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We have investigated the dielectric properties of a CsCl type
crystal made up by insertion of ions into the body center sites of
a simple cubic array of rotatable polar molecules. Owing to the
Lorentz field exerted by the dipoles themselves, a non-uniform dis-
tribution in orientation of the polar molecules is predicted below
a certain critical temperature. The main results obtained are as
follows: (1) It is shown that the crystal is antiferroelectric so long
as the polarizability of the central ions is small, half of the di-
poles being partially oriented parallel to and the other half anti-
parallel to one of the cube edges. On the other hand, if the polari-
zability of the ions is larger than a certain threshold value, the

crystal is ferroelectric, all the dipoles being partially oriented -

parallel to each other. (2) The dielectric constant-temperature
curves calculated for antiferroelectric cases show a variety of
forms according to the polarizabilities of both components. For
some specimens they are almost flat throughout the region around

their own critical temperatures, while for other specimens they
can show such sharp peaks that they are hardly discernible from
those of ferroelectric crystals, which always show very sharp peaks
tending to infinity. (3) Below their respective critical temperatures,
the dielectric constant should decrease with increasing dc bias in
a ferroelectric crystal, while in an antiferroelectric crystal it should
increase slightly under the same condition. (4) If a sufficiently
strong field is applied to an antiferroelectric crystal at just below
its critical temperature, it will be forced to make a momentary
transition to a ferroelectric one, the change being accompanied by
an abrupt increase of polarization.

It is suggested that most of the phenomenological predictions
derived with this model may, qualitatively at least, be valid also
for other models which have ions capable of displacement instead
of freely rotatable dipoles, as is really the case with the well-
known BaTiO; and the like.

I. INTRODUCTION

NOMALOUS peaks are frequently observed in the
dielectric constant-temperature curves of crystals
containing or composed of rotatable polar molecules,
and are generally known as the phase changes arising
from hindered molecular rotation.! Considering the
form of the lambda-points of the peaks, the transitions
must represent some kind of cooperational phenomenon,
and the hindering potential acting upon any molecule
on the lattice must in any case depend upon the state
of rotation of the molecules themselves.

Several attempts have been made to construct an
explicit form for the torque potential. For example,
Kirkwood? has formulated a theory based upon a short-
range interaction of the form (e/2) cosy for a pair of
neighboring molecules, the axes of which are inclined at
an angle vy to each other. If the hindering potential in
the crystal concerned really arises from short-range
forces, such as steric hindrance or the like, which can
be effective only between the molecules in contact, his
treatment will yield a good approximation. On the
contrary, however, if it is certain that most of the
hindering torque arises from the dipole-dipole inter-
action, as it does in the case with which we are going
to deal, the nearest-neighbor treatment may be inade-
quate, as Kirkwood himself mentioned in his article.
This is, in the first place, because the dipole forces are
long range in nature and, what is still more important,
because their peculiar directional nature invalidates the

*The expense of this research has been defrayed from the
Scientific Research Expenditure of Japanese Ministry of Edu-
cation. A preliminary account of the present paper was given at
the 1950 Annual Meeting of Phys. Soc. Japan, held at Osaka
University, on November 4, 1950.

LR, H. Fowler, Statistical Mechanics (Cambridge University

Press, London, 1936), second edition, p. 810.
2 J. G. Kirkwood, J. Chem. Phys. 8, 205 (1940).

expression in terms of a single parameter vy. For ex-
ample, two dipoles parallel to each other have a negative
energy if they are on the same line, whereas they can
have even a positive energy if they are arranged side by
side.

The present paper aims to show how a fairly satis-
factory theory can be formulated if we replace Kirk-
wood’s potential by the Lorentz field. For the sake of
simplicity, we shall start with a simple cubic array of
rotatable dipoles, for we know well what is the most
suitable set of sublattices into which a simple cubic
lattice can be decomposed.? Besides, we shall insert ions
into the body center sites of the array in order to clarify
an important role played by the polarizabilities of the
crystal components. It will be shown how interesting
characteristics unknown in magnetic substances are
theoretically expected for dielectric crystals only.

Very recently Kittel* has developed a theory of anti-
ferroelectricity. The present theory will add to it from
another point of view, though the model treated here is
perhaps too simplified to be realized in nature.

II. DISTRIBUTION FUNCTIONS

To start with, let us consider a simple cubic array of
dipoles without the ions at the body center sites. Elec-
trostatic energy eigenvalues of such an array have been
fully discussed by Luttinger and Tisza.® They have
shown that in the state of lowest energy which the
system should assume at 0°K, half of the dipoles, namely
those on the lattice denoted by 1 in Fig. 1, orient them-
selves parallel to, say, the 4z direction while the other
half, on the lattice denoted by 2, orient themselves
parallel to the —z direction.

8 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
+C. Kittel, Phys. Rev. 82, 729 (1951).
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Fic. 1. Classification of sublattices. The sites 1 and 2 are occupied
by polar molecules; the site 3 by ions.

x

For such an ordered configuration, full use of sym-
metry considerations may be made in calculating the
inner field. It turns out that the field acting on lattice 1
is really pointing in the 4z direction while that on the
lattice 2 points in the —z direction.

