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particles at large distances is described by the Yukawa
potential.”

An inspection of the method used to obtain this
result shows that it would also be obtained under more
general conditions than those assumed here. If, in the
Lagrangian density (1), the last term were replaced by

7H. Yukawa, Proc. Phys.-Math. Soc. Japan (3) 17, 48 (1935).
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some other function which also led to particle-like
solutions, and which was negligible compared to the
other terms at large distances from the particle center,
then the same result would be obtained for the inter-
action, except for the numerical coefficient. For ex-
ample, this would be the case if the last term were
taken proportional to (yy*)» for any n>1.
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The third paper of this series provides a theoretical basis for analysis of precision measurements of the
fine structure of hydrogen and deuterium. It supplements the Bechert-Meixner treatment of a hydrogen
atom by allowing for the presence of a magnetic field, as well as radiative corrections. The theory of hyperfine
structure is somewhat extended. Stark effects due to motional and other electric fields are calculated. Pos-
sible radiative and nonradiative corrections to the shape and location of resonance peaks are discussed.
Effects due to the finite size of the deuteron are also considered.

A theory of the sharp resonances 22S3(ms=1%) to 22S3(m.= —}) is given which leads to an understanding of
the peculiar shapes of resonance curves shown in Part IL. In this connection, a violation of the “no-crossing”
theorem of von Neumann and Wigner is exhibited for the case of decaying states.

HE earlier Parts®” I and IT of this paper have
described some qualitative studies of the fine
structure of hydrogen and deuterium made by a
microwave method. In order to prepare the ground for
analysis of much more highly precise measurements in
Part IV, it is necessary to make available a more refined
theory of the hydrogen atom than was used previously.
The object of Part III is to supply this need, as well as
to treat a number of other theoretical problems which
arise in the work. Frequent references to Parts I and II
are made. Chapters, sections, figures, tables, equations,
and footnotes of Part III are numbered consecutively
after those of Parts I and II.

J. ENERGY LEVELS OF A HYDROGEN-LIKE ATOM
48. General Program

The results of theory for the energy levels of an ideal
hydrogen atom were given in Part I assuming an
infinitely heavy nucleus, thereby neglecting reduced
mass effects as well as magnetic and retarded inter-
action between electron and nucleus. In addition, a
number of other approximations were made. The calcu-
lation of hyperfine structure was oversimplified by
assumption of Back-Goudsmit and Russell-Saunders
coupling. In the theories of Zeeman effect and doublet
separation P3— Py the anomalous magnetic moment of
the electron was neglected. Shifts of levels due to Stark
effect and relativistic and higher order corrections to
Zeeman splitting were ignored.

* Work supported jointly by the Signal Corps and ONR.

t Present address: Department of Physics, Stanford Univer-
sity, Stanford, California.

8 W. E. Lamb, Jr., and R. C. Retherford, Part I, Phys. Rev. 79,
549 (1950), and Part II, 81, 222 (1951).

There is no one place in the literature where a treat-
ment of all these effects may be found. One may only
form a patchwork Hamiltonian by collecting separate
terms from papers by various authors who have been
concerned with limited aspects of the problem. It would
probably not be justified here to give a detailed system-
atic theory, but it does seem worthwhile to indicate the
basis of the rather provisional treatment which is now
possible. The object is to write down all terms known
at present having a potential magnitude of 0.1 Mc/sec
or larger in the discussion of the precision experiments
of Part IV.

The electron and proton should be allowed to interact
with one another through their intermediate coupling
with the quantized electromagnetic field and the vacuum
of occupied negative energy states for electrons and
protons. By eliminating these effects from the theory,
one hopes to find an equivalent two-body problem in
which the two particles have a velocity and spin de-
pendent interaction with one another, and the particles
themselves have somewhat changed properties (renor-
malization of charge and mass, anomalous magnetic
moments, etc.).

At present, this program has not been fully carried
out. Those terms of low orders in the fine structure
constant which have been found will be incorporated
into the following discussion. It should be relatively
easy to make the small corrections necessary when any

- missing terms have been calculated.

The starting point is here taken to be a two-body
Dirac equation for electron and nucleus. Even when the
nucleus is a proton and not a deuteron there might be
grave doubt that it would obey an equation of the
Dirac type in view of its anomalous magnetic moment.
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If the additional magnetic moment is forced into the
theory by insertion of terms®® of the type used by
Pauli, and if the calculation is not carried too far, it is
possible to combine all terms referring to the magnetic
moment of the proton so that only the observed moment
enters the final equations. In this approximation it is
reasonable to use the same result for other nuclei which
do not even obey Fermi-Dirac statistics.

49. Two-Body Wave Equation

The two-body wave equation applicable toa hydrogen
atom will be taken as

[Hi+Hoteioo/r+V+9+HME)J¥=EV (103)

where
Hi= ey (p1—e:iAr)+Bimi+eVy, (104)

where the index (1) refers to the electron and (2) to the
proton. Relativistic units are used in which %, ¢, and
m are set equal to unity. Then m;=m=1 and ms=M
~1836, and e;= —e, es=Ze while ¢? can be replaced by
the fine structure constant a=e€?/hc~1/(137.043). The
wave function ¥ has 4X4=16 components Wning
where the Dirac matrices ai, 81 act on the first index
m=1, 2, 3, 4 and a3, B2 act on the second index #..
A and V are the vector and scalar potentials of the
external electromagnetic field.

The interaction between the particles includes the
Coulomb potential energy

U=6162/7' (105)

as well as the Breit®-Darwin™ magnetic-retarded inter-
action

V=—(e1e0/2r)[ @1+ a2)+ (e1- 1) (e2- 1) /7*].  (106)

The finite remnants for a bound electron of the electro-
magnetic self-energy are represented by an operator Q
which allows for the anomalous magnetic moment of
the electron and the electromagnetic level shift, etc.

The hyperfine energy term H(h.t.) is intended to
represent only that part of the hyperfine interaction
which arises from the non-Dirac part ui’= us'o2 of the
nuclear moment,

H(hi)=—eier A/ (1) — pr'or- H(rz)

etc.

(107)
where
A/ =/ Xr)/r. (108)

While the first three terms in the Hamiltonian (103)
should be taken literally and treated exactly, it is
known that this may not be done with ¥ which must
in fact be evaluated using only first-order perturbation
theory. This was established in 1929-1932 by Breit® in
his discussion of the triplet fine structure of helium, and
is connected with the omission of yet uncalculated
fourth-order terms in e.

a ;;;37 Pauli, Handbuch der Physik, second edition 24/1, 233

6 G. Breit, Phys. Rev. 34, 553 (1929); 39, 616 (1932).
%0 C. G. Darwin, Phil. Mag. 39, 537 (1920).
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For similar reasons, or because of their smallness,
the subsequent terms in the Hamiltonian will also be
taken only in first order. This means that it suffices to
calculate only

Q= f V*QWdr, (109)

etc. where ¥ is the eigenfunction of the hydrogen atom
with the Hamiltonian H;+H,+ U without external
fields. The solution of the underlying two-body Dirac
equation is thereby much simplified, and subsequent
calculation of the above averages is made fairly easy.

50. Reduction of Wave Equation

Two methods of approach have been used to solve
the two-body Dirac equation. The first, used by Breit®
and applied by Bechert and Meixner™ to hydrogen fine
structure, involved the reduction from a 4X4=16 com-
ponent wave equation to a 2X2=4 component wave
equation. Unfortunately, the treatment by Bechert and
Meixner contains some errors which will be pointed out
in the following discussion. More recently, Breit and
Brown™ gave a reduction to an 8 component wave
equation. Both treatments led to the conclusion that
the fine structure as calculated from the one-body Dirac
equation was correct up to and including order o?R
except for the appearance of the reduced mass
w=mM /(m~+ M) in the expected manner and a common
shift a?R/(64M) for all n=2 levels.

The reduction to four components is used here
because it permits a closer connection with the more
elementary treatment given in Part I. Writing

¢

w1
V= ,
w2

(110)

X

where the functions ¢, w1, ws, and x are four component
wave functions with

Wiy W3y
Yio V3o
o= y wW1= )
oy Wy
Voo Vo
(111)
W13 W33
W14 W3y
we= and x=
Vo3 W43
Wy V4

1 K. Bechert and J. Meixner, Ann. Physik 22, 525 (1935).
22 G. Breit and G. E. Brown, Phys. Rev. 74, 1278 (1948). Also,
T. Ishidzu, Prog. Theor. Phys. 6, 48 (1951).
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we have
w1 ol
¢ —wi1
0{1\I’=01 ’ ﬂ]‘I’Z 5
X w3 J
(G]) —X
(112)
w2 [0}
w1
a V=0, and BZ‘II: )
—ws
w1 —X

where the o’s are four component spin matrices. The
equation
[H1+H2+ U—E]‘I’:—O

is then equivalent to the four equations

(113)

G (p1—elA1)w1-|—02- (Dz— 62A2)w2
+ (mi+met+U—E)$=0, (a)

o1 (p1—eiAr)p+-02 (pa—e2As) x
+ (my—mi+U—E)w=0, (b)

01 (P—e1A) xF-02- (D2—e2As)
+ (my—mot+U—E)w,=0, (c)

Ul (pl_elAl)wT{'UT (1)2— 62A2)w1
+(=m—myt+U—E)x=0. (d)

In reducing these equations to one for the large com-
ponent ¢, it is desirable to assign orders of magnitude
in o« and 1/M to the various terms. If the rest energy
of the electron is taken as unity, that of the proton is
M~1836, the Rydberg energy hcRZ? is $a2Z? and the
fine structure doublet splitting for n=2 is 502ZR or
35a%Z4~10,950 Mc/sec for hydrogen. The radiative
width of 2p is (29/3%)a®Z%cR or (2/3)8a5Z4~99.7
Mc/sec for Z=1, while the electromagnetic shift™ of
the 225} level for hydrogen is

(114)

YA
S~
6

log(mc?/Z%&) ~1040 Mc/sec (115)

T

and abnormally large for its order because of the
logarithm involving an atomic excitation energy & The
term of order «f in the doublet separation, which
according to Dirac’s exact solution for hydrogen is
(5/256) a®~0.364 Mc/sec, cannot be obtained even for
the one-body problem by the method of reduction to
two components, but this term may simply be borrowed
from the exact treatment for M= . Terms effectively
of order af due to an external magnetic field are cor-
rectly given by the subsequent treatment.

