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obtained by using the Q-value 5.094&0.010 Mev for
the Mg~(d P)Mgss reaction" and 2.230&0.007 Mev
for the binding energy of the deuteron. " If one takes
level XII as corresponding to the average of the first
six neutron levels, XIII and XIV to the next two

"Strait, Van Patter, Buechner, and Sperduto, Phys. Rev. 81)
747 (1951).

"R, E. Bell and L. G. Elliot, Phys. Rev. 79) 282 (1950).

doublets, respectively, then the agreement would seem
satisfactory. It would appear that at least for the higher
excitation of Mg" that the levels obtained in this work
may be composed of closely spaced unresolved groups
rather than distinct levels.

An energy level diagram comparing the present work
with the groups reported by Schelberg' and the neutron
resonances' "is given in Fig. 2.
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Consideration is given to the possible use of the electric dipole isotropic part of the deuteron photo-
disintegration cross section as an indicator of weak odd state noncentral forces. This cross section is not
very sensitive to weak tensor forces of the usual type, but is strikingly affected by a singular spin-orbit
coupling. While for the usual tensor forces the ratio, a/b, of the isotropic to the sin 8 term in the cross
section varies slowly over a broad energy range, it rises rapidly with energy if the noncentral force is strongly
singular. Calculation is done in first Born approximation. A detailed estimate of the magnetic isotropic
cross section is included, for this is an unexpectedly large "background" to the electric term which is of
interest.

I. INTRODUCTION

HE ground state is the only even parity state of
the EP system which is important in deuteron

photodisintegration, and its wave function is fairly well
known through studies' of the many low energy phe-
nomena into which it enters, Considerably less is known
about the important states of odd parity. For these,
high energy scattering studies' have led to a belief in
th, e "even theory, " that is, that the exchange depen-
dence of the nuclear forces is such that two nucleons in
an odd parity state of relative motion do not interact.
The data do not, however, justify the complete exclusion
of odd state noncentral interactions, as these are found
not to have strong inQuence on the EP scattering cross
section. ' ' More definite information about them can in
principle be obtained from photodisintegration measure-
ments; therefore careful photodisintegration calcula-
tions with odd state noncentral forces are desirable.
These would supplement the high energy photodisinte-
gration calculations which were recently done for pure
central forces.4'

Odd state noncentral interactions do not much affect
the total cross section for photodisintegration, but it
has long been known from numerical calculation in

~ This work is a portion of the author's doctoral thesis.
t AEC Predoctoral Fellow, now at Cornell University, Ithaca,

New York.
' For a recent study of this type see Feshbach and Schwinger,

Phys. Rev. 84, 194 (1951).A copy of their work was supplied to
the author by Dr. J. Eisenstein.

2 R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).' K. M. Case and A. Pais, Phys. Rev. 80, 203 (1950).
4 L. I. schiG, Phys. Rev. 78, 733 (1950).' J. F. Rfqrshall and E. Guth, Phys. Rev. 78, t38 (1950).

special cases'~ that they do cause one striking quali-
tative change in the angular distribution. This change
consists of the introduction of an isotropic term in the
photoelectric cross section, which appears if noncentral
interactions are effective in the 'P continuum states.
It is produced by interferences between the three 'P'J
states, and is basically a high energy eGect, since
nucleons in a relative P state cannot interact when the
energy is low.

The present work is intended to determine with what
sensitivity the isotropic term might actually measure
the strength, of a weak 'P state noncentral force. It was
begun after accurate low energy measurements of th, e
photodisintegration angular distribution had become
available, ' and when some attempts were being made
to perform such experiments at higher energies. ' "
Energies up to Ace=100 Mev are considered. This is a
range in which it is possible to disregard relativistic
and free meson eGects4 and to use the usual phenomeno-
logical formalism. "

6W. Rarita and J. Schwinger, Phys. Rev. 59) 436 and 556
(1941).