As the temperature is raised, however, this ordered
configuration will be gradually disturbed by thermal
agitation, and a rigorous calculation of the inner field
becomes very difficult. That is, although we are sure
that the inner field will then decay in some kind of
cooperative manner, yet a rigorous evaluation of it
seems almost impracticable because one must carry out
a summation over a great many electrostatic forces,
each arising from an individual dipole oriented at
random.

Viewed from another angle, however, this very process
of summation seems at the same time to have the ad-
vantage of smoothing out most of the microscopic fluc-
tuations in the local field from site to site. So we may
assume without much harm that the inner field F;
acting on a lattice ¢ is homogeneous throughout the
specified lattice, though of course it can be different
from the inner field F; acting on another lattice 7; its
value, to this approximation, may be calculated by
supposing that every molecule had just the average
moment taken over the specified lattice to which it
belongs. That is, we shall assume that the field is to be
determined if we only know the macroscopic polariza-
tions P; of the sublattices.5:6

Now we shall add the ions into the body center sites
and designate them by the number 3. On account of
our assumption

3
F°=E+Z fif j/fo; i= 1; 2’ 3)

=1

€Y

where fi; are the Lorentz factors, the values of which

8 J. C. Slater, Phys. Rev. 78, 748 (1950).
6 S. Roberts, Phys. Rev. 81, 865 (1951).
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may be obtained from a paper by McKeehan;

Sii=fiis
fu1=faa=3%+0.4260,
f12 = %*‘ 04260,

f13=f23=f33='13“-

The polarizations P; are in their turn to be deter-
mined by the local field. The field acts to concentrate
the distribution of dipoles around itself as closely as
possible, in opposition to disruptive influences due to
thermal agitation. If #,(w) gives the probability for any
one molecule on lattice 7 to be in an orientation w, then
the part of the polarization due to the permanent
molecular moment, g, is given by

@

Pai=(u/29) f cosd ni(w)dw, i=1,2, 3)
where v is the volume of a unit cell, and 6 the angle
between z-axis and the orientation w. ‘

The most probable form of #;(w) under a given ex-
ternal field E and a given temperature T is of course
to be determined from the minimum condition for the
free energy of the crystal.

The entropy S associated with a macroscopic state
specified by a set of distribution functions #:(w) is
clearly

2
S=—kY | ni(w) logn(w)de,

i=1

)

k being the Boltzmann constant.
The internal energy U is given by definition

3 3 1
U=-Y | FdP;=—EY P;——

t=1 i=1

3 3

2 fiPiPs. (5)
2¢g i=17=1

The polarizations are each composed of two terms,
since every molecule has, besides the orientation
polarization, also the electronic polarization as well as
the ionic polarization induced by the local field. Namely,

P¢=Pdi+Pai, 'i=—‘ 1,2; P3=P¢3, (6)
together with
Pm-=eoa1F,'/2'u, 1= 1, 2; Pa3=€oa3F3/7), (7)

where o and o3 are the polarizabilities of the molecules
and ions respectively, excluding those due to the per-

. manent dipoles.

Substituting (6) and (7) into (1), we can eliminate
all the P.; terms and can express the polarizations P;
in terms of only #:{w) and E. Then Eq. (5) can be
transformed into the form

2 1 2 2
U=—exE*—~hE Y Pou—— 2 2 gisPaiPaj, (8)

=1 €y i=17=1

where «, h, and g;; are simple but somewhat lengthy
expressions involving «; and fi;. Their explicit forms,

7L. W. McKechan, Phys. Rev. 43, 913 (1933).
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however, will be omitted here, since only certain com-
binations of them are of importance, and if combined
they become rather simple as seen later.

Following the procedure in Kirkwood’s theory,?
extremalization of the free energy F, i.e.,

F=U-TS, (9)

by means of the calculus of variations, with respect to
the functions #;(w), subject to the normalization
restraint,

fn;(w)dw= 1, i=1,2, (10)
leads to the following set of the most probable distribu-
tion functions:
X5
ni(w) =———exp(x; cos), i=1,2.
47 sinhx;

(11)

The parameters x; must satisfy the following simul-
taneous equations

X; 29 2 .
—=h—eE+3 g'iiL(xi)7 1=1,2,
[ M~ =1

where o= u?/€y20kT, and L(x) is the Langevin function,
L(x)=cothx—1/x=(x/3) — (x3/45)

+(2x5/945)— - - - (K1),  (13)

Substituting (11) into (3), we obtain as dipolar parts

The total polarizations of respective sublattices can
easily be written in terms of these Langevin functions
(see the next section).

Our approximation is clearly just equivalent to that
of the Weiss molecular field theory of ferromagnetism,
but seems to fit the present problem more closely,
because the dipole forces underlying the dielectric
phenomena are essentially long range in nature.

