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particles at large distances is described by the Vukawa
potential. '

An inspection of the method used to obtain this
result shows that it would also be obtained under more
general conditions than those assumed here. If, in the
Lagrangian density (1), the last term were replaced by

7 H. Yukawa, Proc. Phys. -Math. Soc. Japan (3) 17, 48 (1935).

some other function which also led to particle-like
solutions, and which was negligible compared to the
other terms at large distances from the particle center,
then the same result would be obtained for the inter-
action, except for the numerical coe%cient. For ex-

ample, this would be the case if the last term were
taken proportional to QP*)" for any e) 1.
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The third paper of this series provides a theoretical basis for analysis of precision measurements of the
fine structure of hydrogen and deuterium. It supplements the Bechert-Meixner treatment of a hydrogen
atom by allowing for the presence of a magnetic field, as well as radiative corrections. The theory of hyperfine

structure is somewhat extended. Stark effects due to motional and other electric fields are calculated. Pos-
sible radiative and nonradiative corrections to the shape and location of resonance peaks are discussed.
EBects due to the finite size of the deuteron are also considered.

A theory of the sharp resonances 2'S~(m, =-', ) to 2'S~(m, = —-',) is given which leads to an understanding of
the peculiar shapes of resonance curves shown in Part II. In this connection, a violation of the "no-crossing"
theorem of von Neumann and Wigner is exhibited for the case of decaying states.

HE earlier Parts" I and II of this paper have
described some qualitative studies of the fine

structure of hydrogen and deuterium made by a
microwave method. In order to prepare the ground for
analysis of much more highly precise measurements in
Part IV, it is necessary to make available a more refined

theory of the hydrogen atom than was used previously.
The object of Part III is to supply this need, as well as
to treat a number of other theoretical problems which

arise in the work. Frequent references to Parts I and II
are made. Chapters, sections, 6gures, tables, equations,
and footnotes of Part III are numbered consecutively
after those of Parts I and II.

J. ENERGY LEVELS OF A HYDROGEN-LIKE ATOM

48. General Program

The results of theory for the energy levels of an ideal
hydrogen atom were given in Part I assuming an
in6nitely heavy nucleus, thereby neglecting reduced
mass effects as well as magnetic and retarded inter-
action between electron and nucleus. In addition, a
number of other approximations were made. The calcu-
lation of hyperfine structure was oversimplified by
assumption of Back-Goudsmit and Russell-Saunders
coupling. In the theories of Zeeman effect and doublet
separation P;—Pi the anomalous magnetic moment of
the electron was neglected. Shifts of levels due to Stark
eGect and relativistic and higher order corrections to
Zeeman splitting were ignored.

*Work supported jointly by the Signal Corps and ONR.
f Present address: Department of Physics, Stanford Univer-

sity, Stanford, California.
6' W. E.Lamb, Jr., and R. C. Retherford, Part I, Phys. Rev. 79,

549 (1950), and Part II, 81, 222 (1951).

There is no one place in the literature where a treat-
ment of all these effects may be found. One may only
form a patchwork Hamiltonian by collecting separate
terms from papers by various authors who have been
concerned with limited aspects of the problem. It would

probably not be justifmd here to give a detailed system-
atic theory, but it does seem worthwhile to indicate the
basis of the rather provisional treatment which is now
possible. The object is to write down all terms known
at present having a potential magnitude of 0.1 Mc/sec
or larger in the discussion of the precision experiments
of Part IV.

The electron and proton should be allowed to interact
with one another through their intermediate coupling
with the quantized electromagnetic field and the vacuum
of occupied negative energy states for electrons and
protons. By eliminating these eGects from the theory,
one hopes to find an equivalent two-body problem in
which the two particles have a velocity and spin de-
pendent interaction with one another, and the particles
themselves have somewhat changed properties (renor-
malization of charge and mass, anomalous magnetic
moments, etc.).

At present, this program has not been fully carried
out. Those terms of low orders in the fine structure
constant which have been found will be incorporated
into the following discussion. It should be relatively
easy to make the small corrections necessary when any

- missing terms have been calculated.
The starting point is here taken to be a two-body

Dirac equation for electron and nucleus. Even when the
nucleus is a proton and not a deuteron there might be
grave doubt that it would obey an equation of the
Dirac type in view of its anomalous magnetic moment,
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H the additional magnetic moment is forced into the
theory by insertion of terms" of the type used by
Pauli) Rnd lf thc cRlculRtloQ ls not, cRlx'lcd too far~ lt ls
possible to combine all terms referring to the magnetic
moment of the proton so that only the observed moment
enters the 6nal equations. In this approximation it is
reasonable to use the same result for other nuclei which
do Dot cvcn obey Fermi-Dirac stRtlstlcs.

49. Tvro-Body Wave Equation.

The two-body wave equation applicable to a hydrogen
atom wiB be taken as

tHI+Hs+eies/r+Y+0+H{h. f.)$@=EV {103)
where

Hi= ni ' (pi —8IAI)+pIIIII+8IVI, ctc. (104)

where the index (1) refers to the electron and (2) to the
proton. Relativistic units are used in which h, c, and
fN Rx'c sct cqUR1 to unity. ThcD 8$y= ts= 1 Rnd 052=M
~1836, and e~ ———e, e2 ——Ze while e' can be replaced by
the fine structure constant n=e'/Ac 1/(137.043). The
wRvc functloD 0' has 4+4= 16 colTlponents 4"nyet

where the Dirac matrices ni, Pi act on the 6rst index
II= 1~ 21 3q 4 aIid Irsi Ps act OII 'tlic sccolld Index Iss

A and V are the vector and scalar potentials of the
external electromagnetic 6cld.

The interaction between the particles includes the
Coulomb potential energy

(105)

as well as the Sreit"-Darwin" magnetic-retax'ded inter-
RCtloQ

J'= —(&Ies/2r)L(~I ~s)+(~I r)(~s r)/r'j (1o6)

The 6nite remnants for a bound electron of the electro-
magnetic self-energy aI'e represented by an operator 0
which allows for the anomalous magnetic moment of
the electron and the electromagnetic level shift, etc.

The hyperfine energy term H(h. f.) is intended to
rcprcscgt only that pRlt of thc hypcI'6nc lntclactlon
which arises from the non-Dirac part pl'= pI'e2 of the
nuclear moment,

For similar reasons, or because of their smallness,
the subsequent terms in the Hamiltonian will also be
taken only in 6rst order. This means that it su)Bees to
calculate only

etc. where 4 is the eigenfunction of the hydrogen atom
with the Hamiltonian HI+He+ U without external
6elds. The solution of the underlying two-body Dirac
equation is thereby much simplified, and subsequent
calculation of the above averages is made fairly easy.

SO. Reduction of Wave Equation

Two methods of approach have been used to solve
the two-body Dirac equation. The first, used by Breit"
Rnd applied by Bechert and Mcixner~' to hydrogen 6ne
structure, involved the reduction from a 4&4= 16 com-
ponent wave equation to a 2)&2=4 component wave
equation. Unfortunately, the treatment by Bechert and
Meixner contains some errors which will be pointed out
in the following discussion. More recently, Breit and
Blown gRvc R I'cductloQ to an 8 conlponcn t wRvc
equation. Both treatments lcd to the conclusion that
the 6ne structure as calculated from the one-body Dirac
equation was correct up to and including order 0.'E.
except for the appearance of the reduced mass
p, =wzM/(m+ M) in the expected manner and a common
shift a'R/(64M) for all Is=2 levels.

The reduction to four components is used here
because it permits a closer connection with the more
elementary treatment given in Part I. Writing

(110)

whcx'c thc fuDctlons @~ Ml) Rg~ RQd g RI'c fouI' conlpoQcQt
wave functions with

H(h. f.)= —eieI.AI'(ri) —pi'Irs H(rs)

&I'= (t I'~ r)/~. (108)

While the first three terms in the Hamiltonian (103)
shouM be taken literally and treated exactly, it is
known thRt this may not bc doDc with I which Inust
in fact be evaluated using only 6rst-order pexturbation
theory. This was established in 1929—1932 by Brcit" in
his discussion of the triplet 6ne structure of helium, and
is connected with thc omission of yet uncalculated
fourth-order term. s in e.

"W. PauH, Handbuch der Physik, second edition 24/I, 233
(1933}.

69 G. Breit, Phys. Rev. 34, 553 (1929};39, 616 (1932}.
~0 C. 0, Darwin, Phil. Mag. 39, 537 (1920).

I +44&

n K. Beehert and J. Meixner, Ann. Physik 22, 525 i1935).
7~ G. Breit and G. E, Brown, Phys. Rev. 74, 1278 (1948). Also,

T. Ishidzu, Prog. Theor. Phys. 6, 48 (1951}.



F I NE STRUCTURE OF THE H —ATOM

we have

e2'k=o2 and. P2% =

(112)

and u4/M might be of importance for present micro-
wave experiments, but calculation shows that of these
only u4/M and u'/M' are actually present. Both have
been examined, but the latter are numerically negligible,
and for simplicity will be omitted in the subsequent
discussion.

