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The Force between Particles in a Nonlinear Field Theory

NATHAN RosEN AND HERBERT B. RosKNBTocK
Dsparhnwi of Physics, Ursiocrsity or ¹rih Carol&sa, Chapoi Eh71, iliorih Carolirsa

(Received August 20, 195j.)

It is shown for a general class of scalar nonlinear classical 6eld theories, in which singularities are excluded
and particles are represented by small regions in which the 6eld is intense, that the interaction between
two particles is described by the Yukawa potential at large distances.

1. INTRODUCTION
'N Iccent years a number of attempts have been made

~ ~ to set up a nonlinear field theory of elementary
particles ln which singularities are excluded '—' In such
a theory a particle is represented by a small portion of
space in which some function representing matter
density has a large value. Such a theory can be expected
to be free from at least some of the divergences present
1Q thcoI'lcs ln which pRI'tlclcs RI'c I'cprcscntcd by points,
l.c. by slngulRlltlcs. It Rlso hRs the RdvantRgc that thc
equations of motion of a particle are a consequence of
the field equations.

It ls of lI1tcx'cst to kQow soIQcthlng conccrTling thc
nature of the force which one particle exerts on another
according to R QOQHnear 6cld theory. FOI' this pulposc
a very simple classical nonlinear theory has been investi-
gated. The field in this case is taken to be described by
a compiex scalar P, the behavior of which is determined
by the Lagrangian density function

where 0' and g are positive constants and

{xs, xs, xs, x4) = {x,y, s, sci).

This 6cld was recently discussed to some extent by
Finkelstein, LCLcvier, and Ruderman incidentally to
the treatment of a more complicated case.

H one uses the Lagrangian density {1) in a four-
dimensional variational principle, one gets for the field
equation

(2)

By the usual methods one also finds that the charge-
curI'cnt density vcctol ls glvcn by

so= M(IP8lg/8xo tP 8l/I/8sco)l

%'herc 6 ls R constant) Rnd thc energy-ITloIncntuxn
deQslty tcQsox' ls glvcn by

8$ 8$* 8$8$*
+ +&8,' (4)

8$fh 8$y BSP BXP,
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(j,95I); henceforth referred to as FI R.

2. SINGLE PARTICLE

IQ thc stRtlonary sphcx'lcRlly syHllnctric CRsc onc
sets) ln polR1 coordlnatesp

8(r) ciur t (5)

where 0 and ~ are real, and e is constant. The field
cquRtloQ bccoIQcs

d'8/dr'+ (2/r)d8/dr cs'8 = —g—8s,

where css= o'—lo'-/c' wi11 be assumed to be positive.
It follows that in this case there exist solutions that

are everywhere analytic and go to zero exponentially
at infinity. The two simplest solutions, one without
nodes, the other with one node, obtained by numerical
lntcgI'Rtlon, RI'c sh.own 1Q Flg. I. Wc shall lcstllct
ourselves hereafter to the nodeless solution, as repre-
senting the ground state of the particle.

From the solution describing a particle, on the basis
of Eqs. (3) and (4), one obtains for the charge of the
particle,

Q=——sc ' ssdV=2eoc ' t 8'dV,

and for the energy of the particle, after making use of
the Geld equation and carrying out an integration by

FIG. i. The two simplest particle-like solutions of Eq. (6).

This ls shown by FLR by an analysis of the solutions in the
phase plane. It follows from their arguments that there exists at
least one particle-like solution with any given number of nodes. -

This result may perhaps be more directly seen by transforming
(6) into q"/q=I —(g/x)' by x=ar, q=g&r8, and considering
solutions with g(0) =0 as functions of increasing g'(0).

The solution exhibited in Fig. 2 of FLR is, as nearly as can
be determined in the absence of a scale, identical with our nodeless
solution.
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lV= — TggdV=
~

(2m'c '8'+ig8')dV.

Thus the energy of the particle is positive de6nite,
although thc cQcx'gy dcnslty —T44 ls Qot.