7 T. M. Hu and H. S. W. Massey, Proc. Roy'. Soc. (London)
A196, 135 (1949).

8 For a summary of recent work see Bishop) Collie, Halban,
Hedgran, Siegbahn, du Toit, and Wilson, Phys. Rev. 80, 211
(1950); Bishop, Halban, Shaw, and Wilson, Phys. Rev. 81, 219
(1951); Bishop, Beghian, and Halban, Phys. Rev. 83, 1052(L)
(1951).

l' E. G. Fuller, Phys. Rev. 79, 303 (1950).
M P. V. C. Hough, Phys. Rev. 80, 1069 (1950).
"Phillips, Lawson, and Kruger) Phys. Rev. 80, 326 (1950).
' G. Goldhaber, Phys. Rev. 81, 930 (1951)."Gibson, Green, and Livesey, Nature 160, 534 (1949}.
'4 See, for example, R. G. Sachs and N. Aq.stern, Phys. II'.Cv.

81, 705 (1951),
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FiG. 1. Photomagnetic disintegration cross section, including
only the dipole S~'S transition, and showing the uncertainty
caused by the interaction moment.

In a systematic discussion of possible high energy
noncentral forces eRects it is important to recognize
that for gamma-rays of energy less than 100 Mev the
electric dipole radiative interaction always leads to the
dominating transitions of the system. 4 These are 'S&

and 'D~—+'Po, i, 2, and 'D~~'F~. All other transitions
are much weaker and are observable only in so far as
they produce interferences with the strongly excited 'P
waves. The 'P2 state can be disregarded entirely; not
only is it excited weakly but it also does not contribute
any such unique interferences as would be detectable
in the presence of other, larger effects.

With pure central forces, electric dipole transitions
from the 'S deuteron ground state lead to 'P states,
and to an angular distribution of the form sin'0. With
noncentral forces the angular distribution still cannot
possibly" have terms of greater complication than
sin'0. A term of lesser complication does, however,
appear, giving the electric dipole angular distribution
its most general form, a,+b sin'0. To the term a, there
must be added the more familiar term, a, which comes
from photomagnetic transitions to 'S waves. The entire
dipole-induced angular distribution then becomes
a+b sin'(), where a=a,+a„. a plays the role of a
"background" to the interesting a„so its value must
be known for the purposes of this paper.

Transitions to continuum triplet waves of even parity
can interfere with the 3P waves and produce fore-aft
antisymmetric parts in the angular distribution. Elec-

'~ C. N, Yang Phys. Rev. ?4 764 (1948).

tric quadrupole and magnetic dipole transitions are of
this type. With pure central forces only the quadrupole
transition 'S~'D can occur. The angular distribution
becomes a+b sin'0(1+q coso), the disintegration pro-
tons favoring the forward hemisphere. The quantity q
is given by Schiff, 4 and by Marshall and Guth. ' The
introduction of tensor forces permits the quadrupole
transition 'D—&'S, and also magnetic dipole transitions
to the coupled continuum 'S~+'D~ waves. As it happens,
interferences of the altered even waves with the 'P~
waves do not change q significantly from its value under
central forces. These eRects will not be discussed further.

In subsequent sections the magnetic cross section
a is computed first, and then the electric isotropic
cross section a, is computed in three special cases:

{a) No 'I' state nuclear interaction.
(b) A triplet state nuclear interaction of the form

V = —(b'z'/M) ( ygL-,' (1—x)+ -,'(1+x)P'j
+1~&2Ã&El(1—v)+ l( 1+v)& jl. (1)

This interaction is so chosen that for even states it reduces to the
expression used by Feshbach and Schwinger in their analysis of
the low energy data. I' is the Majorana exchange operator.
Variation of the parameters x and y gives all possible exchange
dependences of V. p~ and p2 have Yukawa shape, q =(e I""/pr).
S~2 =—(3/r')(e~ r)(e~ r) —1, is the tensor operator. Values of the
parameters used in V are given in the appendix.

(c) A very singular (I, 8) interaction. For explicit calculation
the expression of Case and Pais' is used,

II. PHOTOMAGNETIC CROSS SECTION

The isotropic part of the photomagnetic cross section,
a, is computed in this section. ERects of the deuteron
D function are taken into account, as well as the
inhuence of the spin antisymmetric interaction mo-
ment" which gives a phenomenological representation
of some meson current effects. An (L S) interaction of
the type of Case and Pais' leads to other interaction
moments, but these do not have matrix elements with
the deuteron ground state.