Turning now to terms in 1/M, those of order o2/M
clearly correspond to reduced mass corrections to the
Bohr energies. Any terms of orders o3/M, o/ M, a5/M,

% H. A. Bethe, Phys. Rev. 72, 339 (1947).

261

and «!/M? might be of importance for present micro-
wave experiments, but calculation shows that of these
only a!/M and «!/M? are actually present. Both have
been examined, but the latter are numerically negligible,
and for simplicity will be omitted in the subsequent
discussion.

The Zeeman splitting in practice will be less than,
but comparable to, the fine structure doublet splitting,
so that the vector potential of the applied magnetic
field will be overestimated if counted as of order given by

e1e1-Ai~at/32 or eldi~a?/16 (116)
with eH;~a?*/16. The Coulomb attraction
U=eieq/7 (105)

has an average value of order Z%02/4, but for  equal to
the classical electron radius 7o=¢?/mc?*=c, U acquires
the larger order unity so that terms involving it must
be treated with more care. It may be remarked in
passing that hyperfine splittings are of order /M.

Taking ¢ of order unity, one sees that wi~e,
wa~a/M, and x~a?/M. If the equation for ¢ derived
from (114) is to be correct to order «®/ M, it is necessary
that w;, and w; be correctly calculated to order a*/M.
According to (114b) this requires that x be known cor-
rectly to order /M. From (114d), one obtains with
this accuracy

X= (2M)‘1(0'2~pz)w1. (117)
Likewise from (114c) ‘
we=2M—U+W)[o:- (pr—e:Ar) x
+o2 (p2—e:Ar)e], (118)

where W=E—M—1 is the nonrelativistic energy, or
to the requisite order

wo= (ZM)_IO'z' (p2—62A2)¢ (119)

neglecting for r~a terms in wy of order a/M? which
slightly exceed the stated order of/M. However, a
more careful consideration shows this neglect to be
justified because of the small volume involved. Finally

wr=Q2—=U+W) o1 (p1—eiAr)p+ o2 pax ] (120)
Insertion of these expressions in (114a) gives
o1 (P1—e1Ay) (2 i‘\U‘f' W) o1 (p1—e:Ay)
+@M) o2 p2)* 2~ U+W) o1 pile
4+ (2M) o2 (p2—e2As)o- (pa—e2A0) @
+({U-W)¢=0. (121)

After some reduction, keeping terms of order up to and

including &%/ M and replacing W— U by ip2+3(p2/ M)

in terms of order o, one finds a wave equation for ¢
(Hi+Hir+Hin)é=Wé (122)

where the Hamiltonian

Hr=3p’—3p '+ (VU -p1)/4i
+Q2—-U+W) 20, ViIUXp+U (123)
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is familiar from the reduction™ of the one-body Dirac
equation to 2-component form, and for a hydrogen-like
atom with fixed point nucleus gives the fine structure
correctly to order a* The term

Hir=3%(p/ M)
gives the kinetic energy of the nucleus, while
Hrr=— (2— U+ W)‘l(ZelAl ‘piteoy- Hl)

+%612A12— (2M)m1(232A2' P2+620‘2' H2)
+(61’i/4)(0’1'VU)(01'A1) (125)
gives the interaction of the atom with an external
magnetic field, except for some terms from Q and
H(h.f.) which are inserted later.

The energy contributed by the Darwin-Breit term V.
is given by the average

*
] X
— w1 ¢1°02 O1° Yo' Y
—_1
Y= “531€2f [ +
we 7 73

X ¢

(124)

] “lar (126

1

which to the required order a works out to be just the
average of the operator

HIV:‘—: [6162/(4M)][(0’1'0’2)/7’3—3((]‘1' r)(02~ r)/r"‘]

aUu
—[ewes/ @M JA+-S0/7) 22—

ar
X[o1 02— (01 toy 1/72)]
—Leres/ 2M) Jr"pr- port-+—"1- it py]
—[ewes/ 2Mr*) JLo2- tXp1—ar-rXpe] (127)

for the state whose wave function is ¢. The prime on
p’ indicates that the operator does not act on r.
51. Exhibition of Reduced Mass

Bechert and Meixner”™ showed that when p;=—p,
=p the Hamiltonian

Hi+-Hi+Hry

could be rearranged so as to exhibit explicitly the
reduced mass u by writing

Hi+Hir+Hy=H.+Hy+ H,, (128)

where

H,=p*/(2p)—p*/ (81¥)+ (VU -p)/ (4ip?)
+u22—=U+W)2-VUXp+U (129)

is the Hamiltonian of type (123) for a particle of mass .

" See, for example, L. 1. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), p. 320,
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52. Fine and Hyperfine Energies
The remaining terms from

Hi+Hir+Hry
may be written as

Hy=(3/8M)p*— (VU -p)/(2iM)

+ (eseo/2M) (r'p*+-r~*r-p'r-p’)  (130)
and

H¢= (6162/4-M) [7"—30'1 Gy 31’—5(!'1 Yoo l']
—[ewes/ 2M7) J(o2- tXp1) — [eses/ (8M) ]

d
X (r+%a)‘27d——(01-02-—r—201~ roe-r). (131)

r

H, gives contributions to the hyperfine energy and will
be considered further in Sec. 56.

The above equations are equivalent to those used by
Bechert and Meixner, except that their terms con-
taining

vU-p

in H, and Hy have the wrong sign. These errors are
compensated by their use of incorrect expressions for
the averages of p*

(r1p*+rr-p'r-p’)

which in fact have the values for the n/ state of hydrogen
of

(09n= (—3+4n/(+3))(a*/n*) (132a)
P+ p'rp )a
= (—2+43n/(I+3%) —2nb1)(*/n). (132b)
Also
(VU -p)/i=eres(r29/97)n= (2a*/n%)610. (132¢)

The discrepancies between these values and those of
Bechert and Meixner arise because the results depend
on whether or not a small sphere about »=0 is excluded.
In the above equations, care has been taken to find the
correct interpretation for the singularities. No sphere
is to be excluded in (132a), but must be for (132b).
The result is then that H; has the same average value

— ot/ (8Mn)

for all the fine structure levels for a given », and there-
fore the separations predicted by H, are not disturbed.
Although this result was derived by treating the nucleus
as a particle obeying Dirac’s equation, it is clearly more
general, and should follow to order o!/M from any
relativistic treatment of the two-body problem. The
first two terms of Hj enter to compensate for the forcing
of the reduced mass u into H, in the manner in which
it would appear if the one-body Dirac equation for a
particle of mass pu were reduced to two-component form.
This is done merely for convenience in calculation. The
last term in H, is just the Darwin retarded-magnetic
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interaction energy which has a classical analog for any
distribution of currents.

In the following sections are given the detailed ex-
pressions which make up the working Hamiltonian for
analysis of the experiments. These include: unper-
turbed energies, Zeeman, hyperfine, and Stark energies.

K. WORKING HAMILTONIAN
53. Unperturbed Levels

In the absence of an external electric field (motional
or otherwise), there are no terms in the Hamiltonian
which mix.S and P states. This is true both for hyperfine
interaction and electromagnetic term shift Q. The un-
perturbed states in the absence of hyperfine and Zeeman
splitting may be specified by quantum numbers #, j, m;
for the electron which are indicated in Table II. with
energies 0, 8§, and AE shown in Fig. 47. Quantum
numbers I and #; for the nuclear spin will also be used.

The position of 22P; is taken as the zero of energy for
convenience despite the fact that the absolute position
of 22P; is changed by the quantum electrodynamic
effects. According to Dirac’s treatment, $=0 and with
inclusion of the reduced mass where it is significant

AE=(1/32)ua’4(5/256)csb. (133)

The electrodynamic shifts of levels §E.;; which arise
from @ may be written as’>76

8Eqg3=(a8/6m)[log(1/2k)+19/307,
0Es13=(a’/67)[log(a®/2k:)—1/8],
0Es13=(a®/6m)[log(a?/2k)+1/16],

where ko and %; are average atomic excitation energies.
One gets thereby an additional contribution to AE of
a’/(327) or 25.40 Mc/sec due to the spin-orbit inter-
action association with the second-order anomalous
magnetic moment” (a/2m)uo of the electron. When the
1.38 percent fourth-order’ reduction in this moment
is included, AE becomes

AE=(1/32)ua*+(5/256)ab
+(af/327m)(1—5.946(a/7)). (135)

Using the 1951 constants of Bearden and Watts?
AE/h is

(134)

10,967.463 Mc/sec for H
E h={ (136)

10,970.447 Mc/sec for D.
The relative level shift § according to Eq. (134) is

k1 19 1
s=(a5/6w>[1og(—)+—+—]
o’k 30 8

5 Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950).