From Eq. (6) it is seen that, for large values of r for
which 8 is small so that thc right-hand side is negligible,
the particle-like solution vriIl have a behavior given by

where the subscript I indicates the component in the
direction of tIM out%'Rrd Qol'IDal. Since ac left-band
side of (12) represents the time-rate of change of
mornenturD contained ln V, the right-hand side repre-
sents the force acting on this region, which also follovrs
fx'GID tlM fact thRt thc spRcc CGIDponcnts of TfJI,„represent
stI'css CGIDponents. Thus wc CRQ write thc foI'cc coIDpo-
Dents

g

Yvhcrc A ls a CGQstRnt. A rough QuQMrlcRI lntcgx'ation
glvcs 2~2.5.

It is. seen that the particle-like solutions of (6)
depend on the frequency N. IQ the CRsc of R Dcutral
particle Eq. (7) shows that ~=0, so that f is real. For
R charged partlclc SGQM CI'ltcI'1GQ %'Guld 4Rvc to bc
adopted to 6x the value of +, the sign of which depends
on the sign of the charge,

%e Ilow consider the question of the interaction
between two identical particles which Rre nearly at xcst.
TlM exact way of dcRllQg with two pRx'tlclcs would bc
to find a solution of the field equation (2) for which
there are two small regions in which

~ P ~
has an appreci-

aMe value. -However, this is not feasible. Instead, wc
limit ourselves to the case in which the two particles
Rx'c far apart Rnd talm Rs the RpproxlIDRtc solutlGQ Gf

(2),
4= 's"I: 8(~r)+ 8(~r)3

vrhere the points A and, 8 are the centers of the two
particles~ fg Rnd t'gy RI'c t4c dlstRIlccs froID 2 Rnd 8 to R

point in the Geld, and 8(r) is the ground-state solution
of (6) for a single particle. The assumed form of the
solution (10) is justi6ed to some extent by the fact
that for two part3clcs far Rpart tlM QonllncRl tcI'In ln

(2) is small in the region where 8(r~) and. 8(rs} overlap,
Rnd hence the suID of the two solutions is approximately
a solution. In order for (10) to be a good approximation
lD spite of thc QonllncRx'lty of thc cquRtlon thc points
A and 8 must move in a suitable way in the course of
tlIDC.

From this expression for P one can calculate the force
exerted by one particle OQ the other. One way of
doing this Is to make usc of the divcxgcnce equation
satlsGcd by Tp„q

If we choose thc sul"fRcc 5 so that lt cQcloscs onc
particle (this will be practically the case if the smallest.
distance from the particle center to the surface is large
compared to 1/n}, then (13}will give the force on this
particle.

If one chooses the surface 5 su%cientiy large so that
everywhere on it Eq (9) i.s valid for both 8(r~) and
8(rs), 'tlM calcula'tioil becomes i'athel' sinlple. Thlis,
suppose that Rt R ccx'tain xnomcnt 2 and 8 Rlc located
on the s-axis each a distance R/2 from the origin, R
being the inter-particle distance, Rnd vre take for 8 the
plane of syIDIDetry midway between the particles
(closed with an infinite hemisphere, which gives no
contribution). It is enough to calculate

Rnd 1Q tIlc cxpx'csslon for x» lt ls enough to consider
only the terms involving products of 8(r~) and 8(re) or
their derivatives to get the particle interaction. For a
suScicntly large value of R one can neglect the fourth-
degxee terms in T„,since on 5 these will be SIDRll

COIDpaI'cd to thc remaining terIDS. Under these condi-
tions, making use of the sylDIDetry of the problcID,
01M 6nds that

4+~8 (r,), —

=—8s-A'n'g-' Ei(—nR),

(16)
(11)

Rnd the Interaction potential energy tbcI'cfox'e by
IQ particu4, r, if for p, =k=1, 2, 3 %'e integrate this
equation over a three-dimensional voIuIDc t/' bounded.

hy a closed surface 5 and. make use of Gauss's theorem.
We gCt

l
2"wdV= —

~

Ta.d&,
de p 8

U(R) = —8s A'g 'e-"s/R.