The photomagnetic matrix element cannot be so
easily approximated as the photoelectric matrix ele-
ment, " and this would remain true even were inter-
action effects not present. Its integrand vanishes less
strongly at the origin, by two powers of r, than does
that of the electric matrix element. The magnetic
matrix element thus tends to be influenced by those
parts of the wave function which are most aRected by
the details of the nuclear potential; and our lack of
knowledge of a correct nuclear potential consequently
makes the cross section somewhat uncertain. Those
other uncertainties which are contributed by the inter-
action moment are so much greater, however, that the
calculations of the present section are only performed
with Yukawa well eigenfunctions. "

'6N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951);
N. Austern, Phys. Rev. 81, 307(A) (1951)~

"H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950);
K. E. Salpeter, Phys. Rev. 82, 60 (1951).' Descriptions of the various wave functjons gsed in this paper
g,re collected in the appendix.
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The magnetic dipole transitions 'S~—&'Sp and 'Di~'D2
must both be considered. Although the D transition
may not be large in itself, it does interfere with the S
transition at all energies in such a way as to reduce the
apparent value of the magnetic cross section. This can
be seen from the differential magnetic dipole photo-
disintegration cross section:

o (8)=o p{1+(5—3 cos'8)JpP/4JpP
—(3 cos'8 —1) cos(8s —8n) Jp/v2 Jp}, (2)

where o„p is the simple S wave cross section, bg and bD

are the scattering phase shifts, and

Jp= ~ 'ttfts{ p(tJpr t&p)+—C'}d»&
p

Jp=
J

'tt&~s{ p(&ax —p~)+C'}~»
p

The functions u and m are the usual ground-state
"radial" wave functions, while Nq and ms are the
corresponding singlet state functions. C is the shape
function of the spin-antisymmetric interaction moment,
which sects both the S and D wave transitions.
Equation (2) can be separated into a part with sin'8
angular dependence, and an isotropic part. The former
part is then lost experimentally beneath the large sin'0
electric dipole cross section. The latter part, which is
the apparent magnetic cross section, is given by

&»&= &»~p{1+Jp /2Jp' —v2 cos(8s —8n) Jp/Jp} ~ (4)

This is smaller than the value o- p.

In calculating upper and lower bounds on rr p the
spin-antisymmetric interaction moment,

hM= (eA/23Ec)(a~ ap)C (»), — (5)

is assumed as the only correction which must be added
to the free nucleon spin magnetic moments, and the
form

C'(») = C'o(t) 8(»—t)

is once again adopted, Cp(t) being taken from the work
of reference 16. 0 p is then found as a function of t,
and of photon energy. Figure 1 shows the bounds which
are subsequently obtained on 0-„p by choosing, at each
energy, the largest and smallest values of o„p(t) in the
region t~&2X10 " cm. The upper limit on the values
for t is comparable with the usual ranges for nuclear
forces and is probably a little large.

Figure 2 shows a as a function of energy. This
quantity is derived from o-

p by the prescription of
Eq. (4). For the integrals Jp and Jp in (4) it is more
convenient to employ some definite function C rather
than the form of Eq. (6). A very reasonable function is
C=Cpe ~" For @=8.5&&10" cm ' the value of Cp
which gives the correct three-body moment anomaly is
C p= —0.56. With this, the ratio a /o p is computed as
a unique function of energy and is used to pass from
Fig. 1 to Fig. 2.

A remark is in order about the determination of C,
the shape function of the interaction moment. Figure 1
shows only that uncertainty which is produced in 0. p

because the detailed shape of C is unknown. Additional
large uncertainties come through lack of exact knowl-
edge of the H' wave function and through the extreme
idealization involved in the description of the three-
body moment anomaly by means of the simple spin-
antisymmetric moment. While the H' wave function
of Pease and Feshbach" is certainly much better, the
present work is based on the wave function of Avery
and Adams. " The status of the interaction moment
theory does not really seem to justify recalculating all
the two-body results on the basis of the better H'
wave function.

Magnetic quadrupole-magnetic dipole interference
might be important at higher energies, but cannot be
computed reliably. It would appear through a small
fore-aft antisymmetric term in the cross section, which
cancels completely when the experimental data are
folded about 90' to find a.

III. P WAVE INTERFERENCE —FREE P WAVES

The D wave admixture in the deuteron ground state
insures some eGect of noncentral forces, even when the
'I'& waves are entirely free. In particular, the isotropic
component, u„does not quite vanish for free I' waves.