The Zeeman splitting in practice will be less than,
but comparable to, the fine structure doublet splitting,
so that the vector potential of the applied magnetic
fieM will be overestimated if counted as of order given by

e1421 Al u4/32 or el', u'/16 (116)

with eH1 u4/16. The Coulomb attraction

U= ele2/r (105)

where the 0-'s are four component spin matrices. The
equation

kH1+H2+ U —E]%'=0 (113)

is then equivalent to the four equations

4zl (pl 4 1A1)421+422' (p2 ~2A2)212

+(ml+m2+ U E)&=0, (a—)

421 ' (pl elA1) 4+422 ' (p2 ~2A2) X

+ (m2 m 1+—U E)(el 0,—(b)——
(114)

4zl' (pl elAl)x+4r2' (p2 ~2A2)$

+ (ml m2+ U—E') co2 —0, (c)——
zl' (pl 4'1A1)4L12+4z2 (p2 82A2)M1

+( rl, m—2+U——E)x=0. (d)

In reducing these equations to one for the large com-
ponent &, it is desirable to assign orders of magnitude
in u and 1/M to the various terms. If the rest energy
of the electron is taken as unity, that of the proton is
M~1836, the Rydberg energy hcEZ' is -,'o.'Z' and the
fine structure doublet splitting for v=2 is —,'60.'Z4R or
2'2u4Z4~—10,950 Mc/sec for hydrogen. The radiative
width of 2p is (2'/3') u2Z'IlcR or (2/3)'u'Z' 997.
Mc/sec for Z=1, while the electromagnetic shiftz2 of
the 2'S; level for hydrogen is

cx'Z4
g log(mc2/Z24) 1040 Mc/sec (115)

6x

and abnormally large for its order because of the
logarithm involving an atomic excitation energy e. The
term of order n' in the doublet separation, which
according to Dirac's exact solution for hydrogen is
(5/256)u' 0.364 Mc/sec, cannot be obtained even for
the one-body problem by the method of reduction to
two components, but this term may simply be borrowed
from the exact treatment for 3f= ~. Terms effectively
of order 0.' due to an external magnetic 6eld are cor-
rectly given by the subsequent treatment.

Turning now to terms in 1/M, those of order u2/M
clearly correspond to reduced mass corrections to the
Bohr energies. Any terms of orders u2/M, u'/M, u'/M,

'+ H. A. Bethe, Phys. Rev. 72, 339 (I947).

has an average value of order Z'u'/4, but for r equal to
the classical electron radius r2 e2/mc2=u—,—U acquires
the larger order unity so that terms involving it must
be treated with more care. It may be remarked in
passing that hyperfine splittings are of order u'/M.

Taking @ of order unity, one sees that ~&~a,
a&2~u/M, and X~u2/M. If the equation for Q derived
from (114) is to be correct to order u'/M, it is necessary
that 401, and &42 be correctly calculated to order u'/M
According to (114b) this requires that X be known cor-
rectly to order u'/M. From (114d), one obtains with
this accuracy

X= (2M) '(422 p2)421.

Likewise from (114c)

(117)

442= (2M —U+W) '[4rl (pl —e,A1)X

+4z2 (p2 —e2A2) y], (118)

where W=E—M —1 is the nonrelativistic energy, or
to the requisite order

co2 ——(2M)
—

'422 (p, —e,A2)4 (119)

neglecting for r~u terms in co2 of order u/M2 which
slightly exceed the stated order u2/M. However, a
more careful consideration shows this neglect to be
justified because of the small volume involved. Finally

ld, = (2 —U+ W)
—'[471' (pl 81Al) 4+4r2'p2X] (120)

Insertion of these expressions in (114a) gives

4z, (p,—elA1)(2~U+W) 'L4zl (pl —elA1)

+(2M) '(422 p,)'(2 —U+W) '4rl p,]4
+ (2M) 422' (p2 e2A2)4r2 ' (p2 4 2A2)4

+(U—W)y=0. (121)

After some reductiori, keeping terms of order up to and
including u'/M and replacing W—U by —2,p12+-'2 (p22/M)
in terms of order n4, one finds a wave equation for p

(Hz+ Hzz+Hzzz) P =WP (122)

where the Hamiltonian

Hz= 2pl —Spl +(VU'pl) /4$

+(2—U+W) —
2421 V,UXp, +U' (123)



is familiar from the reduction"' of the one-body Dirac
equation to 2-componcnt form, and for a hydrogen-like
atom with 6xcd point nucleus glvcs the 6nc stluctulc
cox'l'ectly to order 0. . Thc tcl'1Tl

52. FIQO and H~er666 EQ81"gies

The remaining terms from

Hzz= a(PI'/M)

gives the kinetic energy of the nucleus) while

(124)
may be written as

Hb ——(3/SM) y' —(V U p)/(2«M)
+(crea/2M)(r 'y'+r 'r y'r p') (130)

Hzzz= —(2—U+W) '(2elAI PI+el«FI Hl)
+-', elmAI2 —(2M) '(2egA2 PI+el«Fa Hb}

+ (eli/4) («FI v U) («FI Al) (125)

gives the interaction of the atom with an external
magnetic 6eld, except for some terms from 0 and
H(h. f.) which are inserted later.

The energy contributed. by the Darwin-Breit term I.
ls glvcQ by thc RvclRgc

My 6'y 0'2 0'y rg2 r ~,

Y= ——,'clem ~ + dr (126)
3

H, =(e,e,/4M)F-Fn, n, —3r-bn, «, rj
Le—, e, /( 2Mr) j( «Fb r&(PI) fe—leg/(SM)]

dU
&& (r+-', n)

—'
(«FI «F2 r'«FI r—«F2 r). (131)

B, gives contributions to the hypcrGQC energy and wil1

be considered further in Sec. 56.
The above equations are equivalent to those used by

Bcchcrt and Meixner, except that their terms con-
tRlnlng

which to the required. order o. works out to be just the
RvclRgc of thc opcx'Rtox'

Hzr = Lelem/(4M) jL(nl nI)/r' —3(nl. r}(n2 r)/r'j

in IJ and II~ have the wrong sign. These erroxs are
compensated by their use of incorrect expressions for
thc averages of y'

(r
—'P'+r —'r y'r p')

which in fact have the values for thc ml state of hydrogen
of

(p')b. = (—3+4~/(1+2))(n'/~') (132a)

)( I «FI ' «FI («Fl ' r«F2 ' 1'/r )]
EereI/(2M)3Lr pl'pI+r r'pl r'p2 j

[e«eI/(2Mr')$[—e'ry PI—«FI r&&pbj (127)

for tile 8'tate wllosc WRvc fllllc'tloll 18 Q. Thc pl'llllc oil
y' indicates that the operator does not act on r.

SI. Exhibition of Reduced Mass

Bcchcrt RQd MclxIlcl showed tllRt when pl= —p2
=y thc Hamiltonian

could be rearranged so as to exhibit explicitly the
reduced mass p by writing

where
Hz+ Hzz+Hzr =H.+Hb+ H„ (128)

H.=p'/(2~) —p'/(S~')+(&U p)/(41' ')
+p

—'(2—U+W) 2«FI V UXP+ U—(129)

18 tile HRIIlll'tolllR11 of tvpc (123) fol R pR1'tlclc of Illass I«.

"See. for example, I.. I. SchiG, Qnuntum JI/Iechunics t,'McGrav-
Hill Book Company, Inc. , New York, 1949), p. 320,

(r-'y'+r —'r p'r p')b,
= ( 2+3«b/—(f+ ) 122rbb«) (—n'/rb«) (132b.)

(«.p)/I'=e, e,(r-'~/~r)„=(2n'/~')&«. (132c)

The discrepancies between these values and those of
Sechcrt and Meixner arise because the results depend
on whether or not a small sphere about r =0 is excluded.
In thc Rbovc cquatlons cRIc has been tRkcQ to And thc
correct interpretation for the singularities. No sphere
is to be excluded in (132a), but must be for (132b).
The result is then that B~ has the same average value

—n«/(SMrb«)

for all the 6ne structure levels for a given n, and there-
fore the separations predicted by H, are not disturbed.
Although this result was derived by treating the nucleus
as a particle obeying Dirac's equation, it is clearly more
general, and shouM follow to order n'/M from any
relativistic treatment of the two-body problem. The
erst two tclms of IIy cntcx' to compensate fol thc folcHlg
of the reduced mass p into H in the manner in which
lt would appear lf thc OQc-body Dirac cquRtloQ fol' R

particle of mass p were reduced to two-component form.
This is done merely for convenience in calculation. The
ls,st tcl'111 111 Hb 18 lust tllc Darwin retarded-. lIlagnctlC
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interaction energy which has a classical analog for any
distribution of currents.

In the following sections are given the detailed ex-
pressions which make up the working Hamiltonian for
analysis of the experiments. These include: unper-
turbed energies, Zeeman, hyper6ne, and Stark energies.

2'Sj.
2 Px
2'Pg

Tamz II. Unperturbed energy levels,

Energy

g0(22S~) g
Zo(22P;) =0
E I,'2&P~) =sZ

8Epp.,——(n'/6z) Dog(1/2kp)+ 19/30],

hEp)x = (n' /6p)rDog(n' /2k)) 1/8], —

8Ep&; ——(n'/6pr) Dog (n'/2k ~)+1/16],

(134)

where ko and k~ are average atomic excitation energies.
One gets thereby an additional contribution to AE of
a'/(32m. ) or 25.40 Mc/sec due to the spin-orbit inter-
action association with the second-order anomalous
magnetic moment" (n/2~) pp of the electron. When the
1.38 percent fourth-order" reduction in this moment
is included, AE becomes

K. WORKING HAMILTONIAN

53. Unperturbed Levels

In the absence of an external electric fmld (motional
or otherwise), there are no terms in the Hamiltonian
which mix S and I' states. This is true both for hyper6ne
interaction and electromagnetic term shift Q. The un-
perturbed states in the absence of hyperhne and Zeeman
splitting may be specified by quantum numbers e, j, m,
for the electron which are indicated in Table II. with
energies 0, 8, and AE shown in Fig. 47. Quantum
numbers I and mg for the nuclear spin will also be used.

The position of 2'P~ is taken as the zero of energy for
convenience despite the fact that the absolute position
of 2'Ey is changed by the quantum electrodynamic
e6ects. According to Dirac's treatment, S=o and with
inclusion of the reduced mass where it is significant

AE= (1/32) po.4+ (5/256) nP. (133)

The electrodynamic shifts of levels Sf' ~; which arise
from 0 may be written as~' '

which should be 1051.41 Mc/sec for hydrogen according
to Bethe, Brown and Stehn. "The second-order anoma-
lous electron magnetic moment contributes 67.77
Mc/sec of this. When the effect of the subsequently
calculated fourth-order magnetic moment is included,
the shift becomes 1050.47 Mc/sec. According to the
above authors, " the shift ought to be proportional"
to the electronic reduced mass p, which would make it
0.29 Mc/sec higher for deuterium.

