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It is shown for a general class of scalar nonlinear classical field theories, in which singularities are excluded
and particles are represented by small regions in which the field is intense, that the interaction between
two particles is described by the Yukawa potential at large distances.

1. INTRODUCTION

N recent years a number of attempts have been made
to set up a nonlinear field theory of elementary
particles in which singularities are excluded.!—* In such
a theory a particle is represented by a small portion of
space in which some function representing matter
density has a large value. Such a theory can be expected
to be free from at least some of the divergences present
in theories in which particles are represented by points,
i.e., by singularities. It also has the advantage that the
equations of motion of a particle are a consequence of
the field equations.

It is of interest to know something concerning the
nature of the force which one particle exerts on another
according to a nonlinear field theory. For this purpose
a very simple classical nonlinear theory has been investi-
gated. The field in this case is taken to be described by
a complex scalar ¥, the behavior of which is determined
by the Lagrangian density function

ay ay*
S=————aW i, ()
%) 0xy
where o2 and g are positive constants and
(21, %9, 23, 24) = (2, ¥, 2, ict).

This field was recently discussed to some extent by
Finkelstein, LeLevier, and Ruderman* incidentally to
the treatment of a more complicated case.

If one uses the Lagrangian density (1) in a four-
dimensional variational principle, one gets for the field

equation
(= oM)ytgdry*=0. 2

By the usual methods one also finds that the charge-
current density vector is given by

Su=—ie(YaP*/dn,—P*y/0,), ©)

where e is a constant, and the energy-momentum
density tensor is given by

Y ay* Ay IY*

0x, dx, Ox, 0x,
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2. SINGLE PARTICLE

In the stationary spherically symmetric case one
sets, in polar coordinates,

y=0(r)ei", )

where 0 and  are real, and w is constant. The field
equation becomes

d20/dr*+(2/7)d6/dr— o20= — g, 6)

where o= g2— w?/c? will be assumed to be positive.

It follows that in this case there exist solutions that"
are everywhere analytic and go to zero exponentially
at infinity.® The two simplest solutions, one without
nodes, the other with one node, obtained by numerical
integration, are shown in Fig. 1.5 We shall restrict
ourselves hereafter to the nodeless solution, as repre-
senting the ground state of the particle.

From the solution describing a particle, on the basis
of Egs. (3) and (4), one obtains for the charge of the
particle,

= f 540V = Decsc=? f #av, ™

and for the energy of the particle, after making use of
the field equation and carrying out an integration by
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F1G. 1. The two simplest particle-like solutions of Eq. (6).

5 This is shown by FLR by an analysis of the solutions in the
phase plane. It follows from their arguments that there exists at
least one particle-like solution with any given number of nodes.
This result may perhaps be more directly seen by transforming
(6) into 7”’/n=1—(n/x)? by x=ar, n=g¥0, and considering
solutions with »(0) =0 as functions of increasing »’(0).

6 The solution exhibited in Fig. 2 of FLR is, as nearly as can
be determined in the absence of a scale, identical with our nodeless
solution.
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parts,
= f ToudV = f Qe P+e00dV.  (8)

Thus the energy of the particle is positive definite,
although the energy density — 7' is not.

From Eq. (6) it is seen that, for large values of # for
which 6 is small so that the right-hand side is negligible,
the particle-like solution will have a behavior given by

=Ag e /r, 9)

where 4 is a constant. A rough numerical integration
gives 4~2.5.

It is- seen that the particle-like solutions of (6)
‘depend on the frequency w. In the case of a neutral
particle Eq. (7) shows that w=0, so that ¢ is real. For
a charged particle some criterion would have to be
adopted to fix the value of w, the sign of which depends
on the sign of the charge.

3. INTERACTION BETWEEN PARTICLES

We now consider the question of the interaction
between two identical particles which are nearly at rest.
The exact way of dealing with two particles would be
to find a solution of the field equation (2) for which
there are two small regions in which || has an appreci-
able value. However, this is not feasible. Instead, we
limit ourselves to the case in which the two particles
are far apart and take as the approximate solution of
(2): ‘

Y=o [0(ra)+0(rs) T,

where the points 4 and B are the centers of the two
particles, 74 and 7 are the distances from 4 and B to a
point in the field, and 6(r) is the ground-state solution
of (6) for a single particle. The assumed form of the
solution (10) is justified to some extent by the fact
that for two particles far apart the nonlinear term in
(2) is small in the region where 0(r4) and 6(rg) overlap,
and hence the sum of the two solutions is approximately
a solution. In order for (10) to be a good approximation
in spite of the nonlinearity of the equation, the points
A4 and B must move in a suitable way in the course of
time.

From this expression for ¢ one can calculate the force
exerted by one particle on the other. One way of
doing this is to make use of the divergence equation
satisfied by T,

(11

In particular, if for u=k=1, 2, 3 we integrate this
equation over a three-dimensional volume V bounded
by a closed surface .S and make use of Gauss’s theorem
we get

(10)

aTu)\/ax)\= 0.

d
— | ThdV=— f T'adS, 12)
S

dxy \4
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where the subscript # indicates the component in the
direction of the outward normal. Since the left-hand
side of (12) represents the time-rate of change of
momentum contained in V, the right-hand side repre-
sents the force acting on this region, which also follows
from the fact that the space components of 7', represent
stress components. Thus we can write the force compo-

nents
Fr=— f TrndS.
8

If we choose the surface S so that it encloses one
particle (this will be practically the case if the smallest
distance from the particle center to the surface is large
compared to 1/a), then (13) will give the force on this
particle.