It is convenient to use the differential electric dipole
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FIG. 2. Isotropic part of the photomagnetic disintegration cross
section, including both the dipole transitions 'S—+'S and 'D+'D.
"R. L. Pease and H. Feshbach, Phys. Rev. 81, 142(L) (1951);

also private communications from Dr. Pease.
20 R. Avery and E. N. Adams, Phys. Rev. 75, 1106(L) (1949).
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photodisintegration cross section in a slightly different
form from that of Rarita and Schwinger

x e' Mco dQ
o,(8)dD= —— —-I e' PIoo—e'"IpI'

3Ac Ak 4m 9

1
+-I '"I —'"I I'

be known to compute o-, . 0-, reduces to

a.(S)dn=
k'+y'dQ 9 3——W'(F ~)+—sin'0

3(137) k 4pr 25 2

1
&& U'(F g)+—W'(F, ) . (12)

25

It"y'/M is the deuteron binding energy, so y=2.32
)&10"cm '.' The total cross section is just

~.p
= (~/3(»7))(&'+ v'/&) [U'(F~)+ (2/5) W'(Fi) j (13)

I

e'P—I—, Se'P I,—
I + , —(9)

15 15

where

Io ——
~F

rdrvo[u —m&2],
p

I,= )I rdrv)[u+ (u/K2)], (10)

I,= rdrw p[u (w/sv2)]. —
0

Here leo is the gamma-ray energy, Ak is the relative
momentum of neutron and proton in the continuum
state, and the ~~ are the 'P~ state "radial wave func-
tions. "

A convenient notation is now introduced. Denote

U(f)= rdruf, W(f)= I rdrwf. —
~O 0
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Fio. 3. The ratio of electric isotropic cross section to sin 8 cross
paction for the cq,se of vanishing 'I' wave forces.

Then, for example, Io= U(oo) —~2W(&o).
For the "even theory" there is no 'P' wave interaction,

so the Sg=0, and the vg reduce to the spherical Bessel
function, F&. Ip reduces to Ip = U(Fy) —%2W(Fy), etc.,
so only the ground-state wave functions, I and x, must

(a /b)o (6W (F&)/25U (F&)+W (F&)) (14)

Here the subscript "0" indicates that the results are
the ones appropriate to no 'P wave interaction.

Numerical results have been computed for o p and
for (a,/b) p using the ground-state wave functions which
are described in the appendix. (a./b)p is graphed as
Fig. 3. Note especially the near-constancy of (a./b)p
for 5+~20 Mev. This result occurs because I and z
have nearly the same shape at small r (as a result of
the importance of the 5—D cross term in the expectation
value of the deuteron potential energy).

Brief consideration is desirable for the effect that
noncentral forces in the ground-state configuration
might have on the effective range treatment of the low
energy photoelectric cross section. There is no room
here for a full discussion; that would involve setting
up and carrying through an effective range formalism
for noncentral forces." The main points of such an
analysis can be mentioned: It is only necessary to
consider the ground-state S wave, since at low energy
the D wave contributes a negligible amount to O,p.

This is illustrated by Fig. 3, (a./b) p being a measure
of the D wave contribution. The easily computed
zero range photodisintegration cross section is corrected
for the nonzero range of forces merely by a renormal-
ization of the ground-state S function. For central
forces Bethe and Longmire'7 have shown that the
effective range derived from low energy EP scattering
experiments can be used very simply to compute the
necessary renormalization of the S function. A recheck
of the Bethe and Longmire method and of the definition
of the eRective range in scattering discloses that, while
each has to be modified for the presence of the D wave,
still, so long as the eppperiprterttally deterrrpined scattering
effective range is used to renormalize the S wave, the
noncentral forces produce no change in the method.
This 'agrees with a similar remark by Bethe and
Longmire.

Thus at very low energy Eq. (13) gives identically
the simple central forces result. At high energy the
D wave term increases the cross section. For the wave
functions used here this increase is roughly constant
for energies above about 18 Mev and has the value

2' See, for example, J. Schwinger, notes on a course in nuclear
physics,
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LI(eg) =op"—(2/r')nJ+k'og, Ll(FI) =0. (17)

This difkrcntia1 cquRtlon for Pg ls soIvc(i ln tcI'Ins of
the kerneP'

b„
/

Kl(r, r') =FI(rg)GI(r)), (18)

where f~, F'~ Rlc tIM lesser RM. grcRtcr', respectively, of
r, r ' Fl ls 'thc regular solution of Ll(FI)=0, wh11c Gl ls
the irregular solution. They are normalized so that the
Wronsklan FI'G» —FUNGI'= 1; thus KI satls6es

L,(KI)= —8(r—r').