There appears to be an unexplained discrepancy
between this value and the previously reported" value
for 8 of 1062&5 Mc/sec. In any case, the object of the
present research is to determine an experimental value
for S, and the reduction of data is entirely independent
of its theoretical value.

54. Magnetic Energy

The contribution of Hilz is given by

(+lrr)Au 0 Ifrrr&g& (138)

or

in which terms smaller than the usual Zeeman energy
by factors 1/M and n' are to be kept. The latter requires
that departures of p of order 0.' from the usual non-
relativistic Schrodinger wave function be considered.
These might be of two kinds: (1) a mixing of other
,states and (2) a renormalization. Fortunately only the
latter gives a contribution. One has

aE= (1/32) pn4+ (5/256) nP

+ (n'/32m. ) (1—5.946(n/pr)). (135)

Using the 1951 constants of Bearden and VVatts79

AE/k is
10,967.463 Mc/sec for II

10,970.447 Mc/sec for D.

2
2 Ps,, a, b, c,d

(139)

(136)

The relative level shift 8 according to Eq. (134) is

( ky ) 19 1"
8=(n'/6m) logl I+—+-

(n'kp) 30 8
(137)

'~ Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950).
E. R. Cohen, report to be published.

'7 J. Schwinger, Phys. Rev. 73, 416 (1948).
'8 R. Karplus and ¹ M. Kroll, Phys. Rev. 77, 536 (1950).
7 J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 {1951).

2
S~,,

2 P~,, e, f
FzG. 47. Energy levels for 2'Sg in zero magnetic 6eld without

hyper6ne structure. The magnetic sub-levels are indicated by
letters n, P, u, b, c, d, e, and f as in Fig. 14.

"Bethe, Brown, and Stehn did not consider radiative processes
involving the nucleus. Unpublished calculations by B.S. Gourary
which take these into account indicate a somewhat larger de-
pendence on reduced mass.
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TAaLE III. CoefI5cients of Eq. {I43)for various states.

where the nonrelativistic energy is
gepoS ' H

(140)
where the Lande g-factor is'7 7'

(c) Energy of Orientation of Electron Spin

p o I, , d e t To the term ——',eioi. Hi in (141) must be added the
CoeKcient 7/36 '//36 6/36 4/36 4/36 6/36 3/36 3/36 contribution from 0 of the anomalous magnetic moment

of the electron, giving in usual units an orientation
energy

for n=2. Then. IIIII is equivalent to the average of the
operator

arri~ —-', (2eiAi pi+eiei Hi)
——,'{2e2A2.pt+e~2 Ht)/M
+-', ei2Ai2+ Wpo(L+2S) H

+-'(oi VU) (HXr) (141)

go =2 (1+(a/2tr) —2.973n'/tt').

(d) Redlced Mass Effects and Moti onal Electric Field

The rcmMnlng tcrIIls of Hill Rlc

Hrri' —(ei/mi——)Ai pi —(e2/m2)At y2, (146)

calculated with the usual Schrodinger wave function, It wi11 be shown how these terms imply the introduction
where po

———',(a.)& is the Bohr magneton. The term of an effective g value for orbital motion
e2o2 H/8M will be treated with other contributions to
hyperhne energy in Sec. 56. gr, =1—1 M

(a) Relativistic Corrections to Magnetic Moment

The last two terms of (141), in case of Russell-
Saunders coupling, are equivalent to the relativistic
corrections of order cP to the magnetic moment of the
atom as 6rst calculated by Breit."According to these,
thc cGectlvc LRnde g-values foI' thc vRlloUs stRtcs Rlc
given by

Rnd Rlso contribute RIl clcctI'lc 6cld duc to motion of
the atom through a uniform magnetic 6eld. The vector
potcntlR1S Rrc then

so that (146) becomes

Hrrr'= —-'L(ei/mi)(H riXyi)
+(e2/m2)(H r2Xyg)) (148)

gt=g;&04 I+2W 22P~x,

.1+r4W 2'Pa

gt&'& =2, -'„and 4/3

(142)

(142a)

and upon transformation to relative and center-of-mass
coordinates by the equations

r= i'i —r2& ORR=miri+m2f2& OR=mi+mo
(149)

yi ——(mi/OR)P+y yt ——(m, /OR) P—y
for these states, respectively. For a magnetic 6eM of~
1500 gauss, larger than those used in the precision deter-
minations of Part IV, the correction to the frequency
of ti'allsitioil nP amounts to onlg 0.02 Mc/sec alld is
Qo larger for any other transition. The relativistic
moment corrections may therefore be neg1ected, al-
though they are of the retained order a6.

(b) Qttadratt'c Zeeman Energy

becomes

Hrrr'= —(2OR) '(ei+e2)[H RXP$
—-', (eimi '—e2m2

—')(H RXy)
—-', (earn, —e,m, )OR-'(H rXP)
——,'(eimgmi '+emmim2

—')OR '(H rXy). (150)

The 6rst term is zero for a neutral atom with e~ ———e2,
and the last term in usual units is

The quadratic Zeeman energy is 1ikewise too small
to require a correction, although also of nominal order
0.'. Thus for 2'Sy

gr,pvH' L,

L= 1'xg (152)
(2ePAP)Av= se H (r siil 0) = (7/2)e a II

= 7(poH)2/(hcR) = (7/36) cPx'AE (143)

which for H= 1500 gauss amounts to 0.01 Mc/sec. The
values of the coefficient of n'x'hE in Eq. {143)for the
othcl ZccIQRQ components) assuming Russell-SRUIldcls
coupling, are given in Table III.

81 G. Breit; Nature 122, 649 (1928), a1so Mott and Massey,
Theory of Atomic Collisioris {Oxford University Press, London,
1933), erst edition, pp. 47-57; H. Margenau, Phys, Rev. 5?, 383
(j.940).

—-,'e, (VXH r),

V=P/OR

(154)

is the orbital angular momentum operator, and

gI„——mi '—m2 ' ——1—(1/M) (153)

as stated above. Needless to say, this result can also
be obtained by more e1ementary methods.

The third term of (150) may be written as
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with

—(ei/t)m p

I.=-,'Hy R

(157)

(158)

the vector potential at the atomic center of mass R.
As far as the internal motion alone is concerned, this
term is equivalent to a gauge transformation. Consider
the wave equation for the atom

[P'/(2~)+p'/(2 )—(e / )@ p+g
——,'eiH r&& (P/OR)+ —W7$i ——0. (159)

The gauge term containing

is the velocity of the atom, and represents just half of
the expected Stark perturbation due to a motional
electric 6eld

E= (Vx H)/c. (156)

This defect is made up by the second term of (150)
which can be written as

Unit Geld for x, : Hi, = [2/(gr, +~igs)$(phE/pp), (171)

Unit Geld for x: Hi= [1/(gs g—r,)]( phE/ti) o(172)
The values of these and other needed units using 1951
constants of Bearden and Watts" are given in Table IV.

In Eqs. (164)—(172) both 3 and AE are to be deter-
mined from observations of resonance peaks. This is
inconvenient since the units of magnetic 6eld depend on
AE//pp. Fortunately the experimental value determined
for 8 is highly independent of the values used for AE,
tip, and i'p (strictly so except for nonlinearity of the
Zeeman energy curves), so the procedure will be to
regard hE/ti as given by Eq. (136), and to determine 8
from the low frequency transitions eve and nf. Then the
high frequency transitions nu, nb, O.t," may be used to
determine a value for the one structure constant,
assuming validity of Eq. (136).If necessary the process
can be iterated should the originally assumed value of
AE prove to be in error.

5=grad, ($ r)

may be removed by the transformation

(160)
56. Hyper6ne Energy

55. Zeeman Energy

To summarize the results thus far, the Zeeman
splitting is determined by the Hamiltonian

sbip+pphE(L S+8n)+gstbpS H+grtipL H (163)

and the energy levels for the states mljm; may be written
in a form similar to that given in Sec. 15

with

g~, p
=gp&xo~

g~, g= g~2xay

yb. = ,'+ ', x+ ',
,
(x'a-x+-(9/-4)) 'a ,'Tx, -

y, , &
———,'a-', x——',(x'ax+ (9/4)) '*a-,'Tx

(2gr gs)/(gs gr)

where the unit of y for all states is

fi ——-', (AE/tt)

(164)

(165)

(166)

(167)

(168)

(169)

&=fiyo

Pi &exp(eii——/2Ib) [H)& R r]. (161)

The operator P'/2tb acting upon p, gives an extra term
which just cancels out the gauge term, while P'/29K
gives an additional contribution which doubles the
motional Stark term. To 6rst order in H, the result is

[P'/(2~)+p'/(2 )—( /~)(P&&H )
+gr, tboH ~ I + ~ ~ ~ —W7$ =0 (162)

leading to the correct motional Stark eGect.

The operator for the hyper6ne energy is

ie=grtbp'(1+ —,'(n/r))r '[2I L—gs(I S—3I rS r/r') j
+2g sgrtio'(r+-'~) '(d &/«)

&&[I S—I rS r/r'j (173)

which agrees with (131) except for insertion of the
observed g-values for nuclear and electronic spin. Such
corrections arise from terms in 0 giving the interaction
of anomalous part of the magnetic moment of the
electron with the nuclear magnetic moment. In evalu-
ation of this, as usual, S states require a special con-
sideration. There are no matrix elements of m con-
necting S and P states, and it therefore sufIices to
consider only diagonal elements for a given / value m«
which have been calculated by Bethe."

(a) S States

For l=0, wpp reduces to Eq. (48) with an additional
factor gs/2, if some terms of relative order n' are
neglected. In the presence of a magnetic field, the
effective Zeeman-hyperfine Hamiltonian is

R= &+gstbos 8+hie(I+ip) 'I S—gstbpi 8 (174)

where Am is the hyper6ne splitting for 2'S~ produced by
the nucleus in question (taken to be p the corresponding
value measured" for 1'Si) given in Table IV.