(12)

III. ANTIFERROELECTRICITY AND
FERROELECTRICITY

When E=0, Eqgs. (12) are reduced to
X '

2
—= Zl giiL(x;), i=1,2.
-

g

(15)

If nonzero roots of x;, of minimum free energy, are
obtainable from these simultaneous equations, then the
sublattices would be spontaneously polarized. From the
symmetry of the equations, it is easy to see that either
x1=% or x1=—x; These two solutions correspond
respectively to ferroelectric and antiferroelectric states,
for which the dipolar polarizations are respectively
oriented parallel and antiparallel to each other.?

8 H. Takahashi discussed for the first time the possibilities for
both ferroelectric and antiferroelectric dipole arrangements in
perovskite type crystals by means of the Lorentz field correction
as used by Slater; he presented his theory at the Symposium on

Dielectrics, held by the Physical Society of Japan at T.I.T., on
April 1, 1950. Published by the Society in hectograph.
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(i) Antiferroelectricity
Putting x;=x= —x,, Eqgs. (15) are reduced to
x/o=(g11—gi2) L(%). (16)

As is well known in the Weiss theory of ferromag-
netism, there exists a critical value of o, equal to
3/(g11—g12), below which Eq. (16) has no real solution
different from zero, and above which a single nonzero
positive real root x, of minimum free energy, exists.
This situation leads to a phase change of the second
kind with a transition temperature, T,, given by

To= (u2/6keqv) (gu— 512)- 17

Substituting (17) into (16), we get a formula defining

# as an implicit function of the reduced temperature
T/T,, namely

3L(x)/x=T/T.. (18)

Now it is easy to show that

gu—g= (fu“fm)/ll—g;l(fn—fm) }2 (19)

The polarizations of the lattices are calculated to be

P3;=0. 20)
(ii) Ferroelectricity
Putting x;=xs=x, Eqgs. (15) are reduced to
%/o= (gut+g12) L(%). (21)

In a similar manner to that used in (i), we can get a
critical temperature

Ty= (u*/6kew) (guitg12), (22)
and instead of (18) a similar relation
3L(x)/x=T/Ty. (23)
Now it is easy to show that
2 1/a; a3\ )?
g11+g12=—/{1-—(——+——) } . (24)
3 3\v v

The polarizations of the lattices are calculated to be

given by
1—'1 [+ %]
=P ) w
1—3(ar/v+asz/v) 2v
: ©3)
pya /D) B

1 Y(ay/rtay/s) 20
(iii) Specific Heat Anomaly

The internal energy U, Eq. (8), can be transformed
by means of (14), (17), and (22), if E=0, to

U= —(3k/20)T.L2(x), (26)
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where T'; should read either T, or Ty according to the
type of the crystal concerned. Hence we have at once
as the specific heat associated with rotational con-
figurations, for one mole of the crystal,

C, x2L/ (x)
T 7 21)
R 1-3(T/T)L'(x)

R being the gas constant. Equation (27) is just the
same as the one Kirkwood obtained; it yields at the
transition point a lambda-type peak with a discon-
tinuity of 2.5R at the high temperature side. Besides, it
tends to a finite value, R, as the temperature approaches
0°K.

Since the relation between C, and 7'/T, is common
for both ferroelectric and antiferroelectric cases, it is
quite  impossible to discriminate between them by
means of only caloric measurements.

(iv) Relative Stability of the Two Solutions

It is easy to write the free energy (9) in the following
explicit form:

F kTi[l =) o)
—— 3 |log—— L) ——L(x) | (28
20 i=1 g47r sinhx; 2 2T ]

When E=0, the last term drops out; the remaining
quantity in the bracket decreases monotonically with
increasing 1/T, because the derivative 9(F/T)/3(1/T)
=U is always negative as seen from (26). Also, x in-
creases monotonically with increasing 1/7 as seen from
Eq. (18) or Eq. (23).

&

v
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v

F16. 2. The iso-Q lines: Q= Ty/T,. All straight lines go through
a singular point with the co-ordinates (ec1/v=2.3474, a3/v
=0.6526). In the region above the line Q=1, which is drawn as a
chain line, the ferroelectric phase is more stable; in the region
below it the antiferroelectric phase is more stable.
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Suppose an arbitrary temperature T is given. Then
a greater x, and accordingly a smaller free energy would
be obtained if a case is chosen wherein the given tem-
perature corresponds to a lower reduced temperature.
That is to say, between ferroelectric and antiferroelec-
tric cases, the one that has a higher critical temperature
should be more stable.

By means of (17), (19), (22), and (24), the ratio Q
of the two critical temperatures can be expressed in
terms of the polarizabilities and the Lorentz factors;

Ty 3

(fu—fi2)
Q:-—:

T, {1—%<a1/v+a3/v>}2/ 1= (a/2)(fu—=fr)}?
(29)

If an arbitrary value is given to Q, Eq. (29) defines a
straight line in an a;/v—as/v plane, several of these
lines are shown in Fig. 2. In the region below the special
line for which Q=1, or

as/v="0.3462+0.1304(a1/2), (30)

the sublattices should be polarized in an antiferro-
electric manner, while in the region above it they
should be polarized in a ferroelectric manner. All lines
go ‘through a singular point S with the coordinates
(a1/7)= 23474, aa/v= 06526)

IV. DIELECTRIC CONSTANT

The electric displacement, D, namely

3
D= €0E+Z Pi,

i=1

€Y

can be written in terms of E and Pg4; by means of (1),
(2), (6), and (7); i.e.,

a1/ 'I)+ 0[3/ v
cuE

1—3(a/v+as/v)
1 u
=
1—3(oy/v+ a3/v) 20
where «; are to be obtained from Egs. (12). The third
term is not a linear function of x;, and the x; in their
turn are not linear functions of the field strength E.
Therefore, the dielectric constant may vary with a
biasing dc field; this effect will be discussed in the next

section. We shall here investigate only the initial value
of the dielectric constant so defined that

[dD/d(éoE)]E=o =K.