76 E. R. Cohen, report to be published. )

77 J. Schwinger, Phys. Rev. 73, 416 (1948).

8 R, Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).
7 J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951).

(137)
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TasLE II. Unperturbed energy levels.

n 1 j mj Energy
2253 2 0 3 +1 E(225p) =8
22Py 2 1 3 +3 E0(22P3) =0
22P; 2 1 H +3, % EY22P3)=AE

which should be 1051.41 Mc/sec for hydrogen according
to Bethe, Brown and Stehn.” The second-order anoma-
lous electron magnetic moment contributes 67.77
Mc/sec of this. When the effect of the subsequently
calculated fourth-order magnetic moment is included,
the shift becomes 1050.47 Mc/sec. According to the
above authors,”® the shift ought to be proportional®
to the electronic reduced mass u, which would make it
0.29 Mc/sec higher for deuterium.

There appears to be an unexplained discrepancy
between this value and the previously reported® value
for 8 of 106245 Mc/sec. In any case, the object of the
present research is to determine an experimental value
for 8, and the reduction of data is entirely independent
of its theoretical value.

54. Magnetic Energy

The contribution of Hyyr is given by

Hinw= f ¢*Hrrpdr (138)

in which terms smaller than the usual Zeeman energy
by factors 1/M and o? are to be kept. The latter requires
that departures of ¢ of order a? from the usual non-
relativistic Schrédinger wave function be considered.
These might be of two kinds: (1) a mixing of other
.states and (2) a renormalization. Fortunately only the
latter gives a contribution. One has

o1+ lantnar~1

or
f |¢|2dr~1—5(p)n=1+3W (139)
22 P3/2 (],b,C,d AE
2: SI,2 @A P
2 Py, % 0

F16. 47. Energy levels for 225} in zero magnetic field without
hyperfine structure. The magnetic sub-levels are indicated by
letters e, B, @, b, ¢, d, ¢, and f as in Fig. 14.

80 Bethe, Brown, and Stehn did not consider radiative processes
involving the nucleus. Unpublished calculations by B. S. Gourary
which take these into account indicate a somewhat larger de-
pendence on reduced mass.
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TasrE IIT. Coefficients of Eq. (143) for various states.

State a B a b c d e f
Coefficient 7/36 7/36 6/36 4/36 4/36 6/36 5/36 5/36

where the nonrelativistic energy is
W=—a%8 (140)

for n=2. Then Hyys is equivalent to the average of the
operator

Hiir——%(2eAs piteo:-Hy)
—%(2€2A2'p2+€20'2' H2)/M
+%‘€12A12+ Wuo(L+ZS) . H
+3(0-VU)- (HX1) (141)

calculated with the usual Schrédinger wave function,
where po=2%(a)? is the Bohr magneton. The term
ex09- H/8M will be treated with other contributions to
hyperfine energy in Sec. 56.

(@) Relativistic Corrections to Magnetic Moment

The last two terms of (141), in case of Russell-
Saunders coupling, are equivalent to the relativistic
corrections of order o? to the magnetic moment of the
atom as first calculated by Breit.®! According to these,
the effective Landé g-values for the various states are
given by

142w 225,

gi=g O 1+2W  2°Py, (142)
1H4W 2Py
where
g®=2,% and 4/3 (142a)

for these states, respectively. For a magnetic field of.
1500 gauss, larger than those used in the precision deter-

minations of Part IV, the correction to the frequency

of transition af amounts to only 0.02 Mc/sec, and is

no larger for any other transition. The relativistic

moment corrections may therefore be neglected, al-

though they are of the retained order of.

(0) Quadratic Zeeman Energy

The quadratic Zeeman energy is likewise too small
to require a correction, although also of nominal order
a8, Thus for 225;

(Ge?A D) =% H?(r* sin?0) = (7/2)e%a 2 H*
=T7(uoH)*/ (hcR) = (7/36)a24?AE (143)

which for H=1500 gauss amounts to 0.01 Mc/sec. The
values of the coefficient of a?4?AE in Eq. (143) for the
other Zeeman components, assuming Russell-Saunders
coupling, are given in Table IIT.

8 G. Breit; Nature 122, 649 (1928), also Mott and Massey,
Theory of Atomic Collisions (Oxford University Press, London,

%(1)932())3 first edition, pp. 47-57; H. Margenau, Phys. Rev. 57, 383
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(c) Energy of Orientation of Electron Spin

To the term —%ei0;-H; in (141) must be added the
contribution from Q of the anomalous magnetic moment
of the electron, giving in usual units an orientation
energy

gsuS-H (144)
where the Landé g-factor is™ 78
gs=2(14 (a/27)—2.97302/7%). (145)

(@) Reduced Mass Effects and Motional Electric Field
The remaining terms of Hyyr are
Hirl' = —(es/m)Ay-pi— (es/mo)Ag-ps.  (146)

It will be shown how these terms imply the introduction
of an effective g value for orbital motion

gr=1-(1/M)

and also contribute an electric field due to motion of
the atom through a uniform magnetic field. The vector
potentials are then

A1= %HX I,
so that (146) becomes

Hir' =—3%[(es/my)(H 11X p1)
+ (ea/ma)(H-12Xp2)]  (148)

and upon transformation to relative and center-of-mass
coordinates by the equations

(146a)

A=1HXr, (147)

Ir=1;—1y, me= m1r1+M2r2, M= M1+mZ

149
pi=(my/)P+p o= (m/)P—p )
becomes
Hrr'=—(29M) (e +e2)[H- RXP]
—3(exmy ™ —egmy™) (H- R X p)
—L(exmia— eamy)M2(H-rXP)
— 3exmamy ™+ eamymy 1) L(H-rXp). (150)

The first term is zero for a neutral atom with e;= —e,,
and the last term in usual units is

gruoH-L, (151)
where
L=rXp (152)
is the orbital angular momentum operator, and
gr=m1—my'1=1—(1/M) (153)

as stated above. Needless to say, this result can also
be obtained by more elementary methods.
The third term of (150) may be written as

—3ei(VXH: 1), (154)
where

V=P/om (155)
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is the velocity of the atom, and represents just half of
the expected Stark perturbation due to a motional
electric field

E=(VxH)/c. (156)

This defect is made up by the second term of (150)
which can be written as

—(er/w)A-p
A=1HXR (158)

the vector potential at the atomic center of mass R.
As far as the internal motion alone is concerned, this
term is equivalent to a gauge transformation. Consider
the wave equation for the atom

[P?/(2910)+p*/ (2u) — (e1/ w) U p+gruoL- H

(157)
with

—ieH-rX(P/90)+-- - —W g1 =0. (159)
The gauge term containing
A=grad,(A-1) (160)
may be removed by the transformation
Yi=v exp(eir/2h)[HXR-1]. (161)

The operator p?/2u acting upon ¥, gives an extra term
which just cancels out the gauge term, while P?2/291
gives an additional contribution which doubles the
motional Stark term. To first order in H, the result is

[P/ (29M)+p*/ (2) — (e1/9M) (PX H - 1)
4 gruoH L+ —Wly=0 (162)

leading to the correct motional Stark effect.
55. Zeeman Energy

To summarize the results thus far, the Zeeman
splitting is determined by the Hamiltonian

8010+ 3AE(L-S+46u) 4 gsuoS- H+-gruL-H - (163)

and the energy levels for the states #ljm; may be written
in a form similar to that given in Sec. 15

Ya, 8= Yok Tary (164)
Ya,a= 3=2%a, (165)
Vo, o= §E30+ 30+ (9/4)) £5Tx,  (166)
Yos=it30—F(ta+(9/9)) =T (167)
with
T=(2gr—gs)/(gs—8w), (168)
where the unit of y for all states is
f1=3(AE/h) (169)
and
8= f1y0
while the units for the «’s are given by
Unit field for #a: Hia=(2/gs) GAE/ o), (170)
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Unit field for 2,: Hi,=[2/(g2+2g5) 1GAE/uo), (171)
Unit field for x: H,=[1/(gs—gr) JEAE /o). (172)

The values of these and other needed units using 1951
constants of Bearden and Watts™ are given in Table IV.

In Egs. (164)—(172) both 8 and AE are to be deter-
mined from observations of resonance peaks. This is
inconvenient since the units of magnetic field depend on
AE/u,. Fortunately the experimental value determined
for 8 is highly independent of the values used for AE,
uo, and & (strictly so except for nonlinearity of the
Zeeman energy curves), so the procedure will be to
regard AE/k as given by Eq. (136), and to determine 8
from the low frequency transitions ae and af. Then the
high frequency transitions aa, ab, ac may be used to
determine a value for the fine structure constant,
assuming validity of Eq. (136). If necessary the process
can be iterated should the originally assumed value of
AE prove to be in error.

56. Hyperfine Energy
The operator for the hyperfine energy is

w= gru(14+1(e/r))r—[2I-L—gs(I-S—31-1S-r/7%)]
+2gsgrud(r-+3a)~2(@U/dr)
X[I-S—=I-1S-r/#*] (173)

which agrees with (131) except for insertion of the
observed g-values for nuclear and electronic spin. Such
corrections arise from terms in Q giving the interaction
of anomalous part of the magnetic moment of the
electron with the nuclear magnetic moment. In evalu-
ation of this, as usual, S states require a special con-
sideration. There are no matrix elements of % con-
necting S and P states, and it therefore suffices to
consider only diagonal elements for a given / value wy
which have been calculated by Bethe.®

(a) S States

For =0, wy reduces to Eq. (48) with an additional
factor gs/2,if some terms of relative order o? are
neglected. In the presence of a magnetic field, the
effective Zeeman-hyperfine Hamiltonian is

3= 8+gsuoS - H+Aw(I+3)7I-S—gsul-H  (174)

where Aw is the hyperfine splitting for 225} produced by
the nucleus in question (taken to be § the corresponding
value measured® for 12S;) given in Table IV.