In Part I the energy levels were calculated for strong
fields. While the exact energy levels are given by the
Breit-Rabi" formula, it suKces for all applications here
to use the next term in its high 6eld expansion. Ac-
cordingly, to the energies given by (164)—(167) must

while the units for the x's are given by

Unit field for x:Bi~ (2/gs) (PphE/tip), ——(170)

82 H. A. Bethe, Handbuch der Physik, second edition 24t/I, 386
(+33'j.

83 A. G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950).
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TAsLE IV. Constants used for calculations of Zeeman
and hyper6ne splittings.

Quantity

f1 (Mc/sec)
HJ (gauss)
HI (gauss)
H1 (gauss)
T
am (Mc/sec)

Hydrogen

7311.642
5217.801
5222.208
5209.008—0.0033703

177.551

Deuterium

7313.631
5219.220
5222.919
5211.840—0.0028284

40.923

be added

C(me, I, rzzz) (aw/g etzoH) hw (176)

where the coefficients C(ms, I, rzts) are given in Table V.

(b) I' States

For p states, the interaction (173) may be simplified
to

w»=gztzp'(r P)o„l2I L+ p'gsl4I-S 3I L—L S
—3L SI Ll] (177)

with neglect of some terms of relative order n'. This
operator has matrix elements diagonal in J which can
be written in the form (53) if the small difference
between gs and 2 is neglected (see Appendix VI) or as

(Jlw»l J)=&w(I &)/L2(»+1) J(J+1)] (»8)

in terms of the hyperfine separation Am for 2'S~. In
case of good Russell-Saunders coupling, the hyperfine
splitting would be just as given by (53) or in the Back-
Goudsmit limit

w= ~p[dw/((I+ ,')J(J+1))jrzpzrlz-. (178a)

Since the experiments are conducted in an appreciable
magnetic field, the vectors L and S are somewhat
decoupled, and a correction must be applied in Eq.
(178a). The elements of w» of'f-diagonal in J may be
written in the form

(I'lw»l J)=A~w(I+-') '(I'II LI I) (179)

TAsLE V. Values of coeKcients C(mg, I, mr) of Eq. (176).

w =Aw(I+ p) 'rzpznze gztzo—Hrzzz

+(~w)'(I+l) '(2get pH) '

X I II(I+1) rzpz' I
—rzps ppztz—] (17.5)

The last term may be written as

gztzpH. J (181)

where gJ is the Lande factor for state J, as part of the
unperturbed Hamiltonian. The application of perturba-
tion theory to the remainder of K then gives the above
power series expansion as well as some new contribu-
tions arising from cross products of the second and
third terms as well as powers of the third term. These
contributions are of order

(hw)'/tzpH, hwtzpH/hE, (dw)'/hE

etc., and from a rough estimate of their magnitude it is
clear that only the erst two need be retained for the
analysis of the present experiments.

The cross-product term from second-order perturba-
tion theory for 2'Pg and 2'Pg respectively may be
written as

& (2/9) [gzgztzop(r p)A„/DEjtzoHrlz (182)

or in terms of the hyper6ne splitting Am for 2'S~ as

&(1/36) (hw/AE) (I+,') 'tz pHrzpz. -(183)

This can be regarded as equivalent to a change in the
nuclear g-value from gr to

g '=g.+(1/36)(~ /~E)(I+l)-'
as far as the energy of orientation in a magnetic Geld is
concerned.

If it were not for this correction to gz for p-states, the
nuclear magnetic orientation energy

—gIIJ,0+mr

could be ignored completely, because ml does not
change in the allowed transitions. Because of the change
in effective gz for P-states, howeverthe, re is a slight
change in the separation of the resonance peaks
amounting to an increase of

(1/18)LI/(I+ p) j(~w/~E) t oH

and the necessary matrix elements of I L calculated
from equations given by Condon and Shortley.

The complete effective Hamiltonian for Zeeman and
hyperfine energy of the 2p states is then

~E4$+tzpH (gsS+gLL)+w» gztzpH' I. (180)

In the e, J, mJ, ml representation only the first and
last terms in K are diagonal. If the last two terms were
neglected and perturbation theory correct to all orders
in tzpH/AE. 'were applied to the second term in (180),
the result would be equivalent to a power series expan-
sion in p; of Eqs. (164—(167)).It is convenient to take
the diagonal elements in J of the second term, namely

mr=~
mr-
mr=1
mr=0
mr= 1

0

0
2/9
2/9

-1/4
0—2/9

-2/9
0

or 0.63 and 0.19 Mc/sec/kilogauss for hydrogen and
deuterium, respectively, in the case of transitions O.u,
nb, nc, and a decrease by the same amount for ne and nf

8' Condon and SIIortley, Theory of Atomic Spectra (CaInbridge
University Press, London, 1935), p. 64.
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corresponds to the expansion for high magnetic field
of the hyperhne energy given by the Breit-Rabi for-
mula, and in fact is more general, since it applies for p
states when neither I nor J is —,'. It is

(1/64) L~~/(I+ l)]'L~(J+1)j '(g»oII) '

LmqI I(I+1)—mrP I
—mr I J(J+1)—mg' }]. (184)

57. Stark Effect

The presence of an electric 6eld in the rf interaction
space gives rise to displacements of the fine structure
energy levels, Except for cases of near degeneracy such
as occur in study of the nP transitions at 575 gauss for
magnetic field calibration and treated in Chapter N,
it suKces to use second-order perturbation theory to
calculate the Stark shift of a level i

&lV'= —Z. l (~
I
«r

I p) I'/(&. —&*) (185)

Assuming Russell-Saunders coupling, the matrix ele-
ments of x, y, and s in units of the Bohr radius ao are
given in Table VI for the various transitions Although
at the actually used magnetic 6eMs, there is some
departure from Russell-Saunders coupling, the Stark
perturbation is small and the above matrix elements
are su%.ciently accurate. In addition, the denominator
in Eq. (185) may be evaluated assuming a nominal
level shift of 1060 Mc/sec, and a magnetic splitting
given in weak 6eld approximation by

gJ"'po&mz (186)

using the usual Lande g-values (142a), and neglecting
hyperfine splitting.

Taking only the motional electric field

(187)

into account, one finds

I (~ I
«r

I p) I'= e'II'(V'/cP)"
I (~ I x I p) I'. (»8)

The average shift depends on (V')A„ for the beam, and
assuming the distribution (88)

V'= (V'),„=2U'= 2(2kT/M) (189)

where M is the atomic mass. For an oven temperature
of 2500'K, and a magnetic field II= 1159 gauss (transi-
tion ae at 2195 Mc/sec), one finds

(E„), .= VII/c= 10.5 volt/cm, (190)

This will make itself felt primarily in the observed
width of a cemposite resonance curve and the degree of
resolution of the constituent peaks for the various mg

values, but not in the apparent center of the composite
curve.

The term of order

(am )'/ppII

TAar.x VI. Values of matrix elements of coordinates for various
transitions in weak magnetic Geld.

Transitions

ac pd
ab pc
ac pb
ad pa
ue pf
nf pe

3/V2
0

~3/v2

v3

&3i/N
0

+ADVS/N
0
0

aiVS

0

0
0

avS
0

eVIIap/bc= 13.47 Mc/sec (191)

58. SQQlmary

The formulas and constants necessary for energy
level calculations to the required accuracy have been
given in Secs. 53—57, especially in Tables II, IV, and 7
and Eqs. (135), (136), (164)—(172), (175), (176), (178a),
(182)—(185). A few additional effects are studied in
Appendix VI, but, except for an additive contribution
to 5 from the finite size of the deuteron, they are nu-
merically negligible.

for hydrogen, and 1/2' as much for deuterium.
When the Stark effect shifts are small, one may

neglect any asymmetries produced by them, and
merely calculate their magnitude at the center of the
observed resonance curve. Thus for state o. of hydrogen
at 1159 gauss the contributions from states a, c, and
f to (185) are —0.07, —0.04, and 0.17 Mc/sec, respec-
tively, so that state is raised by 0.06 Mc/sec. On the
other hand, state e is rebore strongly repelled by the
nearby state P and raised by an amount 0.52 Mc/sec.
Accordingly the frequency for nt. is lowered by 0.46
Mc/sec, which implies an increase by 0.46 Mc/sec in
the level shift as calculated from the data for hydrogen
without Stark effect, and by half that amount for
deuterium. Similarly, there are corrections of —0.13
and —0.06 Mc/sec to be applied to results obtained
from transition nf at 2395 Mc/sec. Such corrections
will be applied in Part IV in the analysis of the data.

There is also an error in magnetic fieM calibration
using transition aP at 575 gauss. Presumably, the Stark
shift of state P by the degenerate level e is very small
as indicated in Sec. (72), but there are shifts due to
distant levels. For deuterium, these increase the fre-
quency of uP by 0.032 Mc/sec, and therefore all mag-
netic fields shouM be lowered by a negligible fractional
amount 0.032/((2. 803)(5751)) or 0.02 percent.