Now to Born approximation

by= —(s'/k') Fls(xyi+cgI"yqslidr

0.05

Iig=FI+SBsg/r)xjr, s+yr)n=g/r)y js s

(21)

blip —a'
~

——KI(r, r')dr'

0.0I

Pro. 4. COCKcient of sin 8 part of electric dipole photodisinte-
gration cross section, showing the first derivatives of the cross
section with respect to the exchange paraxneters for the central
and tcnsol fox'ccs. Dlvldc by 4x' to gct thc cross scctloQ pcr
ster adlan.

two percent. If Fig. 3 is again used as a measure of the
D wave contribution to g,o the increase of O..o is seen to
enter approximately linearly with energy for energies
up to 18 Mev.

0.5

X Idiot(r')+ col'yq s(r') I FI(r'). (22)

a OF+ GM

a~ = ago+Xa~x + Ya

+ Y GEYY + XYGPXY

IV. I' WAVE INTERFERENCE —WEAK TENSOR FORCES

Xn this case Eq. (9) does not reduce to the simple
form of (12), for the Iiq are affected by thc forces. The
cvcn thcoly ls consldere(I Rs thc bRsls fo1' departure„
Rnd SIQalI deviations f

lorn

thc cvcQ theory Rlc compute(I
IIl 6I'8't 30I'll appl'oxlIllatloIl. Thc cxpl'cssloll (1) ls
used for the nuclear potential, where the even theory
is obtained if x=y=o. Evidently the Born approxi-
mation is rigorously correct for very smRH x and y, Rnd
Inay bc expected, to glvc Rn ln(4catlon of tIlc cGccts lf
x and y become large.

FoI' tIM ocM parity I g stRtcs t/ bccoInes

V= (il's'/M) Ixiol+cgi'yq sI, (15)
cz= —4, 2, —2/5, for J=O, 1, 2; and the Schroedinger
cquatlon takes tIM fo1IQ

LI(og) = ir Ixpl+cgI ypsl &s, (16)
Equation (16) is not correct. It is written as if the 'Ps wave

w««n cigenstatc of SI2, whereas actually 512 couples '1'2 with
~2 &ut to the approximation used in this work it is correct to

use (&&) as given. The complete coupled differential equations
for 'I'2 and 'J 2 are

0=os"—(2/r')as+ fks —s giri+(2/5)&l'ys'sj»—f(6V'6)/»~l'y~ f*,
6= ef," (12/r') efs+ fk' s—'xq i+(g/5) s'pyv—s3&fs-f(6/6) /5)s'I'y piss.
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FIG. 5. CoefBcients of the quantities which go"to make up the
isotropic part of the photodisintegration cross section. The
dotted. curves show thc uncertainty in the photomagnetic part
of this cx'oss scctlon. Divide by 4& to gct the cx'oss scctloQ pcs'
steradian.

In these equations fs is that 'Fs radial function which is strongly
coupled to 'P2, and normalized to be cos(kr+5) at r= co. e is
the amplitude with which it properly enters the calculation.
e—+0 as the coupling vanishes.

The erst equation above reduces to (16) when the coupling
term is not present and reduces rigorously to (16) in the first
Born approximation. The coupllQg tcl'In coQtalQs as a factol' thc
product of two in6nitesimals a and y; thus it vanishes with y to
one higher order than the rest of the nuclear potential.

'3For this formalism see, for example, F. Rohrlich and J.
Kisenstein, Phys. Rev. 75, 705 (1949).
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I xo. 6. Ratio of the curves of Fig. 5 to the curve, bg, of Fig. 4.

With these expressions the remainder of the calcula-
tional procedure is to insert (20) and (21) into (9);
perform the necessary integrals; and evaluate numeri-

cally. The results of calculation are graphed as Figs. 4,
5, and 6.