In Part T the energy levels were calculated for strong
fields. While the exact energy levels are given by the
Breit-Rabi® formula, it suffices for all applications here
to use the next term in its high field expansion. Ac-
cordingly, to the energies given by (164)—(167) must

( 82 I-§ A. Bethe, Handbuch der Physik, second edition 24/1, 386
1933).
8 A. G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950).
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TasLE IV. Constants used for calculations of Zeeman
and hyperfine splittings.

Quantity Hydrogen Deuterium
fi (Mc/sec) 7311.642 7313.631
H, (gauss) 5217.801 5219.220
Hi, (gauss) 5222.208 5222.919
H, (gauss) 5209.008 5211.840
T —0.0033703 —0.0028284
Aw (Mc/sec) 177.551 40.923

be added

w=Aw([+3)Imms— grpcHmr
+ (Aw)*(I+5)*(2gspoH) ™

X{II+1)—m2ims—3mr]. (175)
The last term may be written as
Cms, I, mr)(Aw/gsuH)Aw (176)

where the coefficients C(mg, I, ms) are given in Table V.

(6) P States

For p states, the interaction (173) may be simplified
to

wi=grud(r-u[2]- L+ 1g5(41.S—31.LL-S
—3L-SI.L}] (177)

with neglect of some terms of relative order o?. This
operator has matrix elements diagonal in J which can
be written in the form (53) if the small difference
between ggs and 2 is neglected (see Appendix VI) or as

(J]wu|J)= 2w J)/[2(2I+1)J(J+1)] (178)

in terms of the hyperfine separation Aw for 2%S;. In
case of good Russell-Saunders coupling, the hyperfine
splitting would be just as given by (53) or in the Back-
Goudsmit limit

w=3[Aw/((I+3)J(T+1)) Imm,.

Since the experiments are conducted in an appreciable
magnetic field, the vectors L and S are somewhat
decoupled, and a correction must be applied in Eq.
(178a). The elements of w;; off-diagonal in J may be
written in the form

(' |wn| )= Mw(I+3)7(J'[I-L].J)

(178a)

(179)

TasBLE V. Values of coefficients C(ms, I, mi) of Eq. (176).

a 8

mi——3 1 0
I=1 mi=1 0 —~2/9
m1=0 2/9 —2/9

mr=-—1 2/9 0
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and the necessary matrix elements of I-L calculated
from equations given by Condon and Shortley.5

The complete effective Hamiltonian for Zeeman and
hyperfine energy of the 2p states is then

= AE&Jg.-f- ,uoH . (g,gS-f— gLL)—i-wll—gul.gH -1 (180)

In the n, J, ms, m; representation only the first and
last terms in 3C are diagonal. If the last two terms were
neglected and perturbation theory correct to all orders
in uoH/AE?were applied to the second term in (180),
the result would be equivalent to a power series expan-
sion in x of Egs. (164-(167)). It is convenient to take
the diagonal elements in J of the second term, namely

grucH-J (181)

where g is the Landé factor for state J, as part of the
unperturbed Hamiltonian. The application of perturba-
tion theory to the remainder of 3C then gives the above
power series expansion as well as some new contribu-
tions arising from cross products of the second and
third terms as well as powers of the third term. These
contributions are of order

(Aw)?/uoH, AwucH/AE, (Aw)?/AE

etc., and from a rough estimate of their magnitude it is
clear that only the first two need be retained for the
analysis of the present experiments.

The cross-product term from second-order perturba-
tion theory for 22P; and 2%Pj respectively may be
written as

£ (2/9)[grgru(r—)n/AEJucHmy (182)
or in terms of the hyperfine splitting Aw for 225} as
+(1/36)(Aw/AE)(I+1)uoHm. (183)

This can be regarded as equivalent to a change in the
nuclear g-value from gr to

gr'=grF (1/36)(Aw/AE)(I+5)~

as far as the energy of orientation in a magnetic field is
concerned.

If it were not for this correction to g; for p-states, the
nuclear magnetic orientation energy

—gruoHmsr

could be ignored completely, because m; does not
change in the allowed transitions. Because of the change
in effective gr for p-states, however, there is a slight
change in the separation of the resonance peaks
amounting to an increase of

(1/18)[1/(I+3) N(Aw/AE) pol

or 0.63 and 0.19 Mc/sec/kilogauss for hydrogen and
deuterium, respectively, in the case of transitions aa,
ab,ac,and a decrease by the same amount for ae and af.

8 Condon and Shortley, Theory of Atomic Spectra (Cambridge
University Press, London, 1935), p. 64.
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This will make itself felt primarily in the observed
width of a cemposite resonance curve and the degree of
resolution of the constituent peaks for the various m;
values, but not in the apparent center of the composite
curve.

The term of order

(AW)Q/ woH

corresponds to the expansion for high magnetic field
of the hyperfine energy given by the Breit-Rabi for-
mula, and in fact is more general, since it applies for p
states when neither I nor J is . It is

(1/60)[Aw/(I+5) PLI T+ 1) 1 (grmoH) ™
LI+ 1) —m2} —mr{J(T+1D)—ms2} ). (184)

57. Stark Effect

The presence of an electric field in the rf interaction
space gives rise to displacements of the fine structure
energy levels. Except for cases of near degeneracy such
as occur in study of the af transitions at 575 gauss for
magnetic field calibration and treated in Chapter N,
it suffices to use second-order perturbation theory to
calculate the Stark shift of a level 4

AWi=— X, (n]eBox|i) |2/ (B E). (185

Assuming Russell-Saunders coupling, the matrix ele-
ments of x, y, and 2 in units of the Bohr radius a, are
given in Table VI for the various transitions Although
at the actually used magnetic fields, there is some
departure from Russell-Saunders coupling, the Stark
perturbation is small and the above matrix elements
are sufficiently accurate. In addition, the denominator
in Eq. (185) may be evaluated dssuming a nominal
level shift of 1060 Mc/sec, and a magnetic splitting
given in weak field approximation by

grOudm;s (186)

using the usual Landé g-values (142a), and neglecting
hyperfine splitting.
Taking only the motional electric field

E,=VH/c (187)

into account, one finds

| (] eB-x]3) [*=eIP(V?/ )| (n|y]9) [ (188)

The average shift depends on (V?), for the beam, and
assuming the distribution (88)

Vi=(V2)p=2U2=2(2kT/M) (189)

where M is the atomic mass. For an oven temperature
of 2500°K, and a magnetic field H= 1159 gauss (transi-
tion ae at 2195 Mc/sec), one finds

(Ey)ems=VH/c=10.5 volt/cm, (190)
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TaBLE VI. Values of matrix elements of coordinates for various
transitions in weak magnetic field.

Transitions x y

z

aa Bd 3/V2 +3i/V2 0
ab B¢ 0 0 V6
ac Bb V3/V2 FiV3/V2 0
ad Ba 0 0 0
ae Bf 0 0 +V3
aof Be V3 +14V3 0
and

eVHao/he=13.47 Mc/sec (191)

for hydrogen, and 1/2% as much for deuterium.

When the Stark effect shifts are small, one may
neglect any asymmetries produced by them, and
merely calculate their magnitude at the center of the
observed resonance curve. Thus for state « of hydrogen
at 1159 gauss the contributions from states a, ¢, and
J to (185) are —0.07, —0.04, and 0.17 Mc/sec, respec-
tively, so that state is raised by 0.06 Mc/sec. On the
other hand, state ¢ is more strongly repelled by the
nearby state 8 and raised by an amount 0.52 Mc/sec.
Accordingly the frequency for ae is lowered by 0.46
Mc/sec, which implies an increase by 0.46 Mc/sec in
the level shift as calculated from the data for hydrogen
without Stark effect, and by half that amount for
deuterium. Similarly, there are corrections of —0.13
and —0.06 Mc/sec to be applied to results obtained
from transition af at 2395 Mc/sec. Such corrections
will be applied in Part IV in the analysis of the data.

There is also an error in magnetic field calibration
using transition af at 575 gauss. Presumably, the Stark
shift of state 8 by the degenerate level ¢ is very small
as indicated in Sec. (72), but there are shifts due to
distant levels. For deuterium, these increase the fre-
quency of af by 0.032 Mc/sec, and therefore all mag-
netic fields should be lowered by a negligible fractional
amount 0.032/((2.803)(5751)) or 0.02 percent.

There is evidence, discussed in Part IV, that electric
fields amounting to as much as one volt per centimeter
due to contact potentials or charged insulating films
may be present in the interaction space. It can be seen
from the above estimates that such fields would
produce a wholly negligible Stark effect. The possibility
of shifts produced by the rf fields used for the measure-
ments will be discussed in Sec. 66.