There is evidence, discussed in Part IV, that electric
fieMs amounting to as much as one volt per centimeter
due to contact potentials or charged insulating films
may be present in the interaction space. It can be seen
from the above estimates that such 6eMs would
produce a wholly negligible Stark effect. The possibility
of shifts produced by the rf helds used for the measure-
ments will be discussed in Sec. 66.
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L. RADIATIVE CORRECTIONS TO RESONANCE

LINE FORM

59. Ideal Weisskoyf-Wigner Line Form

The goal of the Weisskopf-Vj'igner85 theory of radia-
tion broadening was to obtain the basic form of reso-
nance curve

u [(~—~)'+-'v'j ' (192)

where 1 is the circular frequency of the radiation (rf in
this case), co the frequency of the transition, and y is
the reciprocal life time of the decaying 2p state. It may
bc rccaHcd thRt ln thc orlglnal Wclsskopf-QJlgner
theory, there appeared a divergent integral which had
to be discarded in order to obtain Eq. (192) without
an in6nite shift in the resonance frequency. Serpe"
showed that this divergent integral could be interpreted
as a part of the self-energy due to the interaction of the
electron with the radiation 6eld. Presumably with the
more powerful theoretical techniques'7 now available
for handling divergent 6eM theories, the problen1 of
radiative line shape could be treated in a satisfactory
way: the in6nite terms would disappear and the finite
level shifts of Bethe~' 75 would properly appear in the
denominator. Unfortunately this does not appear to
have been done as yet, but there is little doubt that a
result much like Eq. (192) would be obtained for the
basic resonance shape. It might be mentioned that a
shift of resonance frequency such as that associated
with the damping of a classical harmonic oscillator, of
order y'/&o(2~1s), is completely negligible for the 2p
state of hydrogen.

60. Possible Corrections to Weisskoyf-Wigner
Line Form

It ls st111 posslMe tllat (192) sllould be mod168d 111

some way. For instance, there might be added an anti-
resonant term

[(~+ )'+4&'j '.

Indeed, such a contribution appears in some deriva-
tions, but for 1/2n. co/2m. 2400 Mc/sec, it is 9200
times smaller than the resonant term, and is com-
pletely negligible for the present discussion.

%hen the derivation of Appendix II is repeated with
R replaced by R exp( —iv/), Eq. (76) becomes equiv-
alent to (192). If, however, the perturbation is
written in terms of a vector potential A of the rf 6eld
as —(e/m)A y instead of eR r an additional factor
(a&/1) appears in (192). This would give rise to s, sig-
nihcant distortion of the resonance curve, and it is
therefore important to choose the correct form for
analysis of the data. Of course, the difference between
the perturbations R r and —(A y)/m just corresponds
to a gauge transformation under which the theory is

8~ V. F. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930)
and 65, 18 (1930)."J.Serpe, Physica 7, 133 (1940)."See, for example, F. J. Dyson, Phys. Rev. 75, 486 (1949).

known to be invariant, so that both perturbations must
lead to the same physical predictions. Nevertheless, a
closer examination shows that the usual interpretation 8

of probability amplitudes is valid only in the former
gauge, and no additional factor (co/1 )' actually occurs.

The Van Vleck-Weisskopf89 formula for collision
broadened lines does contain a factor involving ru/p

which has been con6rmed" experimentally. There is,
however, a fundamental diGerencc between collision and
radiative damping, so it should not be expected that
thc collision linc shape would bc obtRlned herc.

M. NONRADIATIVE CORRECTIONS TO LINE FORM

In Sec. 45 a number of causes for asymmetries and
shifts of resonance peaks were listed. We now turn to a
detailed consideration of such effects. The basic assump-
tion is that under the inQuencc of rf 6eMs each meta-
stable state decays at a rate y given by Eq. (25). In case
overlap of nearby peaks is deemed important, p is taken
as the sum of such terms. The observed beam consists of
atoms with various velocities distributed among the
various hyperfine components of states n and p. For
the precision work, a magnetic 6eld is chosen for which
the P-contribution to the signal is at most only a few
percent of that from 0., so a separate correction for
presence of atoms in the P-state can be made.

62. Effect of Saturation and Velocity
Distribution

Of the metastable atoms in state (a, mr) and having
spccd 'v R fraction

&= 1—exp[ —p(mr, H)l/vj (194)

is quenched while passing through an rf 6eld of length /.
This fraction must be averaged over hyperhne states
and also over velocities of atoms in the beam. To a
certain extent, the distribution of velocities is uncertain.
Fortunately, as shown in Appendix V, the results arc
not appreciably dependent on this. For the calculations
described below, the distribution (88) is used and gives
a fractional quenching of a beam with initially un-

88 I am indebted to Professor L H. Thomas for a helpful dis-
cussion of this point."J.H. Van Vleek and V. F. Weisskopf, Revs. Modern Phys.
17, 227 (j945).

fl0 G. Seeker and S. Autler, Phys. Rev. 70, 300 (1946).

6I. Rf Power Shifts

Just as a shift of resonance frequency can be produced
by a static electric 6eld, it is possible for such a dis-
placement to arise from an rf electric 6eM, in particular,
the rf held used to produce the observed quenching. A
treatment of this problem is given in Appendix IV. The
result is that no signi6cant correction to the resonance
position is needed for rf powers used in the precision
experiments.
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polarized nuclear spins

I
y =L2U

—'/(25+1)] 2 I L1—exp I p(—ver, H) l/v }]
vol= —l 0

09

)&exp( —v'/U')v'dv. (195)

In terms of the function

G(g) =2
I

1—exp —(P/s)] exp{—s')s'ds (196)

which is plotted in Fig. 48 and whose properties are
discussed in Appendix V, this becomes

0.6

~~ 0.5

LL. 04

4=L1/(21+1)] 2 G(4-) u 0.5—

C3

f =p(m, H)l/U.

As a starting point, we ignore overlap from other
resonances and curvature of the Zeeman lines, and
express the resonance parameters f in terms of fre-
quency units $ (megacycles per second) from their peaks

where 3 is proportional to the rf intensity, and 2b= y
gives the radiative width {99.692 Mc/sec for hydrogen
and 99.719 Mc/sec for deuterium). The values of a
depend on the hyper6ne splitting of the initial and 6nal
states. In the approximations of Part I, for hydrogen,
a~= —a;=58.5 Mc/sec for nf and 29.3 Mc/sec for ae.
Because of incomplete Back-Goudsmit effect, and other
small corrections, the separations of the two peaks are
slightly diGerent, and improved values are used so that
the spacing of the hyperfine peaks is theoretically
correct. The shift of the center is taken into account
subsequently together with the Zeeman curvature. For
deuterium, in the above approximation ao =0, aq = —u ~

=18 Mc/sec for nf and half as much for ne
The following procedure was adopted. All data for a

given transition was taken with the rf power set to
give a prescribed percentage of quenching at the center
of the resonance. From the quenching at the center, it
was then possible to determine the constant A of Kq.
(199) independently of rf intensity, or values of

I(NIe rl~) I', »r U' and to calculate the resonance
curve for this value of A, When some factor leading to
asymmetry or shift was to be considered, Eqs. (197)—
(199) were modified accordingly, and the correction to
the apparent center as measured a,t the prescribed level
was determined. Since all considered effects led to very
small shifts, it was sufficient to 6nd such corrections
independently a,nd to add the results.

To illustrate these calculations, the case of transition
ne in hydrogen at 2195 Mc/sec will be considered in
detail, with results given as needed for other cases in
Part IV. A panoramic view of the dependence on mag-

0
0 02. 0A- 0.6 ~ 0.8 i.0 i.Z I.4

FIG. 48. Quenching functions for various assumed velocity
distributions as dependent on a variable lIt' which is proportional
to the rate of transitions. The function G(p) (defined in Eqs. (196)
and (237)} applies for a thermal velocity distribution, while g(P)
(Eq. (241)) is obtained for an equivalent single velocity. %hen
bombardment recoil is taken into account, there results a function
II(P} which is numerically hardly distinguishable from Gg).

netic field of rf quenching at 2195 Mc/sec was given
in Fig. 36. The peak quenching for eve was chosen
arbitrarily as 31 percent, which was neither too small
for accurate measurements or large enough to give
serious saturation effects. As explained in Sec. 45, it
was proposed to locate the center of each resonance by
finding points on each side which gave equal quenching.
These are called the "working points" and in the case
chosen for illustration were taken at the 2I percent
quenching level. It was possible to ignore the effect of
overlap from the much weaker nf peak in this case.

63. Variations of Matrix Element Across
Resonance

The rate of decay of the metastable state n induced
by rf depends on the squares of the matrix elements of
r to the various p states. The values of these in weak
magnetic 6eld approximation are given in Table VI. At
the 6elds used in the precision measurements, a de-
parture from the weak 6eM values is to be expected, and
since the matrix element varies across the resonance
curve because of the changing magnetic 6eld, there is a,

signi6cant amount of distortion which requires a cor-
rection.

Bethe" has given the intermediate 6eld wave func-
tions from which the matrix elements of r may be

O' See reference 82, p. 398.
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C(na) =1,
C(~f) =-;(1+&,),
C(nc) =-,'(1+8 ),
C(ne) = 2(1—S+),

C(~f) = l(1—~-),

(200)

calculated. The results may be expressed in terms of
correction factors C(ne) to the squared matrix elements

( (e( r
~
~) ~' evaluated in weak field. These are

where
4=Z- G(4-, p-)/Z- G( ~, p-) (203)

GQ, p)=2)" e '"(1 e&"—)e "'y'dy (204)
0

fraction exp —Xl/V of the excited atoms will reach the
detector in the absence of rf fields, where Xl/V is pro-
portional to V, The fractional quenching produced by
rf may then be written as

where
(~i+ )L(9/4) ~ + Q] (201)

with f given by Eq. (198), and

using the dimensionless magnetic field unit of Eq. (172).
With these correction factors inserted into Eq. (199),
the constant A was readjusted to bring the quenching
at the center back to the standard value, and the error
in the apparent center at the working point level deter-
mined. For the case of transition ne in hydrogen at 2195
Ms/sec, a correction of —0.58 Mc/sec to the apparent
level shift is required.

64. Quenching Asymmetry

The preceding discussion assumed that the beam was
composed of atoms divided equally among the (2I+1)
hyperfine states (n, mz). If electric fields are present,
these states are differently quenched because of dif-
ferent energy separations from competing p states.
This gives rise to an asymmetry and shift of the reso-
nance curves. The most important cause of quenching
is presumably the motional electric field, and only this
was taken into account in the following discussion.