Figure 4 shows that the magnitude of the sin'8 part
of the cross section, which is nearly the total cross
section, depends very strongly on the exchange char-
acter of the central potential but hardly at all on the
exchange character of the tensor potential. The magni-
tude of the total cross section is thus a measure of x,
the exchange parameter of the central potential. This
was indicated before by Marshall and Guth, ' as well

as by other authors.
Figure 5 shows the isotropic cross section, with the

photomagnetic background, u, included. Study of
Fig. 5 shows that a, is not much inRuenced by the
central potential but does depend strongly on y, the
exchange parameter of the tensor force. Above about
15 Mev the tensor forces isotropic component competes
strongly with the photomagnetic cross section and
dominates it if y is large, i.e., if y 0.5. A very favorable
energy region for experiments designed to detect the
tensor forces isotropic component lies from about 15
Mev to 60 Mev, the lower part of this energy region
being the more desirable. At higher energy the photo-
magnetic cross section becomes unmanageably uncer-
tain.

Figure 6 is an approximate graph of the ratio a,/b
for the case @=0 and is obtained by using the even
forces value, bo, in place of b. It is seen that a,/b is

I I

a=a, +a.
0)6 —QE QEQ XQEX YQE Y

+Y Qsyy +XYGExy

0,l4—

not a rapidly varying function of energy. An experiment
to measure u, /b would, therefore, not need to be per-
formed with monochromatic gamma-rays, and might
be well adapted for a betatron laboratory.

Figures 4—6 are not quantitatively reliable for large
values of x and y. Exact calculations of some special
cases'7 have shown for example, that very much
larger tensor isotropic eAects sometimes result from a
"neutral" theory (x=y= —I) than from a "charged"
theory (x=y=l). This occurs because there is an
essential asymmetry between attractive and repulsive
potentials, in that an attractive potential has greater
inhuence on the wave function than a repulsive po-
tential of the same strength. While this type of asym-
metry is less important for long tailed potentials than
for the square wells which have been emphasized
before, it should appear to some degree for the cases
treated here. That it does not results from the use of
erst Born approximation and illustrates the inade-
quacies of the numerical results. Thus Figs. 5 and 6
indicate more or less symmetric changes of a, for equal
positive and negative changes of x or y, so evidently
should not be used for large x or y, This is not an
unreasonable restriction, as very large deviations from
the "even theory" are not expected.

Some care is needed to obtain the maximum infor-
mation from such an approximate calculation as the
one described here, without in the process stepping
beyond the approximation. Equation (9) gives 0.(0) as
a sum of squares. The Born approximation gives the
linear correction in x and y to the quantities which are
squared, i.e., to the outgoing wave amplitudes. Of
course, quadratic and higher corrections also exist.
It is clear that, after squaring, the linear terms of a,
wiH be known exactly. The quadratic terms of r, come
partly as squares of the linear corrections to the wave
function, which are known, and partly as zero-order
second-order cross terms, which are unknown. Where the
linear correction to an amplitude is considerably larger
than the zero-order amplitude, it is expected that the
square of the linear term will be the dominant quad-
ratic addition to 0-,. This situation is nearly met for
the noncentral force modi6cation of the isotropic cross
section, but not at all for the modifications of the sin'8
cross section. For this reason, the only quadratic terms
which are carried are the y' and xy terms of u, .

V. P WAVE INTERFERENCE —SINGULAR (L S)
COUPLING

For the deuteron the Case and Pais interaction'
reduces to

U= —(2/A)A(L S)X6 Mev,
where

A=(I/Xr)t Z/d( r)](.— /Xr), X=9XIO» -~, (24)

and. for 'I' g states,

(L S)= (&/2) I~(~+ &)—4I
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Here, just as for the tensor interaction, the photo-
disintegration is computed to Born approximation.
This approximation does not now have an automatic
domain of validity, because this problem does not
involve any parameterization which centers conveni-
ently on vanishing 'P wave interaction. The justification
for using Horn approximation is that it is easy, and
that it should give some indication of how a very short
range (L S) interaction might influence the electric
dipole photodisintegration.

There is no important correction to the cross section
which is linear in the amplitude of U. An important
contribution of the (L S) interaction is a very large
quadratic correction in the isotropic cross section —a
correction which rises very rapidly with energy until at
100 Mev it has already surpassed by a factor of ten the
largest possible tensor forces contribution. Figure 7
shows a. and a,/bo Wh. ile there may be large quadratic
corrections to the sin'8 cross section, they are, unfortu-
nately, beyond the scope of the present work.