58. Summary

The formulas and constants necessary for energy
level calculations to the required accuracy have been
given in Secs. 53-57, especially in Tables II, IV, and V
and Egs. (135), (136), (164)-(172), (175), (176), (178a),
(182)-(185). A few additional effects are studied in
Appendix VI, but, except for an additive contribution
to 8 from the finite size of the deuteron, they are nu-
merically negligible,
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L. RADIATIVE CORRECTIONS TO RESONANCE
LINE FORM

59. Ideal Weisskopf-Wigner Line Form

The goal of the Weisskopf-Wigner®? theory of radia-
tion broadening was to obtain the basic form of reso-
nance curve

po[(r—w)*+iv* ]! (192)

where v is the circular frequency of the radiation (rf in
this case), w the frequency of the transition, and 7 is
the reciprocal life time of the decaying 2p state, It may
be recalled that in the original Weisskopf-Wigner
theory, there appeared a divergent integral which had
to be discarded in order to obtain Eq. (192) without
an infinite shift in the resonance frequency. Serpe®
showed that this divergent integral could be interpreted
as a part of the self-energy due to the interaction of the
electron with the radiation field. Presumably with the
more powerful theoretical techniques®” now available
for handling divergent field theories, the problem of
radiative line shape could be treated in a satisfactory
way : the infinite terms would disappear and the finite
level shifts of Bethe” 7% would properly appear in the
denominator. Unfortunately this does not appear to
have been done as yet, but there is little doubt that a
result much like Eq. (192) would be obtained for the
basic resonance shape. It might be mentioned that a
shift of resonance frequency such as that associated
with the damping of a classical harmonic oscillator, of
order v2/w(2p—1s), is completely negligible for the 2p
state of hydrogen.

60. Possible Corrections to Weisskopf-Wigner
Line Form

It is still possible that (192) should be modified in
some way. For instance, there might be added an anti-
resonant term

Lo+w)+1v*] (193)
Indeed, such a contribution appears in some deriva-
tions, but for »/27~w/27~2400 Mc/sec, it is 9200
times smaller than the resonant term, and is com-
pletely negligible for the present discussion.

When the derivation of Appendix II is repeated with
E replaced by E exp(—in), Eq. (76) becomes equiv-
alent to (192). If, however, the perturbation is
written in terms of a vector potential A of the rf field
as —(e/m)A-p instead of ¢E-r an additional factor
(w/v)? appears in (192). This would give rise to a sig-
nificant distortion of the resonance curve, and it is
therefore important to choose the correct form for
analysis of the data. Of course, the difference between
the perturbations E-r and — (A-p)/m just corresponds
to a gauge transformation under which the theory is

8V, F. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930)
and 65, 18 (1930).

8 J. Serpe, Physica 7, 133 (1940).

87 See, for example, F. J. Dyson, Phys. Rev. 75, 486 (1949).
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known to be invariant, so that both perturbations must
lead to the same physical predictions. Nevertheless, a
closer examination shows that the usual interpretations®
of probability amplitudes is valid only in the former
gauge, and no additional factor (w/»)? actually occurs.

The Van Vleck-Weisskopf®® formula for collision
broadened lines does contain a factor involving w/v
which has been confirmed?® experimentally. There is,
however, a fundamental difference between collision and
radiative damping, so it should not be expected that
the collision line shape would be obtained here.

61. Rf Power Shifts

Just as a shift of resonance frequency can be produced
by a static electric field, it is possible for such a dis-
placement to arise from an 1f electric field, in particular,
the rf field used to produce the observed quenching. A
treatment of this problem is given in Appendix IV, The
result is that no significant correction to the resonance
position is needed for rf powers used in the precision
experiments.

M. NONRADIATIVE CORRECTIONS TO LINE FORM

In Sec. 45 a number of causes for asymmetries and
shifts of resonance peaks were listed. We now turn to a
detailed consideration of such effects. The basic assump-
tion is that under the influence of rf fields each meta-
stable state decays at a rate v given by Eq. (25). In case
overlap of nearby peaks is deemed important, u is taken
as the sum of such terms. The observed beam consists of
atoms with various velocities distributed among the
various hyperfine components of states « and . For
the precision work, a magnetic field is chosen for which
the B-contribution to the signal is at most only a few
percent of that from «, so a separate correction for
presence of atoms in the 8-state can be made.

62. Effect of Saturation and Velocity
Distribution

Of the metastable atoms in state (o, 7;) and having
speed v a fraction

¢=1—exp[—u(mr, H)I/v]

is quenched while passing through an rf field of length /.
This fraction must be averaged over hyperfine states
and also over velocities of atoms in the beam. To a
certain extent, the distribution of velocities is uncertain.
Fortunately, as shown in Appendix V, the results are
not appreciably dependent on this. For the calculations
described below, the distribution (88) is used and gives
a fractional quenching of a beam with initially un-

(194)

8T am indebted to Professor L. H. Thomas for a helpful dis-
cussion of this point.

8 J. H. Van Vleck and V. F. Weisskopf, Revs. Modern Phys.
17, 227 (1945).

9 G. Becker and S. Autler, Phys. Rev. 70, 300 (1946).
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polarized nuclear spins

=20~/ 21 +1)] iI [1—exp{ — w(ms, H)Y/o} ]

mp=—I J

Xexp(—v2/U?)v¥dv. (195)

In terms of the function
GW)=2 f [1—exp—(¥/2)] exp(—)5'ds  (196)
0

which is plotted in Fig. 48 and whose properties are
discussed in Appendix V, this becomes

o=[1/QI+1)] ¥ Gl (197)

where
Ym=u(m, H)I/U. (198)

As a starting point, we ignore overlap from other
resonances and curvature of the Zeeman lines, and
express the resonance parameters ¥, in terms of fre-
quency units ¢ (megacycles per second) from their peaks

Ym=A0/[(§—an)+b] (199)

where A is proportional to the rf intensity, and 2b="y
gives the radiative width (99.692 Mc/sec for hydrogen
and 99.719 Mc/sec for deuterium). The values of am
depend on the hyperfine splitting of the initial and final
states. In the approximations of Part I, for hydrogen,
ay=—a_3=>58.5 Mc/sec for of and 29.3 Mc/sec for ae.
Because of incomplete Back-Goudsmit effect, and other
small corrections, the separations of the two peaks are
slightly different, and improved values are used so that
the spacing of the hyperfine peaks is theoretically
correct. The shift of the center is taken into account
subsequently together with the Zeeman curvature. For
deuterium, in the above approximation ¢o=0, ;1= —a_;
=18 Mc/sec for af and half as much for «e.

The following procedure was adopted. All data for a
given transition was taken with the rf power set to
give a prescribed percentage of quenching at the center
of the resonance. From the quenching at the center, it
was then possible to determine the constant 4 of Eq.
(199) independently of rf intensity, or values of
|(n|le-r|a)|? ! or U and to calculate the resonance
curve for this value of 4. When some factor leading to
asymmetry or shift was to be considered, Eqgs. (197)-
(199) were modified accordingly, and the correction to
the apparent center as measured at the prescribed level
was determined. Since all considered effects led to very
small shifts, it was sufficient to find such corrections
independently and to add the results.

To illustrate these calculations, the case of transition
ae in hydrogen at 2195 Mc/sec will be considered in
detail, with results given as needed for other cases in
Part IV. A panoramic view of the dependence on mag-
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distributions as dependent on a variable ¢ which is proportional
to the rate of transitions. The function G(y) (defined in Egs. (196)
and (237)) applies for a thermal velocity distribution, while g(y)
(Eq. (241)) is obtained for an equivalent single velocity. When
bombardment recoil is taken into account, there results a function
H(y) which is numerically hardly distinguishable from G(y).

netic field of rf quenching at 2195 Mc/sec was given
in Fig. 36. The peak quenching for ae was chosen
arbitrarily as 31 percent, which was neither too small
for accurate measurements or large enough to give
serious saturation effects. As explained in Sec. 49, it
was proposed to locate the center of each resonance by
finding points on each side which gave equal quenching.
These are called the “working points” and in the case
chosen for illustration were taken at the 21 percent
quenching level. It was possible to ignore the effect of
overlap from the much weaker of peak in this case.

63. Variations of Matrix Element Across
Resonance

The rate of decay of the metastable state « induced
by rf depends on the squares of the matrix elements of
r to the various p states. The values of these in weak
magnetic field approximation are given in Table VI. At
the fields used in the precision measurements, a de-
parture from the weak field values is to be expected, and
since the matrix element varies across the resonance
curve because of the changing magnetic field, there is a
significant amount of distortion which requires a cor-
rection.

Bethe?! has given the intermediate field wave func-
tions from which the matrix elements of r may be

9 See reference 82, p. 398.
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calculated. The results may be expressed in terms of
correction factors C(an) to the squared matrix elements
|(n|t])|? evaluated in weak field. These are

Claa)=1,
C(ab)=%(1+44),

Clac)=3(1+4-), (200)
Clae)=3(1—454),
Clef)=2(1—4-),
where
op=(3+2)[(9/4)xa+a2]H (201)

using the dimensionless magnetic field unit of Eq. (172).
With these correction factors inserted into Eq. (199),
the constant 4 was readjusted to bring the quenching
at the center back to the standard value, and the error
in the apparent center at the working point level deter-
mined. For the case of transition ae in hydrogen at 2195
Ms/sec, a correction of —0.58 Mc/sec to the apparent
level shift is required.

64. Quenching Asymmetry

The preceding discussion assumed that the beam was
composed of atoms divided equally among the (27+1)
hyperfine states (e, 75). If electric fields are present,
these states are differently quenched because of dif-
ferent energy separations from competing p states.
This gives rise to an asymmetry and shift of the reso-
nance curves. The most important cause of quenching
is presumably the motional electric field, and only this
was taken into account in the following discussion.