The decay rate due to motional Stark effect is given
as a sum of terms like (42) for transitions from n to
states a, c, and f. Ignoring the slight differences in the
dimensionless magnetic field variables x for the various
states, the decay rate may be written as

v(ea, /&, )'(V/e)'x' k(9/2) (y..'+-', r')
+(3/2)(y-'+-'I") '+3(y-r'+4P') '], (2o2)

where y is the decay rate of 2p, ao the Bohr radius, pp

the Bohr magneton, V the speed of the atom at right
angles to the magnetic field, x is the magnetic field
measured in units of 5214 gauss, while the dimensionless
damping constant I' has the value 100/7300=0.0151.
The energy separations are proportional to y =y, =y,
etc. and are supposed to include hyperfine splittings as
well as an (approximate) value for the 5 level shift. In
the cases of interest, however, the decay is induced
mostly by state f, so that hyperfine splitting need be
taken into account only in the third term. As indicated
in Fig. 17, for hydrogen y r is increased by 58.5/7300
for m&=-'„and decreased by the same amount for
mt = —2.

Since the rate of decay due to motional electric field
varies with the square of the atomic speed V, and the
time spent in travelling a distance l from electron
bombarder to detector varies inversely with V, only a

p =Xi'&„f/U (205)

where X"' is the value of X for V= U, the velocity used
in Eq. (88). The integral GQ, p) may be evaluated by
expanding exp —py in a power series in py and inte-
grating term by term. The first integral is just the
tabulated G(f) The .subsequent integrals may be
expanded in powers of P and integrated term by term
with suKcient approximation. The values of p cal-
culated at the working points $= &58.8 Mc/sec for the
case at hand are 21.528 percent and 21.478 percent,
respectively, and after conversion into a correction to
the apparent center of the resonance curve, imply a
decrease of the level shift by 0.08 Mc/sec.

65. Incomylete Back-Goudsmit Effect and
Nonlinear Zeeman Splitting

At the magnetic fieMs used in the experiments, the
nuclear spin is not fully decoupled from the other
angular momenta of the atom. As a result, the hyperfine
levels are unsymmetrically distributed about the energy
obtained without hyperfine structure. The apparent
center of the composite resonance curve is accordingly
displaced from the position it would have in the absence
of. hyperfine structure. The correction to the level shift
can be obtained by using unequal values for the a in
Eq. (199) and calculating the apparent center. (The
case of hydrogen with two component peaks could be
treated more simply. )

The resonance curves are taken with fixed radio
frequency by varying the magnetic field. Due to non-
linear dependence of the Zeeman splitting on magnetic
field caused by progressive decoupling of I and S a
distortion of the resonance arises. Letting h be the
distance in gauss measured from the true center of a
resonance curve, one may write with sufficient approxi-
mation in Eq. (199).

$—+$ =c h+d Ii' (206)

where c are the slopes of the frequency eevsls magnetic
field curves for hyperfine component ns, evaluated at
the corresponding resonance field. In the calculations
based on the ideal resonance curve this slope was
evaluated at the center of the composite curve, while
the curvature represented by d h' and asymmetry
represented by unequal a were neglected. The com-
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posite resonance curve was then calculated as a function
of h, and the departure of the apparent center, from
k=0 was determined. For the case being illustrated,
corrections of —0.81 Mc/sec and —0.11 Mc/sec, re-
spectively, must be applied to the apparent level shift
because of the incomplete Back-Goudsmit eGect and the
Zeeman curvature.

66. Correction for Rf Power Variation

A correction must be applied for rf power variation,
both because of slow changes in oscillator output during
a run, and also to bring the peak quenching exactly to
the prescribed value. An approximate basis for such a
correction was indicated in Eq. (102) on the assumption
of a linear relationship between rf intensity and I, and
that @ is proportional to power. The former assumption
is valid for the limited range of I values occurring in a
run, but the second requires small ~It. In order to test
this point, (dp/dA)/(dQ/dA)b was calculated for the
case under study (pb

——31 percent), and found to be
sufficiently near to p/pb that Eq. (102) could be used.

67. Effect of Radiation from Quenched Atoms

As described in Sec. 42, there is a background signal
due to ultraviolet radiation produced in the bombard-
ment region. Except for fluctuations the eGect of this
is eliminated when the ratio of rf to dc quenching is
computed. In addition, there is a detector signal pro-
duced by the Lyman I.„radiation emitted in the inter-
action region when the metastable atoms are quenched

by rf and dc fields. Fortunately this introduces no error
in the fractional quenching. To see this, let g and g'

be efhciencies of detection of metastable atoms and
photons, respectively, and let Q be the average solid
angle subtended by the detector from the quenching
region. Then if the magnitude of the unquenched beam
signal is denoted by &8, the signal received when a
fraction III of the metastables is quenched is

~B(1 y)+~'By—(Q/4~)

and the apparent fraction quenched is

rf quenching rtB& it'Bg(Q/4~)
4'8VV =

dc quenching itB—it'B(Q/4~)

so that no error results from the photons produced in
the measurement of @,although the dc and rf quenching
are separately reduced. If one used values p=0.4 and
g'=0.08 such as found by Dorrestein" for helium, the
corrections to these would also be small since Q/4n.

0.02. If in fact q were much smaller relative to q' the
apparent signal would be reduced (or even reversed
in sign. ).All indications are that it»it (Q/4m), although
from the signal size it was concluded in Sec. 26 that g
was probably much less than~, 0.4. (Observations in
which large voltages of either sign are applied across the

~ R. Dorrestein, Physica 9, 433 and 447 {1942).
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FIG. 49. Energy levels involved in sharp resonances aP. Letters
u and b represent states n and p {2'S~,m, = & and —~, respectively),
while c represents state f, {2'P~, m;=~) which crosses p for H =575
gauss. The circular frequency separations co„, etc. are shown and
the perturbing matrix elements connecting various states: AR for
electric dipole and k3f for magnetic dipole energies due to rf
fields, and AV the perturbing energy due to motional electric Geld.

69. Wave Equations

We consider three states n(2'Si„m, =-', ), P(2'S~,
m, = ——,'), and e(2'P~, m, =-,'), as in Fig. 49, denoting
their probability amplitudes by letters a, b, and c,
respectively. The equations of time dependent per-
turbation theory are then

id = -', M*b exp[i(&o~ —v) t]+-',R*c exp[i(~„—v) t],
ib = ~3fa exp[ —i(&u„b—v) t]+V*c exp(i&vb, t), (207)

ic= -', Ra exp[ —i(~ .—v) t]+Vb exp( i&oh,t) ~iy—c—
The circular frequency separation of state a from b is,
denoted by co~ 'while ~ is the circular radiofrequency.

detector are compatible with the relation q~g' but a
more accurate study should be made. )

N. THEORY OF ng TRANSITIONS

68. Statement of Problem

As explained in Sec. 44, it is possible to induce transi-
tions from state n to state P which are much sharper
than the transitions to nonmetastable states. These
narrow resonances have been used to calibrate the
magnetic field (Sec. 39), but since their appearance is
rather unusual, it is necessary to have a theory of their
shape in order to allow for any asymmetry shifting the
apparent center.

Magnetic dipole transitions from n to P may occur
because of the interaction getbbs H of the magnetic
moment of the electron with a component of the rf
magnetic field at right a,ngles to the static magnetic
Geld. It is also possible for electric dipole transitions to
occur because the state p contains some p state con-
tamination due to the motional electric Geld E= (V/c)
&& H. In practice, the second mechanism is usually more
important than the 6rst.
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As in Appendix II of Part I only the perturbation terms
capable of resonance are considered. Equations (207)
imply that states b and c are coupled by a perturbation
with matrix element V of the motional electric Geld
energy e(V/c) XH r, while because of the presence of
radio waves magnetic dipole transitions between a and
b occur with a matrix element M and electric dipole
transitions between a and b occur with a matrix element
Z. Only the p state e is coupled by radiation to the
ground state 1'5~„and this is allowed for phenomeno-
logicaHy by introduction of a decay constant y=1/zv
as in Appendix II.

'70. Solution of Wave Equation
The wave equations (207) have a general solution

of the form

a= Q Ab exp( zzbt), —

b= P Bb expI z(v —bi,b)z —zzbtj,

QAb=1, QBb ——0, QCb ——0 (211)

and these equations suKce to determine the Ag.

'71. Discussion of Roots. Violation of
"No-Crossing" Theorem

In practice, the roots p&, p2, pa dier greatly from
one another in the values of

The coeScients B~ and Cy, are expressible in terms of the
Al, by the equations

Bb= —xAbl M(v —o),+zzbb ——,'iy)+XV'j/x)b,
(210)Cb= —zzAb[R(v &—d~+ilzb)+&V J/Sb,

where

Sb ——(v—a).,+zzzb —-,'zy) (v —c0~+zzzb) —
I V I '.

The initial conditions u= j., b= @=0at t=o require

3 3 3

c= Q Cb expLz(v —(o )Z—Zzbtj,

where the p& are roots of a cubic equation

The largest of these, ziz+zzz*, corresponds closely to the
radiative decay rate y of the nonmetastable state e,
the intermediate value

Ziz+ zzz

$p
-'M
-'R
2

zZz+ v

V

1gO

1'
zzz+ v —(dgg

is related to the Stark induced rate of decay of the

(209) lower 2'Sb state P, while zzz+zzz* essentiany determines
the decay rate of the upper 2'S~ state a caused by
radio waves. If E. and M are neglected, the two larger
roots are solutions of the quadratic equation

iZ
—(~.b—v)

=0. (212)
z —(~-—v+zzV)

20
-l4 -IO -6 -2 0 2 6 IQ l4

H -H. (Gauss)

Fn. 50. Stark splitting of levels P and e as a function of mag-
netic field separation from the crossing field of 575 gauss. The
straight lines indicate unperturbed energies and the curves show
ezpected level splitting due to motional electric field according to
usual degcggr@te perturb', tIon theory.