It should be noted that both the magnitude of the
results shown in Fig. 7 and their peculiar energy
dependences are due more to the radial shape of the
interaction than to its (L S) nature. Any strongly
singular, noncentral 'P state interaction must clearly
give similar results. The tensor interactions introduced
for PP scattering by Christian and Noyes'4 and by
Jastrow" are other examples. An experiment which
determines the angular distribution in photodisinte-
gration by 100-Mev gamma-rays may thus decide
whether there were any strongly singular noncentral
'P state interaction in the EP system. The isotropy of
the cross section would be unmistakable.

VI. CONCLUSIONS

The results of these calculations indicate that a
measurement of u, would be very dificult unless there
exist singular noncentral forces in the P states. How-
ever, this exception would make the results of such
experiments most interesting. In the absence of singular
forces, a separation of a, from the very uncertain a
becomes nearly impossible unless the odd state strength
of the tensor force exceeds 25 percent of its even state
strength. The scattering data' indicate that the odd
state strength is probably not so great.

Aside from the question of magnitude, it is interesting
that for nonsingular tensor forces of the usual type
there is a broad region of energy in which the magnetic
term is not too uncertain and the value of a/b is slowly
varying. In this region, a monochromatic source of
gamma-rays would not be required. The energy region
of interest begins near 20 Mev and may continue as
high as 60 Mev, although that upper limit should not
be crowded.

The agreement between theory and low energy
photodisintegration experiments is well known to be

~4 R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).
25 R. Iastrow, Phys. Rev. 81, 165 (1951).
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FIG. 7. Isotropic cross section, e„ if the Case-Pais interaction
is present; also its ratio to bo of Fig. 4. Divide a, by 4~ to get
the cross section per steradian.

excellent. Measurements of the angular distribution at
higher energies have been attempted in several labora-
tories, ' ""but few have been accurate enough to
compare with theory. Goldhaber's result for (a/b) at
7 Mev seems much too large to understand. It is
interesting that the experiments have demonstrated
the dipole-quadrupole interference eHect, and that
satisfactory agreement with theory is found. In ana-
lyzing any experimental data it should be noted that
the very existence of the noncentral forces effects
discussed in the present paper vitiates Schiff's' remark
about the possibility of using the experimental angular
distribution for the separation of the electric dipole,
electric quadrupole, and magnetic dipole cross sections.

The work was performed
'

with the advice and
assistance of Professor R. G. Sachs.

APPENDIX

Wave Functions

All the even state wave functions used in this calcu-
lation are eigenfunctions of two nuclear potentials: the
triplet potential of Feshbach and Schwinger' and a
singlet state Yukawa well.

For the triplet potential of Eq. (1) the following
parameters are used: p, ~

——8.45X10" cm '; p2=4. 71
)&10"cm ', @=0.224; ~=11.57&(10"cm ', 2.5 percent
D function in the deuteron. That case of Feshbach
arid Schwinger is chosen which is closest to the set of
parameters designated by Pease and Feshbach" as
giving best results for H' binding. The central force
range is that derived for low energy PP scattering; the

"Gibson, Grotdal, Orlin, and Yrumpy, Phil, Mag. 42, 555
(1951).
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tcnsoI' IRDgc ls somewhat glcatel. Thc plMDoIncnR
which this potential fits mell are: deuteron binding
energy; triton. binding energy;. lom energy EP and I'P'
scattering; low energy deuteron photodisintegration;
deuteron quadrupole moment.

TlM slDglct potcntlRl ls

Vs= —(A,'Es'/M)(s &"/pr-),

&8= &0.7~X&0" cID ', P=8.58&I.O" cm '.
As to tlM wave functions derived froD1 these po-

tentials: singlet state 5 and D functions are obtained
by numerical integration of the Schroedinger equation,
and are used in subsequent numerical integration to
COmPute Jo Rnd J2 fol 0'res.

For the '5 ground-state wave the best Hulthen
function, an excellent approximation, is 6tted to the
Feshbach-Schwinger curve. It is

I=E(e &" e—r"),—
where y=2.316X10"cm ', 1=13.36X1 0" cm ', and
&V=(7.NX10" cm ')'.