The derivative of x; with respect to E can be calcu-
lated from Eqs. (12), where the relations easily proved
from direct calculation,

h=%(gu+g12),

D = 60E+

{Lx)+L(x2)}, (32)

(33)

(34)
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may be utilized. Thus we get finally
ay/v+az/v
+
1—3(ar/v+as/v)

] 3 WAL
= 3(en/vFas/) 1=3(Ty/T)L ()

where the value of x is to be obtained as a function of
reduced temperature from (18) or (23) according to the
type of stable solution. It is especially to be emphasized
that the last term always contains 7y whether or not the
crystal concerned is really ferroelectric.

L'(x)/T tends to zero as the temperature approaches
0°K, so that the value of K at 0°K, K, consists of only
first two terms;

Kom1g— Lot (36)
1'—%(011/‘1)‘*-0(3/‘1))

or, if solved inversely with respect to the polariza-
bilities, we get the famous Clausius-Mosotti equation
that

o1 O3 Ko"'l

—+—=3 . 37

v ? K0+2

Substituting this into (35), we obtain
3(Ty/T)L'(x)

K=K+ (Ky+2)—.
o+ (Kot )1—3(Tf/T)L’(x)
In a ferroelectric case, x is a function of T;/T only, so
that K is dependent only upon the reduced temperature
in addition to K. Of course we are supposing that, even
if there exist ferroelectric domains, the domain boun-
daries cannot move under such weak fields as are used
in ordinary methods for measuring dielectric constants.
Otherwise, Eq. (38) will not apply well to the observed
values. ‘
As T approaches Ty, 3(Ty/T)L'(x) tends to unity, so
that the value of K goes to infinity at the transition
point.
If T> Ty, then L'(x) is always equal to %, so that we
get
K=Kot+(Kot+2)Ty/(T—Ty). 39

Comparing this with the well-known Curie-Weiss law,

K=Kot+C/(T—T»), (40)

we see at once that the Curie constant C is
C=(Koet+2)Ty, (41)

and that the paraelectric Curie point 7', is
Tp=1y. (42)

It turns out that if Ko happens to be very large, the
Curie constant C can be far larger than Ty This is
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rather a remarkable result because it has been generally
believed that, so far as the phase change concerned
really arises from a system of rotatable dipoles, C must
necessarily be of the same order of magnitude as T}
itself 8

In an antiferroelectric case, « is no longer a function
of Ty/T but of T,/T, so that when T approaches the
critical temperature T,, 3(Ty/T)L'(x) tends to not one
but to Ty/T,=Q. Consequently, the value of K at the
Curie point, K., remains finite for this case, namely

K=K+ (Kot+2)0/(1-0Q). (43)

Or we can express the ratio Q in terms of the two special
values on the K—T curve, namely K, and K,;

Q(= Tf/Ta) =(K.—K,)/(K:4+2). (44)

Substituting this into (35), we can get a formula most
convenient for practical calculation of the K—T curve
of a given antiferroelectric crystal,

Q3(To/T)L'(x)

K=K+ (Kot2) : (45)
1—-Q3(To/T)L'(x)
If T>T,, Eq. (45) leads to
K=Kot+(Ko+2)QT./(T—QT.). (46)

Comparing this with the Curie-Weiss law, we find that
C=(Ko+2)QT,, (47)
Tp=0QTu(= TI)° (48)

From (47) we see that, if Kyis very large and moreover
if K>>Ko, namely Q=1, C can again be very large
compared with the transition temperature T,. Since Q
must be less than unity in order that an antiferroelectric
state may be realized, the paraelectric Curie temperature
for an antiferroelectric crystal should in general be
lower than its transition temperature T.

Whereas the K-T curves for ferroelectric crystals
are, roughly speaking, always similar to each other
notwithstanding an arbitrary choice of the parameter
K,, and so especially if Ko>>2, the K-T curves for
antiferroelectric crystals can show great variety of form
for different choices of the parameters, Ko and K.. For
examples, two extremely different forms are shown in
Fig. 3. It may be seen that the curve (a) in the figure
is of a form closely resembling that observed with some
kinds of crystals known as containing rotatable polar
molecules.

