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The multiple-scattering theories of Molitre and Snyder-Scott are compared and the equivalence of the
mathematical development stated. Using the preferable single-scattering probability of the Moliére theory,
results are quoted of interest to experimenters. Several mean-value quantities are given: mean arithmetic
angle, median angle, half-width, 1/e¢ width, angle 1/Pow? related to the zero-angle amplitude, and mean
arithmetic angle with a cutoff at 4 times the mean. These quantities are given for both the projected tangent
angle and projected chord angle distributions, in the form of linear relationships between the square of
the angle divided by © and the logarithm of Q, where @ is the mean number of scatterings undergone by
the particle in question. The linear relationships are good to 1 percent for @ from 10% to 105 Information
is also given on smoothed-out distributions, and on an estimate of the error for the cut-off arithmetic mean
angle. The scattering constant K is given for several methods of measurement, for Ilford G-5 emulsions.

HE multiple scattering theories of Moliére' and
Snyder and Scott*3 are based on the same mathe-
matical development. Moliére has an extensive discus-
sion of the single-scattering law used in this develop-
ment, and his results are superior to those of Snyder
and Scott in this regard. It is the purpose of this article
to state explicitly the relations between the two theories
. and to quote some formulas for various types of mean
value that have been derived from the numerical tables
of references 2 and 3.

We shall use the same notation as given in the previ-
ous papers. Moliére’s single-scattering formula may be
obtained from that of Snyder and Scott by (1) replacing
the angular unit 7o by x,=1.13700/(1.13+3.76+?)
and (2) replacing the mean number of scatterings z by*
Q=2n0%/x,2=2(1.13)2(1.1343.764*)"\. Here v=227'/
1378; Z,Z' are, respectively, the atomic numbers of
the scattered particle and the scattering nucleus, B¢ is
the velocity of the scattered particle, the factor 1.13 in
front of the radical is the ratio of the Bohr radius to
the Fermi-Thomas radius for hydrogen, and the num-
bers 1.13 and 3.76 under the radical sign arise from an
empirical fit! to a Fermi-Thomas single-scattering
calculation. We can thus use our numerically calculated
functions? W (n|z) for the projected angular deviation
7 after a pathlength corresponding to z, with Moliére’s
corrections, by writing for the distribution in actual
angle $:

P(®)d2=W (/x| 0)d®/ X (1

The small-angle approximation is used, and the func-
tions are so normalized that

f Pdd=1.

—

Moligre’s calculations depend on the introduction of a
quantity B, which is a function of Q, and a subsequent

* Work performed under the auspices of the AEC.

1 G. Moliere, Z. Naturforsch. 2a, 133 (1947), and 3a, 78 (1948).
2 H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
8W. T. Scott and H. S. Snyder, Phys. Rev. 78, 223 (1950).
1Q is the same as Qp in reference 1.

expansion in inverse powers of B, using as an angular
variable the quantity ¢=®&/x,(BQ)%.

For completeness, we give here the formulas for Q
and x,:

ATNIZABZ"2h?
Q= , (2a)
1.132m2c232(1.13+4- 3.76v?)
= 7830024322/ AB2(1+3.3372); (2b)
Xy=1.13me2Z}(1.13+3.76v2)}/Iip radians, (3a)
=0.257Z3(1+3.33y2)%/pc degrees. (3b)

In case the scattering occurs in a mixture of materials,
we must find x, and Q from the separate nuclear species
(denoted by index ) by the following:

logxy=Z{(N:Z2logxi)/Z{NZ32) 4)

and
x2Q=4mte'Z"*(pcB) 22N ;Z # radians?. (5a)
= 515627/ AP degt. (5b)

In these formulas, N is the number of scattering
nuclei per unit volume, ¢ is the length of scattered track,
o is the track length measured in grams/cm? of scatterer,
A is the atomic weight of the scatterer, m and e refer
to the electron mass and charge, $ is the momentum of
the scattered particle, and pc in formulas (3b) and (5b)
is measured in Mev/c. The case of energy loss in the
scattering material may be included by the method of
Moliere.! The effect of electron-electron scattering can
be included for those cases in which it is pertinent
(small angles, small Z) by writing Z2+Z; for Z? in
Egs. (4) and (5a). This correction has been discussed
by Hanson, Lanzl, Lyman, and Scott.®