The decay rate due to motional Stark effect is given
as a sum of terms like (42) for transitions from « to
states @, ¢, and f. Ignoring the slight differences in the
dimensionless magnetic field variables x for the various
states, the decay rate may be written as

A=ry(eao/ po)*(V/c)a?- [(9/2) (Yoo’ +3T%)
+(3/2) e+ 1T +3 (e 31271,

where v is the decay rate of 2p, ao the Bohr radius, po
the Bohr magneton, V the speed of the atom at right
angles to the magnetic field, x is the magnetic field
measured in units of 5214 gauss, while the dimensionless
damping constant I' has the value 100/7300=0.0151.
The energy separations are proportional to Yaa=Ya= Va,
etc. and are supposed to include hyperfine splittings as
well as an (approximate) value for the .S level shift. In
the cases of interest, however, the decay is induced
mostly by state f, so that hyperfine splitting need be
taken into account only in the third term. As indicated
in Fig. 17, for hydrogen y.s is increased by 58.5/7300
for m;=%, and decreased by the same amount for
mr=— %

Since the rate of decay due to motional electric field
varies with the square of the atomic speed V, and the
time spent in travelling a distance / from electron
bombarder to detector varies inversely with V, only a

(202)
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fraction exp—A//V of the excited atoms will reach the
detector in the absence of rf fields, where A/ V is pro-
portional to V. The fractional quenching produced by
rf may then be written as

o= Zm G(‘pm; PM>/Zm G( @, Pm) (203>

where
G =2 [ emii—etmevyiay (08
0

with ¥,, given by Eq. (198), and
Ppu=AO, /U (205)

where A is the value of A for V'="U, the velocity used
in Eq. (88). The integral G(¢, p) may be evaluated by
expanding exp—py in a power series in py and inte-
grating term by term. The first integral is just the
tabulated G(y). The subsequent integrals may be
expanded in powers of ¥ and integrated term by term
with sufficient approximation. The values of ¢ cal-
culated at the working points = +58.8 Mc/sec for the
case at hand are 21.528 percent and 21.478 percent,
respectively, and after conversion into a correction to
the apparent center of the resonance curve, imply a
decrease of the level shift by 0.08 Mc/sec.

65. Incomplete Back-Goudsmit Effect and
Nonlinear Zeeman Splitting

At the magnetic fields used in the experiments, the
nuclear spin is not fully decoupled from the other
angular momenta of the atom. As a result, the hyperfine
levels are unsymmetrically distributed about the energy
obtained without hyperfine structure. The apparent
center of the composite resonance curve is accordingly
displaced from the position it would have in the absence
of hyperfine structure. The correction to the level shift
can be obtained by using unequal values for the @, in
Eq. (199) and calculating the apparent center. (The
case of hydrogen with two component peaks could be
treated more simply.)

The resonance curves are taken with fixed radio
frequency by varying the magnetic field. Due to non-
linear dependence of the Zeeman splitting on magnetic
field caused by progressive decoupling of L and S a
distortion of the resonance arises. Letting % be the
distance in gauss measured from the true center of a
resonance curve, one may write with sufficient approxi-
mation in Eq. (199).

Ebn=cnh+dnh’

where c,, are the slopes of the frequency versus magnetic
field curves for hyperfine component m, evaluated at
the corresponding resonance field. In the calculations
based on the ideal resonance curve this slope was
evaluated at the center of the composite curve, while
the curvature represented by d,#? and asymmetry
represented by unequal @, were neglected. The com-

(206)
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posite resonance curve was then calculated as a function
of h, and the departure of the apparent center from
h=0 was determined. For the case being illustrated,
corrections of —0.81 Mc/sec and —0.11 Mc/sec, re-
spectively, must be applied to the apparent level shift
because of the incomplete Back-Goudsmit effect and the
Zeeman curvature.

66. Correction for Rf Power Variation

A correction must be applied for rf power variation,
both because of slow changes in oscillator output during
a run, and also to bring the peak quenching exactly to
the prescribed value. An approximate basis for such a
correction was indicated in Eq. (102) on the assumption
of a linear relationship between rf intensity and I, and
that ¢ is proportional to power. The former assumption
is valid for the limited range of I values occurring in a
run, but the second requires small ¢. In order to test
this point, (d¢/dA)/(d¢/dA), was calculated for the
case under study (¢o=31 percent), and found to be
sufficiently near to ¢/¢o that Eq. (102) could be used.

67. Effect of Radiation from Quenched Atoms

As described in Sec. 42, there is a background signal
due to ultraviolet radiation produced in the bombard-
ment region. Except for fluctuations the effect of this
is eliminated when the ratio of rf to dc quenching is
computed. In addition, there is a detector signal pro-
duced by the Lyman L, radiation emitted in the inter-
action region when the metastable atoms are quenched
by rf and dc fields. Fortunately this introduces no error
in the fractional quenching. To see this, let # and %’
be efficiencies of detection of metastable atoms and
photons, respectively, and let @ be the average solid
angle subtended by the detector from the quenching
region. Then if the magnitude of the unquenched beam
signal is denoted by 7B, the signal received when a
fraction ¢ of the metastables is quenched is

7B(1— )47 Bo(Q/4r)
and the apparent fraction quenched is
rf quenching 7Bo—n'Bp(Q/4)
B dc quenching B nB—1v'B(Q/4r) -

app

so that no error results from the photons produced in
the measurement of ¢, although the dc and rf quenching
are separately reduced. If one used values n=0.4 and
7' =0.08 such as found by Dorrestein® for helium, the
corrections to these would also be small since /4w
~0.02. If in fact # were much smaller relative to %’ the
apparent signal would be reduced (or even reversed
in sign!). All indications are that n>>7'(Q/4w), although
from the signal size it wastconcluded in Sec. 26 that g
was probably much less than®0.4. (Observations in
which large voltages of either sign are applied across the

% R. Dorrestein, Physica 9, 433 and 447 (1942).
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Fi1G. 49. Energy levels involved in sharp resonances af. Letters
a and b represent states « and B (225}, m,=% and — 3, respectively),

-while ¢ represents state e (22Py, m;=1%) which crosses 8 for H=>575

gauss. The circular frequency separations wqc, etc. are shown and
the perturbing matrix elements connecting various states: R for
electric dipole and %M for magnetic dipole energies due to rf
fields, and %V the perturbing energy due to motional electric field.

detector are compatible with the relation g~' but a
more accurate study should be made.)

N. THEORY OF «( TRANSITIONS
68. Statement of Problem

As explained in Sec. 44, it is possible to induce transi-
tions from state « to state 8 which are much sharper
than the transitions to nonmetastable states. These
narrow resonances have been used to calibrate the
magnetic field (Sec. 39), but since their appearance is
rather unusual, it is necessary to have a theory of their
shape in order to allow for any asymmetry shifting the
apparent center.

Magnetic dipole transitions from « to 8 may occur
because of the interaction gsueS-H of the magnetic
moment of the electron with a component of the rf
magnetic field at right angles to the static magnetic
field. It is also possible for electric dipole transitions to
occur because the state 8 contains some p state con-
tamination due to the motional electric field E=(V/c)
XH. In practice, the second mechanism is usually more
important than the first.

69. Wave Equations

We consider three states «(22S;, m.=31), B(22S},
me=—1), and e(2?Py, m;=1), as in Fig. 49, denoting
their probability amplitudes by letters e, b, and ¢,
respectively. The equations of time dependent per-
turbation theory are then
id=1M*b exp[i(wa— )i ]+3R*c exp[i(wee—»)t],
ib=1Ma exp[ —i(wa—»){ ]+ V*c exp(iwnd), (207)
1¢=21Ra exp[ — i(wse—»)t ]+ Vb exp(—iwpd) — ive.

The circular frequency separation of state a from b is,
denoted by wa while » is the circular radiofrequency.
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As in Appendix IT of Part I only the perturbation terms
capable of resonance are considered. Equations (207)
imply that states b and ¢ are coupled by a perturbation
with matrix element V' of the motional electric field
energy e(V/c)XH-r, while because of the presence of
radio waves magnetic dipole transitions between ¢ and
b occur with a matrix element M and electric dipole
transitions between ¢ and b occur with a matrix element
R. Only the p state e is coupled by radiation to the
ground state 125, and this is allowed for phenomeno-
logically by introduction of a decay constant y=1/7,
as in Appendix II.

70. Solution of Wave Equation

The wave equations (207) have a general solution
of the form

3
a= 2 Ayexp(—md),
k=1

3
b= E Bk exp[i(v—wab)t— /.th], (208)
k=1
3
c= z Ck exp[i(v—wac)t—pkt:],
k=1
where the px are roots of a cubic equation
i 3R*
M dutv—on V* =0. (209)
3R |4 v — woe— 3y
20
16
12
B
8 ~—
< 4
T
=0
.4 i
—8 .
-12
B
-16
-20
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F1c. 50. Stark splitting of levels 8 and e as a function of mag-
netic field separation from the crossing field of 575 gauss. The
straight lines indicate unperturbed energies and the curves show
expected level splitting due to motional electric field according to
usual degenerate perturbation theory.

LAMB, JR.
The coefficients Bi and Cy are expressible in terms of the
Ay by the equations
By=—3A:i[ M (v— wactipr—3iv)+RV*¥])/ D,
Ci=—3A[R(v—wat+ip)+ MV ]/ Dy,
where
Di= (r— wactiur—557) 0 — wast+iur) — | V|2

The initial conditions a=1, b=¢=0 at {=0 require

(210)

3
Z B;=0,

k=1

3 3
2 Ap=1, Y Ci=0 (211)
k=1 k=1

and these equations suffice to determine the 4;.