If one chooses the surface S sufficiently large so that
everywhere on it Eq. (9) is valid for both 6(r4) and
6(rp), the calculation becomes rather simple. Thus,
suppose that at a certain moment 4 and B are located

(13)

- on the z-axis each a distance R/2 from the origin, R

being the inter-particle distance, and we take for S the
plane of symmetry midway between the particles
(closed with an infinite hemisphere, which gives no
contribution). It is enough to calculate

F.,= —-szzdS,
8

and in the expression for T, it is enough to consider
only the terms involving products of 6(r,4) and 6(r5) or
their derivatives to get the particle interaction. For a
sufficiently large value of R one can neglect the fourth-
degree terms in T,,, since on .S these will be small
compared to the remaining terms. Under these condi-

- tions, making use of the symmetry of the problem,

one finds that
T..=—4026%(r ),

and one gets for the force of attraction

(14)

F=8rA2g f exp[ — 2a(p?+ RY/4)i]
0
X (p*+R/4)"pdp  (15)
= —8rA% Ei(—aR),

or, assuming «R to be large, the force of attraction is
given by

F(R)=8wA%ag~te*E/R, (16)
and the interaction potential energy therefore by

U(R)=—8rA%g~le~2R/R. @7
For a neutral particle, w=0, a=g, this gives

U(R)=—8mwA%~'e~"%/R. (18)

We see then that the interaction. between the two
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particles at large distances is described by the Yukawa
potential.”

An inspection of the method used to obtain this
result shows that it would also be obtained under more
general conditions than those assumed here. If, in the
Lagrangian density (1), the last term were replaced by

7H. Yukawa, Proc. Phys.-Math. Soc. Japan (3) 17, 48 (1935).
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some other function which also led to particle-like
solutions, and which was negligible compared to the
other terms at large distances from the particle center,
then the same result would be obtained for the inter-
action, except for the numerical coefficient. For ex-
ample, this would be the case if the last term were
taken proportional to (yy*)» for any n>1.
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The third paper of this series provides a theoretical basis for analysis of precision measurements of the
fine structure of hydrogen and deuterium. It supplements the Bechert-Meixner treatment of a hydrogen
atom by allowing for the presence of a magnetic field, as well as radiative corrections. The theory of hyperfine
structure is somewhat extended. Stark effects due to motional and other electric fields are calculated. Pos-
sible radiative and nonradiative corrections to the shape and location of resonance peaks are discussed.
Effects due to the finite size of the deuteron are also considered.

A theory of the sharp resonances 22S3(ms=1%) to 22S3(m.= —}) is given which leads to an understanding of
the peculiar shapes of resonance curves shown in Part IL. In this connection, a violation of the “no-crossing”
theorem of von Neumann and Wigner is exhibited for the case of decaying states.

HE earlier Parts®” I and IT of this paper have
described some qualitative studies of the fine
structure of hydrogen and deuterium made by a
microwave method. In order to prepare the ground for
analysis of much more highly precise measurements in
Part IV, it is necessary to make available a more refined
theory of the hydrogen atom than was used previously.
The object of Part III is to supply this need, as well as
to treat a number of other theoretical problems which
arise in the work. Frequent references to Parts I and II
are made. Chapters, sections, figures, tables, equations,
and footnotes of Part III are numbered consecutively
after those of Parts I and II.

J. ENERGY LEVELS OF A HYDROGEN-LIKE ATOM
48. General Program

The results of theory for the energy levels of an ideal
hydrogen atom were given in Part I assuming an
infinitely heavy nucleus, thereby neglecting reduced
mass effects as well as magnetic and retarded inter-
action between electron and nucleus. In addition, a
number of other approximations were made. The calcu-
lation of hyperfine structure was oversimplified by
assumption of Back-Goudsmit and Russell-Saunders
coupling. In the theories of Zeeman effect and doublet
separation P3— Py the anomalous magnetic moment of
the electron was neglected. Shifts of levels due to Stark
effect and relativistic and higher order corrections to
Zeeman splitting were ignored.

* Work supported jointly by the Signal Corps and ONR.

t Present address: Department of Physics, Stanford Univer-
sity, Stanford, California.

8 W. E. Lamb, Jr., and R. C. Retherford, Part I, Phys. Rev. 79,
549 (1950), and Part II, 81, 222 (1951).

There is no one place in the literature where a treat-
ment of all these effects may be found. One may only
form a patchwork Hamiltonian by collecting separate
terms from papers by various authors who have been
concerned with limited aspects of the problem. It would
probably not be justified here to give a detailed system-
atic theory, but it does seem worthwhile to indicate the
basis of the rather provisional treatment which is now
possible. The object is to write down all terms known
at present having a potential magnitude of 0.1 Mc/sec
or larger in the discussion of the precision experiments
of Part IV.

The electron and proton should be allowed to interact
with one another through their intermediate coupling
with the quantized electromagnetic field and the vacuum
of occupied negative energy states for electrons and
protons. By eliminating these effects from the theory,
one hopes to find an equivalent two-body problem in
which the two particles have a velocity and spin de-
pendent interaction with one another, and the particles
themselves have somewhat changed properties (renor-
malization of charge and mass, anomalous magnetic
moments, etc.).

At present, this program has not been fully carried
out. Those terms of low orders in the fine structure
constant which have been found will be incorporated
into the following discussion. It should be relatively
easy to make the small corrections necessary when any

- missing terms have been calculated.

The starting point is here taken to be a two-body
Dirac equation for electron and nucleus. Even when the
nucleus is a proton and not a deuteron there might be
grave doubt that it would obey an equation of the
Dirac type in view of its anomalous magnetic moment.