Besides, it is to be emphasized that the magnitude of
the permanent electric moment of the molecules, u, only
influences the temperature scale as seen from Eqgs. (17)
and (22), but does not influence at all the value of
dielectric constant itself. This is so entirely because the
most important parameters, Ko and K, are both com-
pletely determined by the polarizabilities of the
crystal components. By means of Egs. (29), (37), and
(44) we can at once calculate the iso-Kj lines as well as
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Fic. 3. Two examples of antiferroelectric K— T curves; (a) for
a crystal with Ko=5 and K¢=350; (b) for a crystal with Ko=30
and K.=33.

the iso-K. lines, the results being shown in Fig. 4. In
the triangular region, above the line denoted by
K .=infinity, for stable ferroelectric solutions, K, is of
course always infinity.

It may also be seen from Fig. 4 that, if both K, and
K. of a crystal happens to be very large, a point repre-
sentative of the crystal should lie very near to the
singular point .S in the figure. In the neighborhood of .S,
the crystals may be very sensitive to any change,
however slight, in the polarizabilities as well as in the
cell volume. By way of illustration, we show in Table I
the sets of polarizabilities calculated respectively for
three specimens with very different peak values. The
points representative of the three crystals described in
Table I are thus situated within less than 0.5 percent
from each other, so that they may be almost indis-
cernible if plotted in a figure of as small a size as Fig. 4.
The K-T curves of the last two examples are shown in
Fig. 5.

It is also seen that, in a certain special case at least,

0

512

0 1-0 20

F1G. 4. The dashed lines represent the iso-K, lines; the solid
lines represent the iso-K_ lines. In the triangular region above the
straight line denoted by K.=infinity, i.e., the same line as that
shown by a chain line in Fig. 2, K. is everywhere infinity.
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even the K-T curve for an antiferroelectric crystal can
attain an extraordinarily high value at its Curie point,
though such a sharp peak is indeed unknown in anti-
ferromagnetic cases. Therefore, if, on the other hand,
K. remains finite in a ferroelectric crystal as it actually
does in many substances, it may happen that the entire
K-T curves resemble each other so much that it may
be almost impossible to discriminate between ferro-
electrics and antiferroelectrics from their K-T curves
alone.

V. RESPONSE TO A DC BIASING FIELD

In order to look for the points of contrast available
to discriminate between ferroelectric and antiferro-
electric crystals, we shall investigate their response to
a dc biasing field. As seen in Sec. IV, the electric dis-
placement (32) contains a nonlinear term composed of
the Langevin functions, so that some variation of K
should in general be expected under a biasing field.

TABLE 1. Polarizabilities calculated for three specimens
with different peak values.

Specimens .
Ko Ke a1/v as/v
100 1600 2.2719 0.6399
100 3200 2.2707 0.6411
100 infinity® 2.2695 0.6423

2 The value tabulated here is the right lower end, corresponding to Q =1,

of a line,
(a1/9) +(a3/v) =2.9118, 0.6423 <(as/v) <2.9118,

representing the general solutions for the condition Ko=100 and
K¢ =infinity.

By means of the fundamental equations (12) together
with (32), we get for an antiferroelectric case, to the
second power in E,

[Zz dL(xi)] —Z[L’( ) dx ]
i=1 déoE E— g deoE 0

[L”'(x) {1=3(To/T)L' (%)} +9(To/ T){L" (x)} 2]
{1=03(To/T)L'@)}H{1-3(To/T)L' ()} Lo

x (é%):(e"E)2’ (49)

where the suffixes outside the bracket denote respec-
tively the values under E and zero field. The quantity
% in the right-hand side is to be obtained from Eq. (18).

The first term contributes to the initial value of the
dielectric constant, while the second term contributes
to the change of K under a field E. By means of the
series expansion (13) of the Langevin function, it is easy
to prove that the second term is indeed positive, so that
K should increase with increasing bias, though slowly
at first since it is proportional to E2.
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On the other hand, for a ferroelectric case, we obtain
bl R e
=1 dEoE E dE()E 0

2L (x) dx \?
+[1—3(T,/T)L’(x)(deOE) JOEOE' .

As is easily seen, the second term is negative; accord-
ingly K should decrease with increasing bias.

Hence the response to a biasing field, occurring in
opposite directions, may be available as a convenient
criterion for discerning between the two types of dielec-
tric crystals, though of course these effects might be
perceptible only in the immediate vicinity of the Curie
point.

If the temperature is above the critical point, the
difference between ferroelectric and antiferroelectric
dipole configurations disappears. And there K decreases
with increasing dc bias, as is seen from Fig. 7 in the
next section.

K

3000

2000

1000

TTe

Fic. 5. The antiferroelectric and ferroelectric K—7T curves.
The solid curve is for an antiferroelectric case with Ko=100 and
K,.=23200; the dashed curve is for a ferroelectric case with Ko= 100
and K.=infinity. T, should read either T or Ty according to their
nature.

VI. D-E CURVES AND A FORCED TRANSITION

Though the D-E curves for ferroelectric crystals are
very familiar already, those for antiferroelectric
crystals have not been discussed yet. We shall therefore
take up this problem.