71. Discussion of Roots. Violation of
“No-Crossing” Theorem

In practice, the roots wpi, pe, ps differ greatly from
one another in the values of

it i

The largest of these, p1+4p1*, corresponds closely to the
radiative decay rate ¥ of the nonmetastable state e,
the intermediate value

patpo*

is related to the Stark induced rate of decay of the
lower 225 state 8, while s+ us* essentially determines
the decay rate of the upper 225, state a caused by
radio waves. If R and M are neglected, the two larger
roots are solutions of the quadratic equation

iu— (wab— V) V*
D(w)= ) =0
4 ip— (wae—v+397)

If the damping term }iy were absent, this would be
equivalent to the secular equation for determination of
the static Stark effect splitting of the approximately
degenerate levels 8 and e. When the perturbation | V|
is large compared to |ws| the splitting is linear in | V|
while it is quadratic in |V| for |V|<|ews|. The
presence of a damping term v, however, essentially
modifies the nature of the Stark effect when v>4|V].
The two roots for small | V| are then approximately

‘illl""%i')/"' (wac"‘ V)+ ] Vl 2/(wbc+%i7)

(212)

. . 213

iwoa—r)— | VI (et b))

The real part of the second root is given by
potps*=v|V[*/[wn+1v] (214)

which is just the decay rate of the lower metastable
state as calculated in Appendix II. The imaginary part

%i(ﬂg*“‘ MZ) = Wab— V"l“*’bc! Vl 2/l:‘*’bcz‘l' i’72] (215)

implies a shift in the position of that state. When
| wie| >3 the shift is just that to be expected for the
quadratic Stark effect, but the shift is much reduced
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for |wse|<%7v, and in fact, even vanishes for wy,=0.
This behavior is illustrated in Fig. 50 giving the energies
of levels B and e as functions of magnetic field in the
vicinity of their crossing point. In one case the electric
field is zero and there is no coupling V' between the
states, while in the other, the usual phenomenon of
energy level repulsion required by the famous von
Neumann-Wigner®® ‘“no-crossing’” theorem is shown
for an electric field experienced by a 2500°K deuterium
atom moving perpendicular to a magnetic field of 575
gauss. In Fig. 51 the change brought about by the
radiative broadening of state e is indicated. The six
solid curves correspond to six assumed values of the
damping constant: (a) y=0, (b) y=2V, (c) v=(12)!V,
(d) v=(015.36)}V, (e) y=4V~16 Mc/sec (critical
damping), and (f) the actual case y~100 Mc/sec. The
unperturbed levels are indicated by the dotted curves.
It will be noted that for damping equal or above the
critical value the ‘“no-crossing” theorem is violated,
and above critical damping the B-state largely retains
its s character throughout. For subcritical damping,
however, each level is a 50-50 mixture of s and p at
the Be crossing point, and the life of each state is 27,.
The observation of sharp «f resonances at this magnetic
field with a half-width of order 3 Mc/sec instead of 50
Mc/sec supports the theory of the reduced Stark
splitting when one of the levels is highly damped. Such
phenomena ought to occur in other problems of atomic
and molecular physics, but could be observed only with
instruments capable of exploring well within the radia-
tive widths.

72. Calculation of Decay Constant

It will suffice, for present purposes, to calculate the
small root us only to second order in R and M. One finds

ius= — L[| R|*(wa—»)+ M VR*+M*V*R
+ | M |2 (wee—r+-3i7) 1/ D(0).  (216)

In the analysis of such a complicated expression, it is
necessary to have a clear idea of orders of magnitude of
all quantities entering the equation. The damping
constant « corresponds to a frequency of 100 Mc/sec,
while the matrix element V=(e/k)(v/c)H(e|y|B) for
for deuterium at 575 gauss has a value corresponding
to 8.2 Mc/sec.

If the rf field has approximately equal magnitudes of
electric and magnetic fields, the matrix element R is
much larger than M. In fact, M/R~uo/eao="H/(2mcao)
=21a~1/274. Except for » very near ws the terms
involving M in Eq. (216) may accordingly be neglected.
Then

tus= —%|R|*(wa—7)/
[(wa—2) (wee—r+3iv)— | V2], (217)

In the experiment, metastable atoms are formed in
the bombardment region in both states « and B in

% J. von_Neumann and E. P. Wigner, Physik. Z. 30, 467 (1929).
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Fic. 51. Stark splitting of levels B and ¢ as in Fig. 50 according
to perturbation theory in which radiative decay of e is taken into
account. Curves are shown for the motional electric field energy
equal to its actual value with various assumed values for the
damping constant v. For y=0, the curve of Fig. 50 is obtained.
Critical damping occurs for y=4V, while y=12.2V corresponds
to the actual case with vy/(2r) =100 Mc/sec.

equal numbers. After traversing a distance L;~3 cm
they enter the rf region of length Ly~1 cm and the
survivors travel a further distance Lz3~2 cm to the
detector. For simplicity, we assume that state 8 has
fully decayed before the atoms reach the rf region at
time {=0. After passage through the rf region at time
t=L,/V~1.2X10-% sec there will be a distribution of
atoms in states a=ea, b=, and ¢=e with probabilities
|a|2, |8]2, and |c|?, respectively. The last state will
strongly decay before the atoms strike the detector at
a time later by L3/V~2.5X107% sec. To obtain as much
simplicity as possible, let us also assume that the same
is true of atoms in state . This assumption will be valid
when the resonances are studied in the vicinity of the
crossing point of 8 and e for then the decay rate
uotps* is of order v/25 as shown in Fig. 34. In the
case of resonances a8 studied at 2000 Mc/sec, state b
is somewhat less well damped.

With these simplifications, the detector signal is
proportional to

S | As|* exp— (ustpa*)t-

The coefficient | 4;|2 is less than unity (quenching of
beam due to decay of transients), but is a slowly
varying function of magnetic field in the vicinity of the
sharp resonances so that we are more interested in the

(218)
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F16. 52. Form of af resonance expected from Eq. (219) at a
frequency of 1995 Mc/sec. The fractional quenching is plotted
against H — H,.

rf induced decay rate given by

pat s =1v| R|*(wa—7)*/
L (wa—2) (wae—») = |V [*PP+iv*(0a—2)*]. (219)

When |wa—»| is large, and | V| is sufficiently small,
Eq. (219) simplifies to

pstps*—ty l R I Z/E(wac“v)z‘i'%'}’?] (220)

which is just the rate of rf induced transitions from «
to e when only these two levels are present. The maxi-
mum decay rate is |R|%/~.

More generally, expression (219) vanishes when
wa—v=0 and reaches a value (nearly a maximum) of
| R|?/v for the frequencies for which the first term in
the denominator vanishes. For small | V|, these fre-
quencies are near v=uw,, for which Eq. (220) has its
maximum, and = wg for which Eq. (219) has its zero.

The appearance of the resulting resonance curve
(219) is quite different depending on whether | wp.|>>3y
or |we|<<3v. In the former case the resonance curve
might appear as shown in Fig. 52. The resonance peak
is displaced from the zero at v=ws by an amount cor-
responding to the frequency |V|%/ww, just the Stark
shift of state b due to interaction with ¢. The curve is
very similar to the experimental result of Fig. 42, but
the observed width is much greater than that given by
Eq. (219). The explanation of this discrepancy is that
the transients of Eq. (208a) are not damped highly
enough to justify their complete neglect in this case.
In fact, it is necessary to take the transients into

WILLIS E. LAMB,
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account to obtain a width of resonance compatible with
the uncertainty principle. Although it is not difficult
to write out the more complete solution, it would still
be necessary to average it over the velocity distribution
in the beam, since the position of the peak depends on
velocity, and this would require considerable numerical
integration. Consequently the observed peak could not
be readily used for a highly precise magnetic field
calibration, although the error would not be large if a
rough correction for Stark effect were made.

The latter case, |wp.|<<3y offers more promise. In
the vicinity of the crossing point wy.=0, the damping
given by Eq. (214) is more than adequate to permit
neglect of terms containing u,. First expectations were
that the of resonances would be very broad in this
region, and subject to a large Stark effect shift of
order ¥ from the unperturbed position. As indicated
in Eq. (215), however, the radiative damping of state e
greatly reduces the shift and quenching of the B-state.
At the crossing point of the shifts of 8 and e actually
vanish (except for small shifts due to distant levels).
Plots of Eq. (219) as a function of magnetic field in the
vicinity of the crossing point are given in Fig. 53. Since
there is a distribution of velocities, the shape and half-
width are affected, but the zero remains at »=wg. The
curves are highly symmetrical, easy to observe, and
afford a convenient method for calibration of magnetic
field in terms of frequency. An example of ‘a curve of
this type, somewhat complicated by hyperfine structure
was given in Fig. 43. It will be noted that the quenching
at v=wg does not fall to as low a value (about two-
thirds of the peak for deuterium since one-third of the
beam is in a given hyperfine state) as indicated by the
preceding theory. While no quantitative comparison
has been attempted with a more refined theory, it is
believed that this discrepancy may be attributed to
neglect of the coefficient | 4;|2 in Eq. (218).

The reduction in transition probability which occurs
when »=wq was interpreted in Sec. 47 in terms of an
equivalent electrical circuit Fig. 46. A more quantum-
mechanical understanding of the phenomenon can be
had from an examination of the third Eq. (207) which
can be satisfied when »=wg for ¢=0 and dc¢/dt=0 if a
and b are related by 3Ra-+Vb=0. An examination of
the solution reveals that after damping of transients
this relation is satisfied, and the state oscillates between
a and b with such phase and amplitude relations that
the decaying state ¢ is not excited.

The author has benefited from many helpful .discus-
sions with Professor N. M. Kroll.