If the damping term —,'iy were absent, this would be
equivalent to the secular equation for determination of
the static Stark effect splitting of the approximately
degenerate levels P and e. When the perturbation V
is large compared to lbob, l

the splitting is linear in V
while it is quadratic in

I Vl for
I Vl((lcob. l. The

presence of a damping term 7, however, essentially
modifies the nature of the Stark effect when y )&4

I Vl.
The two roots for small.

I Vl are then approximately

6 i-lz7+(~- —v)+ I vl'/(~b. + zzv)
(213)

zz z-(~~—v) —I
v I'/(~b +l z~)

The real part of the second root ls given by

z z+z b*=vl vl'/L~b'+-'. v'3 (214)

which is just the decay rate of the lower metastable
state as calculated in Appendix II. The imaginary part

,'i(pz* Ziz)-=bb~ —v+bib.
l
V—l'/L(ab. z+bzyzj (215)

implies a shift in the position of that state. When
I bib, l))-', p the shift is just that to be expected for the
quadratic Stark eGect, but the shift is much reduced
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for ~res, ~(-sty, and in fact, even vanishes for coQg —0.
This behavior is illustrated in Fig. 50 giving the energies
of levels P and e as functions of magnetic Geld in the
vicinity of their crossing point. In one case the electric
6eld is zero and there is no coupling V between the
states, while in the other, the usual phenomenon of
energy level repulsion required by the famous von
Neumann-signer" "no-crossing" theorem is shown
for an electric field experienced by a 2500'K deuterium
atom moving perpendicular to a magnetic field of 575
gauss. In Fig. 51 the change brought about by the
radiative broadening of state e is indicated. The six
solid curves correspond to six assumed values of the
damping constant: (a) y=0, (b) y=2V, (c) y= (12)&V,
(d) y= (15.36)&V, (e) 7=4V~16 Mc/sec (critical
damping), and (f) the actual case y~100 Mc/sec. The
unperturbed levels are indicated by the dotted curves.
It will be noted that for damping equal or above the
critical value the "no-crossing" theorem is violated,
and above critical damping the P-state largely retains
its s character throughout. For subcritical damping,
however, each level is a 50—50 mixture of s and p at
the Pe crossing point, and the life of each state is 2rv.
The observation of sharp ni3 resonances at this magnetic
field with a half-width of order 3 Mc/sec instead of 50
Mc/sec supports the theory of the reduced Stark
splitting when one of the levels is highly damped. Such
phenomena ought to occur in other problems of atomic
and molecular physics, but could be observed only with
instruments capable of exploring well within the radia-
tive widths.

72. Calculation of Decay Constant

It will suKce, for present purposes, to calculate the
small root p3 only to second order in R and 3f. One 6nds

itss —ts L ~

——R
~

s((a~ v)+MVR*+ —M*V*R

+ iMi'(co. ,—v+-', iy)]/n(0). (216)

In the analysis of such a complicated expression, it is
necessary to have a clear idea of orders of magnitude of
all quantities entering the equation. The damping
constant p corresponds to a frequency of 100 Mc/sec,
while the matrix element V= (e/h)(s/c)H(e~y~ P) for
for deuterium at 575 gauss has a value corresponding
to 8.2 Mc/sec.

If the rf 6eld has approximately equal magnitudes of
electric and magnetic 6elds, the matrix element R is
much larger than M. In fact, M/R ps/cue= )'t/(2trtcas)
=tsn 1/274. Except for v very near a&~ the terms
involving M in Eq. (216) may accordingly be neglected.
Then

i s= ——.'
I
~ I'(~~—v)/

L(co~ v) (cs„v+—sip) I

—V
I j. (2—17)

In the experiment, metastable atoms are formed in
the bombardment region in both states cs and P in

ss J. von Neurnann and E. P. Wigner, Physik. Z. 30, 467 (1929).

lOi L

-!0
-7 -5

H-Ho Gauss

FIG. Sj.. Stark splitting of levels P and e as in Fig. 50 according
to perturbation theory in which radiative decay of e is taken into
account. Curves are shown for the motional electric Geld energy
equal to its actual value with various assumed values for the
damping constant y. For y=0, the curve of Fig. 50 is obtained.
Critical damping occurs for y=4V, while y=12.2V corresponds
to the actual case with y/(2v) =100 Mc/sec.

S~ ~As~s exp —(ps+tss*)t. (218)

The coefficient ~As~s is less than unity (quenching of
beam due to decay of transients), but is a slowly

varying function of magnetic field in the vicinity of the

sharp resonances so that we are more interested in the

equal numbers. After traversing a distance I.& 3 cm
they enter the rf region of length L2 1 cm and the
survivors travel a further distance L3 2 cm to the
detector. For simplicity, we assume that state P has
fully decayed before the atoms reach the rf region at
time I,=O. After passage through the rf region at time
t=Ls/V 1 2X10 '

se. c there will be a distribution of
atoms in states u= n, 5=P, and c=e with probabilities
[u~s, ~b~'& and ~c~s, respectively. The last state will

strongly decay before the atoms strike the detector at
a time later by Ls/V~2. 5)& 10 ' sec. To obtain as much

simplicity as possible, let us also assume that the same
is true of atoms in state b. This assumption will be valid

when the resonances are studied in the vicinity of the
crossing point of P and e for then the decay rate
ps+ps* is of order y/25 as shown in Fig. 34. In the
case of resonances nP studied at 2000 Mc/sec, state b

is somewhat less well damped.
With these simpli6cations, the detector signal is

proportional to
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FIG. 52. Form of aP resonance expected from Eq. (2j.9) at a
frequency of 1995 Mc/sec. The fractional quenching is plotted
g

' tH —Ho.

rf induced decay rate given by

~s+i s*=-*.v I
~ I'(~~—~)'/

CI (~~—~)(~-—~)—I
V I'l'+kv'(~~ —~)'3 (219)

Wt en
I ~~—~l i»«ge, »d

I VI is s«ciently smaU,
Kq. (219) simplifies to

i s+i s*~-'.vial'/I:(~. .—~)'+-'.v'1 (220)

which is just the rate of rf induced transitions from 0.
to e when only these two levels are present. The maxi-
mum decay rate is

I 2 I'/v.
More generally, expression (219) vanishes when

to~ —v=0 and reaches a value (nearly a maximum) o
Ills/v for the frequencies for which the first term in
the denominator vanishes. For small

I Vl, these fre-
h h E . ~220~ has lts

maximum, and t =co~ for which Eq. (219) has its zero.
The appearance of the resulting resonance curve

(219) is quite diferent depending on whether
I i', I

))-,' v
or Icos, l&(—,'v. In the former case the resonance curve
Inlght appcRr Rs show'n ln Flg. 52. Thc lcsonRncc pcR

d' l ed from the zero at v= ~~ by an amount cor-
responding to the frequency

I

IV~~/sub„ju'ust the Stark.
shift of state b due to interaction with c. The curve is
very similar to the experimental result of Fig. 42, but
the observed width is much greater than that given by
E . (219). The explanation of this discrepancy is that
the transients of Eq. (208a) are not damped ig y

q.
hi hl

enough to justify their complete neglect in this case.
In fact, it is necessary to take the transients into

account to obtain a width of resonance compatible with
thc unccrtalQty pllnclplc. Although lt ls not diklcult
to write out the more complete solution, it would stilll
be necessary to average, it over the velocity distribution
in the beam, since the position of the peak depends on
velocity, and this would require considerable numerical
integration. Consequently the observed peak could. not
be readily used for a highly precise magnetic 6eld
callbratlonq although thc cllor woUM Ilot bc 1Rlgc lf R

rough correction for Stark CGect were made.
The latter case, la&b, I(&,v -offers more promise. In

the vicinity of the crossing point ~b, =o, the damping
given by Eq. (214) is more than adequate to permit
neglect of terms containing p,2. First expectations werc
'tllat tlie crP i'esoiiaiices would lie very broad iil this
region, and subject to a large Stark CGect shift of
order V from the unperturbed position. As indicated
in Eq. (215), however, the radiative damping of state e
greatly reduces the shift and quenching of the P-state.
At the crossing point of the shifts of p and e actually
vanish (except for small shifts due to distant levels).
Plots of Kq. (219) as a function of magnetic field in the
vlClnl p

'
ity of the crossing point are given in Fig. 53. ince

Rlfthere is a distribution of velocities, the shape and ha-
width are RGected, but the zero remains at ~=~ b. The
curves are highly symmetrical, easy to observe, and
RGord a convenient method for calibration of magnetic
field in terms of frequency. An example of'a curve of
this type, somewhat complicated by hyper6ne structure
was given in Fig. 43. It will be noted that the quenching
at i =-to,s does not fall to as low a value (about two-
thirds of the peak for deuterium since one-third of the
beam is in a given hyperfine state) as indicated by the
preceding theory. While no quantitative comparisorj
has been attempted with a more re6ned theory, it is
believed that this discrepancy may be attributed to
neglect of the coefficient

I
A, l' in Eq. (218).

Thc 1cductlon ln trRnsltlon plobRblhty which occuI's
when v=&~ was interpreted in Sec. 47 in terms of an
equivalent electrical circuit Fig. 46. A more quantum-
mechanical understanding of the phenomenon can be
had from an examination of the third Eq. (207) which
can be satisfied when i = to,s for c=0 and dc/dt= 0 if a
and fi are related by -',Ra+ Vb=0. An examination of
the solution reveals that after damping of transients
this relation is satis6cd, and the state oscillates between
a and b with such phase and amplitude relations that
the decaying state c is not excited.

The author has benehted from many helpful, discus-
sions with Professor N. M. KroH.