Taking a sum and difference of the fundamental Egs.
(12), we get at once the following set of equations con-
venient for the present purpose:

L(x) = 3(T/To)zr=L(x2) —3(T/Ta)xs,  (51)
3(T/Tp) (@rt22) — { L(x1)+ L(x2)} = (6v/p)eoE.  (52)

From these, we can easily calculate the D-E curves for
a given temperature 7.

By way of illustration, we shall show the result at a
temperature, say, I'=0.9837T,. In Fig. 6, the function
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F1c. 6. The ordinate represents L(x)—3(T/T.)x, for a tem-
perature T/T,=0.9837. The sets of points such as 00, PP’, and
so on satisfy Eq. (51). Antiferroelectric solutions can exist only
between two horizontal lines MM’ and RR'.

L(x)—«T/3T, is shown plotted against x. Equation
(51) requires that each set of the roots x; must always
lie on a horizontal line, so that we get a series of the
sets of points such as NN’, 00’, PP’, and so forth.
If an arbitrary set among these is substituted into Eq.
(52), then we can find a field strength E which is neces-
sary to maintain the specified set as stable roots.
Besides, from Eq. (14) we can get the value of dipolar
polarizations for this set of roots. The results thus cal-
culated are shown plotted in Fig. 7.

Two characteristic points may be noted: The D-E
curve show a slight upward curvature, in contradis-
tinction to the well established downward curvature in
ferroelectric D-E curves. The antiferroelectric D-E
curve can exist only between the two limits, M and R,
and if the field should exceed this threshold value the
crystal would be forced to make a transition to another
type of phase; of course this forced transition would be
observed only when the crystal happens to be strong
enough to bear a sufficiently intense field.

Whether this other phase to which the crystal is to
make a forced transition is ferroelectric or paraelectric,
depends entirely upon whether the given temperature '
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F1c. 7. The ordinate represents L(x1)-+L(xs), which is propor-
tional to net dipolar polarization (see Eq. (14)) (a) for antiferro-
electric phase at T/7T,=0.9837, (b) for paraelectric phase at
T/T;=1.016. If for a crystal Ko=100 and K.=3200, then these
two reduced temperatures correspond to the same actual tem-
perature, and the P3— E curve should go successively through the
points K-L-M-O-R-S-T.
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is higher or lower than the value of 7} expected for the
crystal concerned, and this is determined by what we
choose for the values of Ky and K., so that the D-E
curves of another phase can have great variety of
form. For example, if we assume that Ky=100 and
K.=3200, the given temperature T turns out to be
higher than Ty, namely 7'=1.01617Y, since the ratio of
the two Curie points calculated by means of (44) is
T;/T.=0.9681. Therefore, for this case, the other phase
must be a paraelectric one.

The D-E curve for this paraelectric phase is also
obtainable from Eq. (52), in which x;=x,=2x must be
used. The result is shown plotted in the same figure.

Though it is certain that an antiferroelectric phase
cannot persist outside of the limits M and R, yet these
extreme points must not be regarded as representing
true transition points between the two phases. It is in
general expected from a thermodynamical point of view
that the free energy curves for both phases will inter-
sect at some points lying somewhere inside the ex-
tremities. However, after calculation in the present case,
it has turned out that both the free energy curves seem,
within the accuacy of our calculation, to intersect at the
very ends of the antiferroelectric range, namely, just at
M and R. We have shown this situation by the two
vertical dotted lines in Fig. 7.

Besides, we have a proof for the statement given at
the end of Sec. V that, for the paraelectric case, K should
decrease with increasing dc bias. Indeed the curve (b)
in Fig. 7 is clearly seen to have a remarkable downward
curvature.

VII. TRANSVERSE APPLICATION OF FIELD

When the sublattices are spontaneously polarized in
the direction of the z-axis, the crystal is no longer of
cubic symmetry but is of tetragonal symmetry, so that
the dielectric constant tensor will be completely deter-
mined if we know the dielectric constant in an arbitrary
direction perpendicular to z-axis. We shall examine what
results will be obtained if an external field is applied
parallel to, say, the 4« direction.

The local fields then have x as well as 2 components;
they can be written as

3
Fzz=E+Z fz‘ij:'z/GO) i= 1, 2y 3; (53)
=1
3
Fiz=z fiijz/GO; i= 1: 21 3 (54)
=1

where the f;; are the same as those previously intro-
duced, while the f;;® are to be obtained, as before, from
a paper by McKeehan;?

fi=fif
f11z=f22"°"’—"11§“‘0.2130,
f12=3%+0.2130,
f1i°= fo®= fa=1%.

(55)
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The polarizations are
Pau: 60011F,'z/2‘v, Pm'z= egalFiz/Zv; = 1, 2
Poge= 6‘0043Faz/'0, Pos.= €oa3F3z/7),

and

(56)

Paiw=(1/20) f sinf cosg #:(w)dw,
(87)
Pyi= (y/2v)f cosf n;(w)dw, =1, 2.