APPENDIX IV. RADIOFREQUENCY POWER
STARK EFFECT

The possibility of a shift in resonance frequency due to the
presence of rf fields was mentioned in Sec. 60. Such shifts occur
in the molecular beam radiofrequency resonance method as shown
by Bloch and Siegert.” For a spin S=% undergoing Larmor

% F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940), also A. F.
Stevenson, Phys. Rev. 58, 1061 (1940).
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precession in a magnetic field Ho="/%w/gsuo and perturbed by a
perpendicular oscillating rf magnetic field H; cospt, they found
an increase dw in the resonance frequency of

Sw=(w/16)(H1/H )= (gsuoH1)*/ (164 (hw)). (221)

In the present case, the induced decay of 22S; is described by
Egs. (68) with V taken in the form

V="hR cosvt (222)

and for simplicity y,=0 and y,=7
id=R*e~ " (cospt)b, (223a)
b= Re™*(cosvt)a— Livb. (223b)

If damping were neglected, the problem would be exactly that
solved by Bloch and Siegert, but decay changes the character of
the solution considerably. In practice, the atoms spend about a
microsecond in the quenching fields, or many cycles of the rf
and many half-lives of 2p. Consequently a solution of (223) in
terms of a rate of induced decay of state @ is needed for practical
analysis of the resonance experiments.

If the nonresonant parts of cosvt=%(e”*+¢ %) were neglected,
Egs. (223) could be solved exactly, and with suitable approxima-
tions would lead to (192). As in the Bloch-Siegert treatment, the
nonresonant parts of cosyt are responsible for a shift of resonance
frequency.

We write

a=e"*4a,(t) (224)

where p-+up* is the desired frequency dependent decay rate of
2253, and the small () allows for departures from the simple
exponential law. Equation (223Db) is then solved with neglect of
a; for b subject to the initial condition 5(0)=0 giving

= —%R[Bl{e““’_“) t—yt_e—%w} +Bz{ei("+"’) ‘—e‘%‘”}] (225)
where

Bi=(w—v—3%iy+iu)™? and By=(wtr—3Iiy+in) L
When this result is inserted in (223a), one may equate slowly
and rapidly varying terms separately to zero, obtaining

—ip=—%|R[%B,+B:) (226)
and
id1=—HRP-[Bwﬂ”‘—i—Bgeh%’t—(BH—Bz)(e_%7‘+e“%7t+2i"‘):]

(227

whose solution subject to ¢,(0)=0 is
a1=(1/4) [R]2[B1(e2i"‘— 1)/(2iv) — Ba(e™ 2"t —1) /(24v)
+(B1+By) [(1—e747) /(3v)
(A=Y /3y —2)} ] (228)
The first two terms représent a rapidly oscillating contribution to
a; of amplitude at most of order
By|R|?/8y~|R|*/(4y)

which will be seen from the subsequent numerical discussion to
be negligible for the rf power used in the precision experiments.
The remaining terms vanish at {=0, but after =1/ very rapidly
take on a constant value. Besides the “secular” damping
1—exp—(u+p*)t, there is according a “shock” damping which
for (u+p*)t<<1<K ¢ is approximately

—(a1+ar*) =} R[(B1+B1*) /v~} [ R|Y/[(0—»)*+1v*] (230)

and is small compared to the secular term by a factor 2/(yf) or
about 1/400 in practice, and in any case leads to no asymmetry.
It can also be easily verified that no significant error was made by
neglecting ¢, in Eq. (223b) as long as

| R|2/~v2<Ke™ k1, (231)
In order to evaluate the damping constant u we set u= pr/2+ius
and find with sufficient accuracy
pi=—%|RIL—w)/{(r—w)?+iv?}
—@+w)/{+w)+iv}],

(229)

(232)
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F1c. 53. Form of «f resonance expected from Eq. (219) at
frequencies of 1610 Mc/sec (at Be crossing) (solid curve) and 1615
Mc/sec (5 Mc/sec away from Be crossing) (dotted curve). The
latter curve is slightly asymmetrical and the apparent center as
a function of quenching level is shown.

6 10 14

we=1v| R —o—w)l+ily—p)?
H{+o)+iy?} ] (233)

The rate of decay is given by u.. As indicated in Sec. 60, the
antiresonant contribution is negligible. The peak position is
determined by

v=wtp>o—|R[*p—w)/v*+|R[*/8a, (234)

where » has been replaced by w in the denominators of (232). The
second term of (234) produces no shift in peak position since it
vanishes for =, but it does lead to a slight reduction® in half-
width of relative order |R|2/4? as does the term with u, in the
denominator of (233). The last term

|R|?/8w

gives an rf quadratic Stark effect shift similar in form to that for
static electric fields except for a factor } which can perhaps be
understood from the circumstances that the antiresonant per-
turbation has an amplitude (1/2) R and the frequency denominator
is effectively 2w. :
When the shift
|R|*/8w

is written in the notation used by Bloch and Siegert, it is found
to be one-half as large as theirs. This difference may be attributed
to the damping of one of the states which in fact is responsible
for the relative simplicity of our derivation. It can be seen from
Eq. (228) that a,(f) would not be negligible if there were no
damping.

The numerical value of the rf Stark shift |R|2?/8 and the
dimensionless ratio | R|2/v% will now be estimated for an rf power
sufficient to give 63 percent quenching at resonance in 1.25X107¢

-9 This “‘power sharpening” is at least in part due to mixing of
the long-lived 25 state with the decaying 2P state giving a re-
duction of the radiative width of 2P.
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TaBLE VII. Coefficients of series expansion for G(y).

cn ba

c1= 0.8862269
c2=—0.5000000
cs= 0.2954090
ca= —0.1014592 bs= 0.0825000

¢s = —0.0295409
be= —0.0027778

ce= 0.0057894

cr=0.0004689
bs= 0.0000248
b1 = —0.00000001

cs = —0.0000645
¢o = —0.0000026

cw=0.0000003

sec. This requires that

pr=|R|2/v=8X10% sec™!
so that
R=[(8X105)(6.25% 10) Jt=2.24 107 sec.

Then the shift

(235)

| R|2/8w~1X10* sec™ (236)

amounts to 0.0016 Mc/sec when w/27x=1000 Mc/sec which is
entirely negligible. The dimensionless ratio |R|2/y% giving the
“shock” damping and power sharpening? has the value 1.3X1073
and causes no significant error.

APPENDIX V. PROPERTIES OF G(1))

The integral
G)= 2]; [1—exp(—y/2)Je"s%dz (237)
of Sec. 62 obeys the differential equation
®/2)G"—-G"+G—1=0 (238)

with boundary conditions at the regular singular point ¢=0,
G(0)=0, G'(0)=(1/2)(m)}, G"(0)=—1/2, and G""(0)=(1/6)(m)},
while G(®)=1. The fourth and higher derivatives of G are
infinite at =0, and one finds an expansion about that point in
the form

6= 2 cr+llogy) 2 by (239)

with coefficients as given in Table VII.

The series converges rapidly for the values of y needed in the
experiment. For very large ¢ the saddle point approximation to
(237) may be used

G(Y)~1—(x/3)ty exp[—3(¥/2)*]. (240)

The relative unimportance of the exact form of velocity dis-
tribution is shown in Fig. 48 where G(y) is compared to the func-
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tions resulting from two other plausible assumptions. The first
g()=1—exp[—jriy] (241)

would describe the quenching if all atoms had a velocity
V=4%#%U equal to the reciprocal average reciprocal velocity. The
second function H(y) shows the quenching if the recoil at threshold
for hydrogen is taken into account.

The differences are not great, but the functions had to be
calculated to be sure of this. In addition, the related function
G"'(y) plays a more significant role in discussion of similar experi-
ments on singly ionized helium.

APPENDIX VI. MISCELLANEOUS ENERGY
LEVEL CORRECTIONS

(a) Finite Size of Deuteron. The finite size of the deuteron leads
to an elevation of 2§ relative to 2P by an amount

(1/48)a*hcR(72/ Mri2I), (242)

where [ is the binding energy of the deuteron and 7o=oa?a, is the
classical electron radius. For simplicity, a zero range wave function
has been used for the deuteron. Numerically, this shift amounts
to +0.45 Mc/sec, and will be contained in the experimentally
determined value of 8 for deuterium. The same will be true of
the other corrections of order 8/M such as that mentioned in
reference 80.

Since the deuteron has a quadrupole moment, Q=2.73X10~%
cm? there are also contributions to the energy of 22P;, of an amount

(1/40)(Q/re*)a*heR[ms*— (5/4) Im2—(2/3)]. (243)

At most this energy amounts to 0.006 Mc/sec and may be
neglected.

(b) Meson Cloud about Nucleus. Slotnick and Heitler’® have
shown that the distribution of mesons about a proton gives a 2S5
level shift of about 0.02 Mc/sec according to a typical meson
theory consistent with observations on the electron-neutron
interaction.

(¢) Correction to Hyperfine Structure Splitting. The hyperfine
structure for =2 has been expressed in Sec. 56 as a multiple of
Aw, the splitting for 22Sj. This in turn was taken to be one-eighth
of the hyperfine splitting for 125} as measured by Prodell and
Kusch.®3 Any correction due to the difference in binding ought to
be far below the level of accuracy needed here. Another neglect
involved the replacement of the coefficient 2 of I-L in Eq. (177)
by gs. This implies a correction to Eq. (177) of

1/12 2P,
1/24 2Py

but it amounts at most to 0.013 Mc/sec, and has been neglected.
96 M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949).

(N wu'|J)=—(gs—2)[Aw/(I+3) Imims- (244)