We have compared our tables with the results of the
first three terms of Moliére’s expansion and find excel-
lent numerical agreement for six values of @ from 100
to 84000—in most cases better than 1 percent and
always within about 2 percent. Moliere’s functions f®

5 Reference 1, second paper, Eq. (6.10').
8 Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).
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and f® are not tabulated to much greater accuracy.
We have also extended his tables of these functions for
¢ from 4 to 13.5 in order to compare the tails of our
curves, and again have found excellent agreement. The
asymptotic formula in reference 2 can be readily shown
to agree with that of reference 1; however, the arrange-
ment of terms is different. The expansion given in
reference 2 is equivalent to the terms in the same powers
of ¢ in the f®, f® and f® terms of reference 1. Terms
in higher inverse powers of ¢ are given by Moliere for
f®and f® and it is with these, terms that our numerical
tables agree. Butler” has found an asymptotic develop-
ment by another method which is almost identical with
Moliere’s f® term alone. The f® term for Q=100
contributes 3 percent at ¢=4 and 1 percent at ¢=13.
These relative contributions are reduced to one-half at
2=24000.

The use of numerical tables or graphs, however, is
tedious for purposes of comparison with experiment.
We have therefore calculated several mean-value ex-
pressions that may be of use in various experiments.
It turns out that if we plot, for any of these values ¢,
the quantity Ty=v?/x,2Q as a function of logQ, an
almost straight line results. Consequently we give our
results in the form of such linear relationships, which
are sufficiently accurate for most experimental purposes.

The quantities chosen are the following: mean abso-
lute angle, median absolute angle, angle for which
P=Py/2 (“half-width”), angle for which P=Py/e
(“1/e width”), the angle ®,=1/Pyx? derived from P,
(the value of P at ®=0", and a cut-off mean absolute
angle calculated with P cutoff at 4 times the cut-off
mean. The corresponding values of ¢ and Ty will be
denoted by ®m, Tw; Pmed, Tmed; P1, T35 Prsey, Tye;
(I)Oy TO; (I)mcu, Tmco~

We have in addition calculated the corresponding
quantities for the distribution in the angle a between

7S. T. Butler, Proc. Phys. Soc. (London) 63A, 599 (1950).
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two adjacent chords, as a function of the mean number
of scatterings in the track containing the two chords.?
The quantities will be labeled am, Cm;j otmed, Cmea; €tc.
(T for tangents and C for chords).

Another way of presenting multiple-scattering results
is in terms of the ‘“scattering constant.” If some type
of mean angle ¥ is measured, the corresponding scat-
tering constant Ky=V2ypv/i}, where  and v refer to
the scattered particle and ¢ is the length of track. (The
V2 is needed because, in the case of chord angles, our ¢
includes fwo chords.) It is well known that Ky is a
function only of 1/8—2. In terms of Ty (or Cy) we can
write, using Eq. (4),

K 2= 204220 /1= (Swe 22N Z DTy, (6)

We find for the 7”s and C’s:
Tw={|®|)a2/xy22=1.044-+0.809 log1oQ; (7a)
Tmed= | ®| mea®/ x4202=0.222+0.596 log;02; (7b)
Ty=($1)%/x,*2=0.03541.831 log102; (7¢)
Tye=(®1/¢)%/ x+22=0.25342.636 log10Q; (7d)
To= (mPo?x22)~'=0.806+2.656 log1oQ; (Te)
Tn; o= | ®| Dav; co?/ X+22=0.418+0.818 log10Q; (71)
Con={| | I/ x422=0.29940.260 log1o2; (8a)
Cunod= | @] mod?/ x22=0.03340.200 log1o2; (8b)
Cy=(03)?/x,*@=—0.123+40.613 log;0Q; (8¢c)
Cro=(a1/¢)?/ x42=—0.10540.879 log1,Q; (8d)
Co= (rP2x,20)~'=0.088+0.885 log102; (Se)
Comsco={] @] Yavs ec?/ X2 = 0.090+0.272 log162. (8f)




MEAN-VALUE CALCULATIONS FOR MULTIPLE SCATTERING

Figs. 1 and 2 show the calculated results and fitted
lines for the T”s and C’s.

With minor exceptions, the formulas agree with the
calculations within 1 percent over the range of our
tables, from Q=100 to Q=84,000 for the tangent
distribution and 100 to 100,000 for the chord distribu-
tion. They were each fitted for six or seven values of Q,
by a least-square-relative-error method. The formula
for Thea is off by 1.2 percent at one point, that for Cn
by 1.3 percent at one point, and that for Creq by 1.6
percent at one point, with no other deviations as much
as 1 percent.