Proceeding in a similar manner to that used in Sec. II,
we get the most probable distribution functions,

ni(w)= exp[x:(cosf; cosd
47 sinhzx;

+sing; sinf cosp) ], i=1,2, (58)

where the four parameters «; and ; are to be solved as
the relevant roots of the following set of equations:

2
x;cosb;/a=2 gij cosO;L(x;), i=1,2, (59)
=1

%; sinf;/o=h*(2v/ )& E
2
+2 gii* sinb;L(x;), i=1,2, (60)
pak

where 4% and g are the coefficients composed of a;
and f;;® in a similar manner to that used in Sec. II.
In an antiferroelectric case, we get at once

X1=X2=X, 01=®=1r—02,

and accordingly
/o= (gu—g12)L(x), (61)

sin® = {#*(2v/ w)eoE} /{[ (g11— g12) — (g11°+g12") JL ()} .
(62)

We see from (61) that the x—7/T, relation is not
influenced at all by a transverse application of any
external field whatever. The dipolar polarizations cal-
culated by means of (57) and (58) turn out to be, for
this solution.

Pg1;=Pazs= (u/2v) L(x) sin®,

Pa1,=— Pas,=(u/2v) L(x) cos®. (63)

This tells us that the axes of cylindrical distribution of
the dipole orientations are both rotated away from their
original directions toward the +-x direction by the
angle © given in (62).

Substituting these polarizations into the electric dis-
placement,

3
D.=e&E+32. Pis,

i=1
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we obtain
D,=[1+ (01/0)+ (as/) N 1
1—3(ay/v+as/v) 1—3(ar/v+as/v)

h:c

X ]eoE. (64)
(gn—g12)— (gu*+ 129

We see at once that K, is independent of tempera-
tures, because the terms in the bracket are all composed
of only constant quantities. And since it is easily proved
that
(65)

(66)

g1+ g15°= gu+ g1z,
h=h

this constant value of K, turns out to be just equal to
the value of K, previously found for the dielectric
constant at the Curie point.

In the ferroelectric case, however, we find a rather
undesirable result ; K, turns out to be infinite at all tem-
peratures below the critical point. But this result is
consistent with the fact that K, is really infinite for
ferroelectric cases.

VIII. DISCUSSIONS

So far we have shown that a CsCl type crystal con-
taining rotatable polar molecules can show either ferro-
electric or antiferroelectric properties depending solely
upon the values of the polarizabilities of its com-
ponents. In addition, we have examined in what respects
the two phases will be able to show contrasts of phe-
nomenological importance, and in what respects they
will behave very similarly notwithstanding the essential
difference in their dipole configurations.

As is clearly seen, we have hitherto been discussing
merely the theoretical possibilities to be derived from
our hypothetical model, though of course with the hope
that the results obtained would be of some use in inter-
preting the dielectric properties of some actual crystals.
Now let us examine what modification must be intro-
duced when some other model is considered.

Careful inspection of the present theory tells us at
once that, so long as a crystal really contains rotatable
dipoles and so long as a decomposition of the dipole
lattice into a set of two sublattices is allowable from the
first as in the present model, the general aspects of the
theoretical predictions should remain valid however
complicated the crystal structure may be. Of course,
then the factors such as % and g;; will become more com-
plicated and some of the results such as shown in Figs.
2 and 4 may be changed very considerably, while some
other predictions such as those presented in Egs. (18),
(23), (27), (38), and also in Egs. (49) and (50) will be
valid in just the same forms.

Also, even when a crystal contains dipoles due to the
finite shift of ions on a specified line instead of freely
rotatable polar molecules, as perhaps is the case with
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some actual crystals like rochelle salt, most of the funda-

mental equations will be retained, except that Egs. (3)
and (4) should be replaced by

Pyi=(u/20)[ni(+) —n(=)], (67)
2 () +n(=)]!
= !
S kEl % () (=) )

where #:(+) and #,(—) denote the number of the
dipoles on lattice < in the directions +2z and —z, respec-
tively. Then all the Langevin functions, wherever they
may appear, will be replaced by another similar function
tanhzx, or Ly(x), as is at once expected from an analogy
to the Weiss-Heisenberg theory of scalar spin ferro-
magnetism and antiferromagnetism.® Most of the
theoretical predictions, except those concerning the
form of the specific heat curve, will, however, again
remain valid, at least qualitatively.

Since last year we have been investigating the dielec-
tric properties of ceramic PbZrOs;. Its dielectric constant-
temperature curve resembles that of the well-known
ferroelectric BaTiOs so much that it has been suggested
that PbZrO; might also be a kind of ferroelectric.?

After our detailed investigation, however, we have
found :!

(i) Its dielectric constant increases slightly with
increasing dc bias below the Curie point, while it
decreases with increasing bias above the Curie point.

(i) Its D-E curves observed on a cathode-ray oscil-
loscope show a slight upward curvature just below the
Curie point, and moreover when the amplitude of the
applied alternating field is greater than 30 kv/cm at
226°C, an impressive form of queer D-E curve is seen,
very similar to that shown in Fig. 7, with abrupt
increases of polarization on both ends.

