane are no
longer of arbitrary orientation, and are of diferent
frequencies according to whether the major axes are in
the x or in the y directions.

The susceptibilities are interesting. For linearly
polarized rf fields

y = —2yM(a —b)/(4pP —4pP),

X"=—2yM(c —d)/(pp' —pp 44).

Thus we have the somewhat unusual result that only
the resonance frequency co» should be observed with
the rf Geld in the x direction, and only ~3 with the rf
in the y direction. Also, assuming the ~» and cv3 lines
to be of similar shape, the ratio of amplitudes should

go as (a—b)/(c —d), or as the ratio of the effective
anisotropy fields for x and y displacements.

(Z) 0 KHp alor4g p'referred axis
The resonance frequencies are

4p'= y'H '+ac bd+[(a—+c b d)(a—+b—+c+d)H '
+ (bc—ad)'5&. (44)

The normal modes are too complicated to admit of a
simple physical interpretation. All frequencies should
be observed in both the x and y directions, although
with quite disparate intensities as long as IIO is small.

V. LINE WIDTHS

Powder samples should give according to Eq. (31) a
fractional line width EHp/Hp 1. With Hp axed and pp

varied the broadening will be App/pp Hp/(2HeH~)&.
Since the microcrystals have random demagnetizing
factors, there is according to Eq. (34) an additional
contribution to the width of A&p/4p 10'A '= 10'~. This
would vary from sample to sample, being 10—' in
MnO and becoming quite large for samples with low
Curie points.

Single crystals cut cylindrically, as noted in Sec.
III D, are the ideal specimens for studying antiferro-
magnetic resonance. The crystals should be carefully
annealed in order to minimize lattice dislocations. A
high density of dislocations may effectively smear out
the antiferromagnetic crystal pattern, introducing many
extra sets of spins in one or the other direction, and
causing widely varying anisotropy and exchange forces.
This problem is in some ways peculiar to antiferro-
magnetics, for in ferromagnetics (a) the spin pattern is
not essentially changed by dislocations, and (b) the
resonance frequency is not a critical function of the
product of exchange and anisotropy Gelds.
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In both powders and crystals there will also be a
broadening by various relaxation mechanisms. The
dipolar broadening should be small because of the
Van Vleck-Gorter process of exchange narrowing"
which is independent of sign of exchange integral and
which is important when the exchange is strong.

VL QUANTUM-MECHANICAL CALCULATION,
CUBIC SYMMETRY

We follow the method used by Van Vleck' in treating
ferromagnetic resonance. Only the case Ho along the
preferred axis will be treated; the general case follows

by using transformations as in Eq. (13). As in the
classical treatment, a two sublattice picture is used.
We neglect dipole-dipole terms as being relatively
unimportant. The anisotropy is treated as a quadrupole-
quadrupole coupling. As Van Vleck points out, this is
merely an artifice, representing in a simple way the
complex interaction among spins, orbits, and lattice.
It leaves us with unknown quadrupolar coupling
constants, and the best we can do is to identify these
with macroscopic counterparts.

The Hamiltonian of the system is the sum of Zeeman,
exchange, and quadrupolar terms

X=Xz+Xz+Xq. (45)

We assume spins SU of sublattice 1 directed opposite
to Ho, so that M~' is in the direction of Ho. Introducing
exchange coupling constants A, & and quadrupolar
coupling constants E;q we have

Xz=&ogP(Z~ S»*+K~ S»*);
X@=pk)i &ikSyj' Sy +kg jkv)4 jk S2i"' S2k

+Qk; &,k"SV Skkv

Xq ——gk); K;kr, k '(S„'r,k)'(Sik—r, k)'

+2k);K;k'r;k '(Sk; r,k)'(s2k r;k)'

+gk, ;K;k"r,k '(Sk, r, k)'(S—~k r,k")'.

Using the equations of motion and commutation
relations

along Ho. When Ho is along a preferred axis we may
make the field axes coincide with the crystal axes,
which is a great simplification. Similar equations of
motion may be obtained for S2, etc.

We make the approximations that below the Curie
point we may replace S»' and S»' by their expectation
values:

X= (2/1VgPhy)Q; A;k"

independent of k. Then we have

E=y) M2'S&&—qXMi'S2&.

(48)

(49)

Note that this is independent of lattice structure.
To simplify Q we replace squares by average values

for each atom, assumed independent. Thus we use the
relations

((Sg;*)')kv=((Sgivv)')kv ,'[S——(S—+1) ((Sl—j')')A ]vv

Sk Skvv+SkvvSk. =0;
2 (Sli Slj*+Sli Sli ) —[(Sli &Av+ z]S1j

with similar relations for S2. Also we take advantage of
cubic symmetry to drop terms like"

pk K,k(n;k' p;k'), p—k K,kn, kp, k, pk K,kn;k'p, k, etc.