FGI' R neutral particle, M =0~ Q= 6'~ this gives

U(R)= —8+A'g 'e '"/R. (18)

We see then that the interaction. between the two
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particles at large distances is described by the Vukawa
potential. '

An inspection of the method used to obtain this
result shows that it would also be obtained under more
general conditions than those assumed here. If, in the
Lagrangian density (1), the last term were replaced by

7 H. Yukawa, Proc. Phys. -Math. Soc. Japan (3) 17, 48 (1935).

some other function which also led to particle-like
solutions, and which was negligible compared to the
other terms at large distances from the particle center,
then the same result would be obtained for the inter-
action, except for the numerical coe%cient. For ex-

ample, this would be the case if the last term were
taken proportional to QP*)" for any e) 1.
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The third paper of this series provides a theoretical basis for analysis of precision measurements of the
fine structure of hydrogen and deuterium. It supplements the Bechert-Meixner treatment of a hydrogen
atom by allowing for the presence of a magnetic field, as well as radiative corrections. The theory of hyperfine

structure is somewhat extended. Stark effects due to motional and other electric fields are calculated. Pos-
sible radiative and nonradiative corrections to the shape and location of resonance peaks are discussed.
EBects due to the finite size of the deuteron are also considered.

A theory of the sharp resonances 2'S~(m, =-', ) to 2'S~(m, = —-',) is given which leads to an understanding of
the peculiar shapes of resonance curves shown in Part II. In this connection, a violation of the "no-crossing"
theorem of von Neumann and Wigner is exhibited for the case of decaying states.

HE earlier Parts" I and II of this paper have
described some qualitative studies of the fine

structure of hydrogen and deuterium made by a
microwave method. In order to prepare the ground for
analysis of much more highly precise measurements in
Part IV, it is necessary to make available a more refined

theory of the hydrogen atom than was used previously.
The object of Part III is to supply this need, as well as
to treat a number of other theoretical problems which

arise in the work. Frequent references to Parts I and II
are made. Chapters, sections, 6gures, tables, equations,
and footnotes of Part III are numbered consecutively
after those of Parts I and II.

J. ENERGY LEVELS OF A HYDROGEN-LIKE ATOM

48. General Program

The results of theory for the energy levels of an ideal
hydrogen atom were given in Part I assuming an
in6nitely heavy nucleus, thereby neglecting reduced
mass effects as well as magnetic and retarded inter-
action between electron and nucleus. In addition, a
number of other approximations were made. The calcu-
lation of hyperfine structure was oversimplified by
assumption of Back-Goudsmit and Russell-Saunders
coupling. In the theories of Zeeman effect and doublet
separation P;—Pi the anomalous magnetic moment of
the electron was neglected. Shifts of levels due to Stark
eGect and relativistic and higher order corrections to
Zeeman splitting were ignored.

*Work supported jointly by the Signal Corps and ONR.
f Present address: Department of Physics, Stanford Univer-

sity, Stanford, California.
6' W. E.Lamb, Jr., and R. C. Retherford, Part I, Phys. Rev. 79,

549 (1950), and Part II, 81, 222 (1951).

There is no one place in the literature where a treat-
ment of all these effects may be found. One may only
form a patchwork Hamiltonian by collecting separate
terms from papers by various authors who have been
concerned with limited aspects of the problem. It would

probably not be justifmd here to give a detailed system-
atic theory, but it does seem worthwhile to indicate the
basis of the rather provisional treatment which is now
possible. The object is to write down all terms known
at present having a potential magnitude of 0.1 Mc/sec
or larger in the discussion of the precision experiments
of Part IV.

The electron and proton should be allowed to interact
with one another through their intermediate coupling
with the quantized electromagnetic field and the vacuum
of occupied negative energy states for electrons and
protons. By eliminating these eGects from the theory,
one hopes to find an equivalent two-body problem in
which the two particles have a velocity and spin de-
pendent interaction with one another, and the particles
themselves have somewhat changed properties (renor-
malization of charge and mass, anomalous magnetic
moments, etc.).

At present, this program has not been fully carried
out. Those terms of low orders in the fine structure
constant which have been found will be incorporated
into the following discussion. It should be relatively
easy to make the small corrections necessary when any

- missing terms have been calculated.
The starting point is here taken to be a two-body

Dirac equation for electron and nucleus. Even when the
nucleus is a proton and not a deuteron there might be
grave doubt that it would obey an equation of the
Dirac type in view of its anomalous magnetic moment,