We inferred, therefore, that this material might rather
be an antiferroelectric, though its actual structure was
unknown at that time. In the meantime, this surmise
has proved to be true. Indeed, very recently, Sawaguchi,
Maniwa, and Hoshino® have succeeded in proving by
means of an x-ray analysis of single crystals of PbZrO;
the existence of an essentially antiferroelectric dipole
arrangement in a plane perpendicular to its c-axis,
though the question whether it can be slightly ferro-
electric in c¢-direction has been left open. Roberts has
subsequently measured the piezoelectric effect of this
material and has found that it certainly exists, though
it is in fact very small.®

Considering these events, it seems reasonable to
suggest that most of the theoretical predictions may be
valid also for more general types of crystals, though of

Y. Takagi, Proc. Phys.-Math. Soc. Japan 23, 553 (1941); 24,
333 (1942).

10 S, Roberts, J. Am. Ceram. Soc. 33, 63 (1950).

I Shirane, Sawaguchi, and Takagi, Phys. Rev. 84, 476 (1951).

12 Sawaguchi, Maniwa, and Hoshino, Phys. Rev. 83, 1078 (1951).

13 S, Roberts, Phys. Rev. 83, 1078 (1951).
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course qualitatively, even when their accurate struc-
tures are not known initially.

The most undesirable prediction derived from our
theory may probably be that concerning the transverse
dielectric constant; that is, K, is far larger than is
reasonable. But it is certain that this defect has arisen
chiefly because no crystal anisotropy whatever is taken
into account. If a crystal is spontaneously polarized in
any one direction, there is no reason at all why it must
still be cubic. In general, the crystal would preferably
become strained, since the strains would stabilize all
* the more the specified axis of dipole orientation. Any
amount of rotation of the axis of polarization away
from the easiest direction would be realizable only when

ZENER

the transverse field is strong enough to overcome the
potential barriers surrounding the easiest axis; this
effect will certainly diminish the K, value considerably.

In this respect, it seems very interesting to notice that
in single crystals of BaTiO;, the dielectric constant in
the direction perpendicular to its spontaneous polariza-
tion is found to be far larger than the dielectric constant
measured in the parallel field."

I wish to express my hearty thanks to the staff of our:
laboratory in the Tokyo Institute of Technology, espe-
cially to Messrs. T. Oguchi, G. Shirane, and E. Sawaguchi

for their very helpful discussions.

“4'W, Merz, Phys. Rev. 75, 687 (1949).
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The principles developed in the previous papers of this series are applied to interpret the presence of
ferromagnetism in b.c.c. iron, its absence in f.c.c. iron. It is found necessary to introduce a new principle,
namely that for minimum energy the d-shell electrons are distributed among the atoms so as to maximize
the total number of pairs of electrons having like spin within the individual atoms. This principle leads to
the viewpoint that, at least on a local scale, the b.c.c. iron lattice consists of the superposition of two inter-
penetrating simple cubic lattices of atoms having d-shell spins of different magnitudes and of opposite
direction. The same principles lead directly to the observed saturation magnetizations of all iron base alloys.

I. INTRODUCTION

N the previous papers! of this series the author has
proposed that for the transition elements the mag-
netic structure of the d-shells of the individual atoms
is essentially the same in the metallic as in the gaseous
state, that ferromagnetic coupling between the incom-
plete d-shells in metals arises from an indirect coupling
via the conduction electrons, and that the direct inter-
action between these shells is antiferromagnetic. These
proposals have provided an unforced interpretation of
the occurrence of ferromagnetism in the periodic table,
of the occurrence of b.c.c. lattices in the transition
metals, and have provided a quantitative calculation of
the Weiss coupling factor. The essential validity of
these proposals has been further strengthened by the
observation of the antiferromagnetic behavior of the
magnetic susceptibility of chromium by McGuire and
Kriessman,? by the observation of the anomalously low
value of the electronic specific heat of chromium at low
* Associate Director, Westinghouse Research Laboratories
East Pittsburgh, Pennsylvania.
(1; 5% Zener, Phys. Rev. 81, 440 (1951); 82, 403 (1951); 83, 299

2 T.) R. McGuire and C. J. Kriessman, Jr., Phys. Rev. 82, 774
(1951).

temperatures by Friedberg,® by the computation of the
binding energy of tungsten by Hsu,* by the analysis of
the elastic constants of tungsten by Isenberg,® by the
analysis of the Heusler alloys by Heikes,® and by the
detailed analysis of the magnetic properties of alloys by
Carr” in a forthcoming paper. Slater® has correlated
the more usual band viewpoint with the atomistic
viewpoint adopted in this series. In the second paper of
this series it has been pointed out that, in the absence
of s electrons, electrical conductivity by d electrons can
also introduce ferromagnetic coupling. This relation
between electrical conductivity by & electrons and fer-
romagnetic coupling has recently received further
support from observations upon the ferrites. Below
their Curie temperature a second critical temperature,
or narrow temperature range, is found in which both
the magnetic properties and the electrical conductivity
suffer large abrupt changes. (Manganese ferrite,® iron

38, Friedberg, Phys. Rev. (to be published).

4 Yee-Chuang Hsu, Phys. Rev. 83, 975 (1951).

5 I, Isenberg, Phys. Rev. 83, 637 (1951).

8 R. Heikes, Phys. Rev. 84, 376 (1951).
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