This eventually reduces Q to

AQ= [S(S+1)—3((S„*)&.„][(S„'&,„+-,']
Xpk K,k(v, k' 3p,k'vvk')—R"
+[S(S+I)—3((S ')')"][(S ') +l]
Xgk Kvk (haik' Pvk'yvk')S~"—

+[S(S+1)—3((S„*)')„][(S;*)„+—]
Xpk K;k"( 2P, k'V;k')—SP

(S&,*)kv —— 2—M&'/1q gp; (Smkv)kv = 2Mk—v/kg p; (47)

where E/2 is the number of atoms in a sublattice.
Assuming that local exchange fields can be replaced

by average fields taken independently over successive
clusters of nearest neighbors, next nearest neighbors,
etc., we may define an average exchange parameter X

we obtain

dS„*/dt = (i/It) [X,Sk']; etc. ;

[S„~,Sgkvv]=iSg;*fv, k, etc
An assumption equivalent to the classical assumption
of equal anisotropy fields seen by both sublattices is
that in the above equation

dSi'/dt= p, dSi, */dt= Z+E+Q; Z= yIIOSp;—
AE =Zk, , ~v k"(R,*S2k" R,"Skk');-
It Q= Qk ~;K,k(n, kSg,'+p, kS~p+y, kSg,')'W;k

+ski Kik (nikS2i +pikS2i +yikS2i*) Wikv

where

(46)
v%/~= & 'qQk K;k(v, k' 3p, k'v, k');.—
VKz/1t-'f = It 'qZ~ K,k"(V;k' P,k'V;k');-

yK3/M= 5 'qQk K,k"('2p;k'y, k');

(50a)

(50b)

(50c)

((Slj*)&Av=((S2j*) )Avv [(Ski )kv+z]= [(S2j*&Av+z]v

an.d now defining

W, k ——(n, kSgk'+ p;kSk ++p;kSgk') (p,kSgk* y,kSgk")—
+(pjkSlk VikS1k )(njkS1k +pjkSlk + YjkSlk )

Here n;k, P;k, y;k are direction cosines of r, k relative to
the field axes, since the axis of quantization must be

"J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).

'4 Strictly, these will not drop out unless we have cubic sym-
metry within each of the two magnetic sublattices considered.
Shull's experiments (see reference 6) indicate there is no such
symmetry in, e.g., MnO. However, there is, of course, symmetry
within each of the eight actual sublattices of a f.c.c., and if we
make the reasonable assumption that the anisotropy is associated
with the super-exchange, the terms in question will go to zero.
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where

ere have

I S(S+1) 3((S '*)') X(S '*) +H

Q = y[(—Xi+Em)//3II]S p y(E—g/ill) Sp.
Thus Eq. (46) has become

zs;/di= ~[H, xiv—, + (z,+I:,)/m]s;
—y[XMi*+ (K3/M)]sp; (51)

with similar equations in S2, etc. Equation (51) is the
same as Eq. (2) (in absence of rf field H) when account
is taken of the anisotropy refinements of Sec. IVA.
Thus we have shown that the quantum-mechanical and
classical approaches lead to the same differential
equations of motion, and hence to the same resonance
frequencies.

It is noted that for a simple cubic lattice Eq. (50c)
gives Ea/M= 0. For more complicated lattices Eq. (50)
ought not to be taken too seriously, as witness reference
j.4.

VII. EXPERIMENTAL SITUATION

A sudden and almost complete extinction of para-
magnetic resonance absorption at microwave fre-
quencies on cooling an antiferromagnetic below the
Curie point has been noticed by several investigators.
Using a single crystal of the tetragonal salt MnF~
(T 70~'K) in a field Ho 3000 oersteds, Hutchison"
has found the absorption to vanish at 64'K, inde-
pendent of the orientation of IIO. The same eGect has
been noticed by Maxwell eII al. ,

"using sintered Cr203
(T,~311'K) in a field Ho 3450 oersted——s.

'I C. A. Hutchison (private communication).
"Trounson, Bleil, Wangsness, and Maxwell, Phys. Rev. 79'

542 (1950).

On the other hand a continuation of strong para-
magnetic absorption well below the Curie point in thin
disk polycrystalline samples of the cubic compounds
MnS, Mno, and MnSe has been reported from Japan. "
In particular as MnS (T ~198'K) was cooled to 78'K
the resonance line at 351.0 oersteds decreased quite
smoothly in amplitude and increased in width. A
similar result, but with the intensity more sharply
reduced below the Curie point, has been found in

powdered Cr203 by Maxwell et ul."The latter experi-
ment also showed a second line below the Curie point
appearing at a smaller and smaller value of Ho (fixed co)

as the temperature decreased. It may be that these
lines are caused by the presence of ferromagnetic
impurities in the lattice.

The antiferromagnetic resonance discussed in this
paper probably would not have been observed in any
of the published experiments, because they were carried
out rather far from the expected fields and frequencies.
Antiferromagnetic resonance has apparently been ob-
served at Leiden' in the experiment with CuC12 2H20
mentioned in Sec. I. It would be of interest if experi-
ments could be done with other crystals of very low
Curie points, or with some of the above-mentioned
crystals in fields Ho 5&10' oersteds.
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