APPENDIX IV. RADIOFREQUENCY POKER
STARK EFFECT

The possibility of a shift in resonance frequency due to the
presence of rf 6elds eras mentioned in Sec. 60. Such shifts occur
in the molecular beam radiofrequency resonance method as shoran
by Bloch and Siegert. '4 For a spin S=~ undergoing Larmor

'4 F. Bloch and A. Siegert, Phys. Rev. 57, 522 (I940), also A. F.
Stevenson, Phys. Rev. 58, 106j. (1940).
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(222)U= AR cosvt

and for simplicity y, =0 and yt, = y
id=R*e '"'(cosvt)b, (223a}

ib =Re'"'(cosvt) a ——2iyb. (223b)

If
s 1

damping were neglected, the problem would be exactly th t
so ved by Bloch and Siegert, but decay changes the character of

x y a

the solution considerably. In practice, the atoms spend about a
microsecond in the quenching fields, or many cycles of the rf
and many half-lives of 2P. Consequently a solution of (223) in
terms of a rate of induced decay of state a is needed for practical
analysis of the resonance experiments.

E s
If the nonresonant parts of cosvt= —'(f,"v'+f,' 'v') were neglect d2 egec e,

qs. (223) could be solved exactly, and with suitable approxima-
tions would lead to (192). As in the Bloch-Siegert treatment, the
nonresonant parts of cosvt are responsible for a shift of resonance
frequency.

We write

precession in a magnetic field Ho ——Ac&/g, po and perturbed by a
perpendicular oscillating rf magnetic 6eld Hi cosvt, they found
an increase c)co in the resonance frequency of

Bco= (~/16) (H&/Ho)2= (g poH&}2/{16k(ken}}. (221)

In the present case, the induced decay of 225~ is described by
Eqs. (68) with U taken in the form

9x

.8

~.6
CD

~ .5
CD

O .$
D

I

I

I

l

I

t

I

I

t

Bi= ((o—v ——2'iy+ip, ) ' and 82= (CO+V —2$')r+SP,}

When this result is inserted in (223a), one may equate slowly
and rapidly varying terms separately to zero, obtaining

ia —l—IR I='(B +B ) (226)
and

~,= —-', IRls LB,e'""'+B,e-'"'"'—(B yB )(e--'*v'ye —'*r'+'" ')j
(227)

whose solution subject to ai(0) =0 is

aq ——(i/4) IRlsLBr(e "'—1)/(2iv) B2(e s'"' 1)/(2fv—)—
+(B~+B~)l(1—e

—1 ')/(-'-v)

+(1—e *"+""')/(vv—»v) l 3 (228)

The 6rst two terms represent a rapidly oscillating contribution to
al of amplitude at most of order

Bi I
R

I
'/8v —

I
R

I
'/(4vv) {229)

which will be seen from the subsequent numerical discussion to
e negligible for the rf power used in the precision experime t

Th
xperimen s.

tk
e remaining terms vanish at t= 0, but after t = 1/y very ra idl

a e on a constant value. Besides the "secular" dam
'y very rapi y

r ampmg—exp —(fft+p )t, there is according a "shock" damping which
for (p.+p*)t«1«pt is approximately

—(ar+«*)~v IRI'(Br+B~*)/v—v IRI'/I:(~ —v)'+-'v'3 (23o)

and is small compared to the secular term by a factor 2/{pt} or
about 1/400 in practice, and in any case leads to no asymmetr .
It can also be easily veri6ed that no signi6cant error was made by

ymme ry.

neglecting ai in Eq. (223b) as long as

IRI'/v'«e "'. (»1)
In order to evaluate the damping constant p we set p= p,/2+t'p, ;

and 6nd with suf6cient accuracy

I
R

I

sL(v —au) / I (v —ce)s+ r vs I

—(v+~)/I (v+~}'+47' j 3, (232)

a=e "t+ai(t) (224)

where p,+@* is the desired frequency dependent decay rate of
2'Sg, and the small ai(t) allows for departures from the simple
exponential law. Equation (223b) is then solved with neglect of
ai for b subject to the initial condition b(0) =0 giving

1gI.~,~~s(cu-v) t-pt-~-:~t j+~ I"(v+ao) t-~=i~t jj (225)

where

14-1.0 —,6 —.2 0 .2 .6 1.0
H-H. (Gauss)

FIG. 53. Form of nP resonance expected from Eq. (219) at.
frequencies of 1610 Mc/sec (at pe crossing) (solid curve) and 1615
Mc/sec (5 Mc/sec away from Ise crossing) (dotted curve). The
latter curve is slightly asymmetrical and the apparent center as
a function of quenching level is shown.

. 95 This "power sharpening" is at least in part due to mixing of
the long-lived 2S state with the decaying 2P state giving a re-
duction of the radiative width of 2P.

~.= lvlRI'Ll — —a')'+l(v —~.)'I '
+ l(v+~)'+-'v'I 'j.

The rate of decay is given by p„. As indicated in Sec. 60, the
antiresonant contribution is negligible. The peak position is
determined by

v co+y;~=vv IRI'(v —co)/v'+IRI—'/Scan, (234)

where v has been replaced by co in the denominators of (232). The
second term of (234) produces no shift in peak position since it
vanishes for v= ~, but it does lead to a slight reduction'~ in half-
width of relative order IRls/vs as does the term with p, in the
denominator of (233). The last term

I
R I'/8a&

gives an rf quadratic Stark effect shift similar in form to that for
static electric 6elds except for a factor —,

' which can perhaps be
understood from the circumstances that the antiresonant per-
turbation has an amplitude (1/2) R and the frequency denominator
is effectively 2~.

When the shift
IRls/8~

is written in the notation used by Bloch and Siegert, it is found
to be one-half as large as theirs. This difference may be attributed
to the damping of one of the states which in fact is responsible
for the relative simplicity of our derivation. It can be seen from
Eq. (228} that a&(t) would not be negligible if there were no
damping.

The numerical value of the rf Stark shift IRI'/8' and the
dimensionless ratio

I
R

I
s/v' will now be estimated for an rf power

sufhcient to give 63 percent quenching at resonance in 1.25X10
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C1=
C2=
Cg=
C4 =
C6=
C6 =
C7=
Cg=
Cg=

C10 =

Czs

0.8862269—0.5000000
0.2954090—0.1014592—0.0295409
0.0057894
0.0004689—0.0000645—0.0000026
0.0000003

b4 = 0.0825000

b6 —0.0027778

bg = 0,0000248

bIo = —0.00000001

TABLE VII. CoefBcients of series expansion for G(P) ~ tions resulting from two other plausible assumptions. The first

g(y) =1—exp[ ——,'x&Pg (241}

would describe the quenching if all atoms had a velocity
V=~E2r&U equal to the reciprocal average reciprocal velocity. The
second function H(P) shows the quenching if the recoil at threshold
for hydrogen is taken into account.

The diGerences are not great, but the functions had to be
calculated to be sure of this. In addition, the related function
G"'(p) plays a more significant role in discussion of similar experi-
ments on singly ionized helium.

sec. This requires that

p~= lRl'/y=gX10' sec '
so that

R= [(8X10')(625X10')gt=2 24X10' sec '.
Then the shift

(235)

lRl'/8M 1X104 sec ' (236)

amounts to 0.0016 Mc/sec when co/2' =1000 Mc/sec which is
entirely negligible. The dimensionless ratio lRls/y' giving the
"shock" damping and power sharpening" has the value 1.3&&10 '
and causes no significant error.

G(y)= Z c„y+(logy) Z b„p
n=C n-4

(239)

with coeKcients as given in Table VII.
The series converges rapidly for the values of p needed in the

experiment. For very large p the saddle point approximation to
(237) may be used

G(4)-1—(~/3)'0 expl —3(4/2)'j. (240)

The relative unimportance of the exact form of velocity dis-
tribution is shown in Fig. 48 where G(p) is compared to the func-

APPENDIX V. PROPERTIES OF G(ttt)

The integral

GQ) 2f [=1 exp( P/—z) ]e '—z'dz (237)

of Sec. 62 obeys the differential equation

(p/2) G"'—G"+G—1=0 (238)

with boundary conditions at the regular singular point /=0,
G(0) =0, G'(0) = (1/2)(m)&, G"(0)= —1/2, and G"'(0)= (1/6)(m)&,
while G{~)=1.The fourth and higher derivatives of G are
infinite at /=0, and one finds an expansion about that point in
the form

APPENDIX VI. MISCELLANEOUS ENERGY
LEVEL CORRECTIONS

(u) Finite Sise of Deuteron. The finite size of the deuteron leads
to an elevation of 25 relative to 2P by an amount

(1/48) hcZ(a /mr, I), (242)

where I is the binding energy of the deuteron and ro ——a ao is the
classical electron radius. For simplicity, a zero range wave function
has been used for the deuteron. Numerically, this shift amounts
to +0.45 Mc/sec, and will be contained in the experimentally
determined value of S for deuterium. The same will be true of
the other corrections of order S/M such as that mentioned in
reference 80.

Since the deuteron has a quadrupole moment, Q=2.73&10
cm' there are also contributions to the energy of 2'P~ of an amount

(1/40) (Q/re') o.'hcR[mq' —(5/4) ][mrs —(2/3) g. (243)

At most this energy amounts to 0.006 Mc/sec and may be
neglected.

(b) Meson Ctoud about nucleus. Slotnick and Heitlerg' have
shown that the distribution of mesons about a proton gives a 2S
level shift of about 0.02 Mc/sec according to a typical meson
theory consistent with observations on the electron-neutron
interaction.

(c) Correction to Hyperfne Structure Splitting. The hyperfine
structure for n=2 has been expressed in Sec. 56 as a multiple of
Am, the splitting for 2'Sg. This in turn was taken to be one-eighth
of the hyperfine splitting for 1'S~ as measured by Prodell and
Kusch. ' Any correction due to the difference in binding ought to
be far below the level of accuracy needed here. Another neglect
involved the replacement of the coefficient 2 of I L in Eq. {177)
by g~. This implies a correction to Eq. (177) of

1/12 2'P)(I I
re»'

I ~) = (ge 2)—[Are/—(I+ ';)5mr mq 1/24 '2'R (244)

but it amounts at most to 0.013 Mc/sec, and has been neglected.
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