The values for the mean absolute angle were com-
pared with the analytic formula of Moliére, and it was
found that the linear relation is good to 1 percent out
to =107, and to 3 percent to Q=10°. The values for
T1se, T3, and T are closely related to Moliere’s B, which
obeys the linear relationship B=1.1534-2.583 log1oQ
good to 3 percent out to @=10°. Hence we believe that
all our formulas may be safely extrapolated for large Q.
Their accuracy is, however, not good for € much
below 100.

Figure 3 shows a plot of B against log @, with
Moliére’s values and some further calculations of ours,
along with fitted line.

In the Gaussian approximation and in the limit of
large Q for the exact small-angle case, there is a relation
between the C’s and the 7’s. The factor as usually
stated is (3/2)}, but since © here for the chord case
refers to two chords and the angles are squared, we
find a factor 3. The coefficients of the logarithms in
Egs. (7) are all within 0.4 percent of 3 times the
corresponding coefficients in (8). However, the constant
terms show no such simple relationship.

We have not made calculations for the distribution
of angles between ‘‘best-fit” or “smoothed-out” chords,
as used by various investigators using photographic
emulsions. However, Moliére has dealt with this case
in considerable detail.® The smoothing-factors for the
Gaussian part of the calculation are given by Moliere as
(3/2)* for the chord case, (35/26)} for the angles
between successive best-fitting (least-squares) lines, and
(70/61)% for the angles between alternate best-fitted
chords. We can thus approximate the effect of using
successive best-fitted lines by multiplying our chord
functions (8a)-(8f) by the factor 3/(35/13)=39/35,
and the effect of using alternate chords in half-cells by
multiplying the tangent functions (7a)—(7f) (which give
the nearest results) by 61/70. For this last calculation
the length ¢ in Eq. (5a) refers to the center-to-center
distance of two alternate chords. Goldschmidt-Cler-
mont? uses a smoothing factor of 0.96, for which
(61/70)¥=0.934 is a closer approximation.

The extent to which the Gaussian approximation is

8 G. Moliere, unpublished manuscript. I am indebted to Dr.
Moliere for communicating his results to me in prepublication

form.
?Y. Goldschmidt-Clermont, Nuovo Cimento 7, 331 (1950).
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valid can be shown by correspondences among the
various T’s. If we characterize a Gaussian distribution
by its 1/¢ width ®,,=w, the various other quantities
are given by {|®|)n=w/m?; |P®|mea=0.476%9w; &
=w(log.2)}; (Por)'=w; and {|®|)a;e=0.5614w.
Calculating w from the various 7”s by these formulas
gives for the coefficient of logif, in order, (a) 2.593,
(b) 2.637, (c) 2.642, (d) 2.636, (e) 2.656, (f) 2.595. For
large Q, then, the criteria (7b), (7c), (7d), and (7e) agree
within 1 percent showing that the central part of the
curve has indeed a Gaussian shape. The effect of the
plural scattering tail is still felt to an extent of about
2 percent for large Q.

It will be noted that we do not refer to a mean square
angle. One of the simplifications used in the theory
results in the fact that the single-scattering law does
not possess a mean square unless a somewhat arbitrary
cutoff is introduced. This fact has a negligible effect
on the calculations unless one should wish a multiple-
scattering mean square angle. However, the statistical
errors introduced by using the mean square as an
experimental criterion are considerable and make this
calculation less useful than the simpler mean absolute
angle.

On the other hand, a mean-square angle can be of use
in calculating the errors involved in a series of repeated
measurements. Specifically, if a series of chord angles
are measured using #+-1 cells on the same track, as in
an emulsion, and a mean absolute angle calculated, the
rms deviation of this result from the expected mean can
be found by the well-known theorem on the variance
of a sample mean for an arbitrary distribution—namely,
that the rms deviation is #~* times the rms deviation
expected for a single measurement. This result requires
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the successive angles to be independent, which is true
for the tangent case but not for the chord case.

However, in an earlier calculation concerned with a
measurement of mean-square angle of scattering,® a
correlated, Gaussian-approximation formula was used
for 8 chords and yielded an rms spread about 5 percent
greater than the uncorrelated calculation. Thus, the
uncorrelated error calculation for the mean absolute
chord angle method should be good to 5 percent or
better if 10 or more cells are used.