For the 'D ground state wave several different pro-
cedures are used. First, for magnetic calculations, the
Feshbach-Schwinger curve is used directly in numerical
integration. Two approximate analytic expressions are

2~ J. M. Matt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

also used, which are fitted. to the numerical curve. A
lom energy Rpproxlmatloli Is

w=M'(1 —e ")e &"t 1+(3/yr)+(3/y'r')7,
which has the exact asymptotic form. a=3.60)&1012
CIQ

M'= (0.0100X10"cm ')&.

A high energy approximation is

w=MI(1 Ar—)e &" Be—&"I,

where )=3.06X10" cm ', A=0.1385X10" cm ',
B=1.140, ran=11.04X10" cm ', and M=(0.455X10"
cm-')&

The phase shifts 68 and 8~ of Sec. II were determined
6rst by approximate formulas, and the approximations
tlicn improved ln thc subscqucnt DUDMrlcRl IIitcgrRtlon
of the wave equation. It may be of some interest to
present the Born approximation formula for 8D, if the
potential is V8, above. It is

Es' 3 (p, ) ' 3 (p) 4 (p'+4k')
1+-I —I+-I —

I

4k@ 24k) SEk) ( p' )
11 yq'—3 1+-( —

[
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The Absorption of Gamma-Rays from Co"
SAFAz SHIMzzU, TzTsvvA HANAI, AND SUNAo OKAMoTo

XNf.lear Research Iaboratory, Departrgeet of I'hysics, University of Eyoto, Eyoto, Japal
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Measurements of the absorption of gamma-rays from Coo' (1.17 and 1.33 Mev) have been made in 27
elements. In order to exclude the errors due to secondary radiations which might be produced in neighboring
objects and in the absorbers, particular precautions were taken with respect to the geometrical arrangement
of apparatus. The absorption coef5cients measured for the elements whose atomic numbers are less than
gee show reasonable agreement with those calculated according to existing theories. However, it. is noted
that the results with y3Ta, 74M, qaPt, 79Au, 80Hg, and 81Tl are 3 percent to 5.5 percent less than the theoretical
values. It seems improbable that the disagreements observed in these elements may be assigned to experi-
mental causes. If the entire deviation were assigned to inaccuracy in theoretical knowledge, it would be
reasonable to attribute it to some insufFiciency in the Klein-Nishina theory of the Compton eftect for this
energy of gamma-rays. But further investigation shouM be undertaken to ascertain the fact.

I. INTRODUCTION

~ ~

~

~

~

~ ~

INCR the application of Co" has rapidly increased
in various 6C1.ds of science, it becomes important

to know with greater accuracy the absorption coeK-
cients of the gamma-rays from this radioisotope (1.17
and 1.33 Mev) in various elements. The absorption of
gamma-rays in matter may be attributed to the combi-
nation of four separate cGects, namely the photoelectric
cGcct, the Compton CGect, pair production, and the
photonuclear reaction. Photonuclear reactions seem to
be generally improbable in the eneIgy range below
several Mev except for a few nuclei. The absorption
due to the photoelectric CGect has been theoretically

cstlIQatcd by DlRDy workers, Rnd that duc to thc
Compton efI'ect has been formulated by Klein and
Nishina, ' while pair production has been theoretically
discussed by Dirac and, others. ' A summary of most
of these theories, which give the knowledge of absorp-

' F.Sauter, Ann. Physik 9, 217 (1931);II, 454 (1931);H. Hall,
Phys. Rev. 45, 620 (1934); H. Hall and %, Rarita, Phys. Rev.
46, 143 (1934); J. G. Jaeger and H. R. Hulme, Proc. Roy. Soc.
{London) 148, 708 (1935); Hulme, McDougall, Buckingham,
and Powler, Proc, Roy. Soc. (London) 149, 131 (1935).

~ O. Klein and Y. Nishina, Z. Physik S2, 853 (1928),
~P. Dirac, Proc. Cambridge Phil. Soc. N, 150 (1934); VV.

Heisenberg, Z. Physik 90, 209 (1934); H. Bethe and W. Heitier,
Proc. Roy. Soc. (London) 146, 83 (1934); W, Furry and J. R.
Oppenheimer, Phys. Rev. 45, 245 (1934).