We have calculated for both the tangent and chord
angle cases the rms deviation of the cut-off mean
absolute angle, and quote here the results

(2 1s 00/ X722 =0.99841.221 log 1092;
(0 cof X422 =0.2020.422 logyQ.

(7g)
(8g)

These formulas are also good to 1 percent. Using
(71), (7g) and (8f), (8g) we find specifically

[(®%m; c0—(| q>[ Moo /(| @[ Maseo=0.82 for Q=102
=0.77 for Q=10%;
[<O‘2>AV; eo—{ | a | >Av; e 1}/ l a | >Av; ©=0.80 for Q=102
=0.77 for Q=10°

Thus, no serious misestimation of error will be made
if we use for # angular measurements of any sort on a
track, a standard deviation for the arithmetic mean of
0.85%~% times the mean.

For the case of Ilford G-5 emulsions, we have calcu-
lated the scattering constant K. In agreement with
Snyder, we find that 2N .Z2=3.70X10%, or (Z%)}
=21.34. However, using Eq. (4) instead of an average
of Z** we find, combining with Eq. (5) and f=1, that
Q=0631sy where s, is the cell-length ¢/2 in units of 100
microns. This result is equivalent to using Z=40.6 in
Eq. (3b), and differs from the value z=1248s, of
reference 11, which was calculated from Eq. (2a) with-
out the factors 1.13% and 1.13+3.76+? and involved
(Z43)p=(16.22)*5. For so=1, =631, we find instead
of the value' 26.8: (a) complete mean value, K,,=25.8
from (82); (b) cut-off mean value, Kmeo=23.2 from (8f).
If we wish to compare the results of using Egs. (7) and
a factor %4, we find: (c) complete mean value from
Tn/3, Kn'=26.4; (d) cut-off mean value from Tmco/3,
Kool =23.9.

With somewhat less reliability, we can calculate
scattering constants using Moliére’s smoothing factors.
For best-fitted lines (assumed to be the same as a
least-squares fitting would yield), we have: (e) complete

10 W. T. Scott, Phys. Rev. 75, 1763 (1949).
1H,'S. Snyder, Phys. Rev. 83, 1068 (1951).
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mean value from (39/35)Co, Km—smooth=27.2; () cut-
off mean value from (39/35)Conco, Kmeco—smooth=24.5.

Finally, for angles between alternate smoothed chords
at separations 2s, we have, dividing by 2 to reduce to
cell-length s: (g) complete mean value from (61/140) T,
K—a15=30.2; (h) cut-off mean value from (61/140) T'nco,
Kmco—a1s=27.4. The use of Z2+Z; instead of Z; in
these results would increase {(Z?) by 0.29 percent and
would have a negligible effect on Q. Hence all the
results above can be increased by about 0.1 because
of this effect. The variation of K with cell-length is to
be found, of course, from the appropriate one of Egs.
(7) or (8).

The variation of @ with 32 is given to sufficient
accuracy by Fig. 2 of the paper by Gottstein et al.??
The values given by this figure must be multiplied by
2 for use in our formulas.

We have compared our results with those of Williams’
scattering theory® as discussed by Voyvodic and
Pickup." The results of this theory can be written in
similar form to Egs. (7). In particular, the mean and
cut-off mean values of Williams’ theory fit the following
formulas:

T =1.6340.7910g102, Tmeo” = 1.1840.79 logy®.

The differences from the present results will evidently
be greatest for small Q.

Work is progressing on formulas similar to Egs. (7)
for the spatial (unprojected) tangent angle distribution,
and will be reported later.

We should like to take the opportunity here to point
out that the graphs of the two Snyder-Scott distribu-
tions printed in reference 3, Figs. 5 and 6, have had
their legends interchanged.

Note added in proof: Recent, unpublished words by S. Olbert on
the inclusion in Molitre’s theory of the effect of the finite size of
nuclei indicates that the tails of the multiple scattering distribu-
tion are considerably reduced by this effect. Thus our results may
need modification, especially for the mean absolute angles; to a
lesser extent for the cut-off mean median and (Pom)~? values;
and probably very little for the § and 1/e widths. I am indebted
to Dr. Bruno Rossi for communicating these results to me.
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