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The multiple-scattering theories of Moliere and Snyder-Scott are compared and the equivalence of the
mathematical development stated. Using the preferable single-scattering probability of the Moliere theory,
results are quoted of interest to experimenters. Several mean-value quantities are given: mean arithmetic
angle, median angle, half-width, 1/e width, angle 1/I'07'& related to the zero-angle amplitude, and mean
arithmetic angle with a cutoff at 4 times the mean. These quantities are given for both the projected tangent
angle and projected chord angle distributions, in the form of linear relationships between the square of
the angle divided by 0 and the logarithm of 0, where 0 is the mean number of scatterings undergone by
the particle in question. The linear relationships are good to 1 percent for 0 from 10' to 10'. Information
is also given on smoothed-out distributions, and on an estimate of the error for the cut-oG arithmetic mean
angle. The scattering constant E is given for several methods of measurement, for Ilford G-5 emulsions.

'HE multiple scattering theories of Moliere' and
Snyder and Scott" are based on the same mathe-

matical development. Moliere has an extensive discus-
sion of the single-scattering law used in this develop-
ment, and his results are superior to those of Snyder
and Scott in this regard. It is the purpose of this article
to state explicitly the relations between the two theories
and to quote some formulas for various types of mean
value that have been derived from the numerical tables
of references 2 and 3.

We shall use the same notation as given in the previ-
ous papers. Moliere's single-scattering formula may be
obtained from that of Snyder and Scott by (1) replacing
the angular unit go by x~ = 1.13qog(1.13+3.76'')
and (2) replacing the mean number of scatterings s by'
Q=sq '/x '=s(1.13) '(1.13+3.76'') '. Here y=ZZ'/
137/; Z, Z' are, respectively, the atomic numbers of
the scattered particle and the scattering nucleus, Pc is

the velocity of the scattered particle, the factor 1.13 in
front of the radical is the ratio of the Bohr radius to
the Fermi-Thomas radius for hydrogen, and the num-

bers 1.13 and 3.76 under the radical sign arise from an
empirical fit to a Fermi- Thomas single-scattering
calculation. We can thus use our numerically calculated
functions' W(mls) for the projected angular deviation

g after a pathlength corresponding to s, with Moliere's
corrections, by writing for the distribution in actual
angle 4:

The small-angle approximation is used, and the func-
tions are so normalized that

I'di = 1.

Moliere's calculations depend on the introduction of a
quantity 8, which is a function of 0, and a subsequent

*Work performed under the auspices of the AEC.
' G. Moliere, Z. Naturforsch. 2a, 133 (1947), and 3a, 78 (1948),
2 H. S. Snyder and W. T. Scott, Phys. Rev. ?6, 220 (1949).' W. T. Scott and H. S. Snyder, Phys. Rev. ?8, 223 (1950).
4 0 is the same as Qt, in reference 1.

expansion in inverse powers of 8, using as an angular
variable the quantity p= C/x~(BQ)'.

For completeness, we give here the formulas for 0
and x~'.

Q=
1.13'nz'c'P'(1. 13+3.76'')

= 78300.Z'"Z"/A p'(1+ 3 33'')

(2a)

(2b)

x~= 1.13me'Zl(1. 13+3.76'')'/AP radians, (3a)

=0.257Z&(1+3.33'')&/pc degrees. (3b)

In case the scattering occurs in a mixture of materials,
we must find x~ and 0 from the separate nuclear species
(denoted by index i) by the following

logy~=Z, (Xg;2 logy~~)/Z, (X;ZP) (4)
and

x '0,=4mte'Z"(pep) 'Z X;Z' radians' (Sa)

= 5150Z"(Z')A, /A p'c'p' deg'. (Sb)

In these formulas, 2V is the number of scattering
nuclei per unit volume, t is the length of scattered track,
o is the track length measured in grams/cm' of scatterer,
2 is the atomic weight of the scatterer, m and e refer
to the electron mass and charge, p is the momentum of
the scattered particle, and pc in formulas (3b) and (Sb)
is measured in Mev/c. The case of energy loss in the
scattering material may be included by the method of
Moliere. ' The effect of electron-electron scattering can
be included for those cases in which it is pertinent
(small angles, small Z) by writing ZP+Z; for ZP in
Eqs. (4) and (Sa). This correction has been discussed

by Hanson, Lanzl, Lyman, and Scott. '
We have compared our tables with the results of the

first three terms of Moliere's expansion and find excel-
lent numerical agreement for six values of 0 from 100
to 84000—in most cases better than 1 percent and
always within about 2 percent. Moliere's functions f&'&

~ Reference 1, second paper, Eq. (6.10').
I Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).
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Figs. 1 and 2 show the calculated results and 6tted
lines for the T's and C's.

With minor exceptions, the formulas agree with the
calculations within 1. percent over the range of our
tables, from Q=100 to 0=84,000 for the tangent
distribution and 100 to 100,000 for the chord distribu-
tion. They were each 6tted for six or seven values of Q,

by a least-square-relative-error method. The formula
for T,d is off by 1.2 percent at one point, that for C
by 1.3 percent at one point, and that for C,q by 1.6
percent at one point, with no other deviations as much
as 1 percent.

The values for the mean absolute angle were com-
pared with the analytic formula of Moliere, and it was
found that the linear relation is good to 1 percent out
to Q=10', and to 3 percent to Q=10'. The values for
Tj~„Tg, and T0 are closely related to Moliere's 8, which
obeys the linear relationship 8=1.1 53+ 2. 5831ogMQ

good. to 3 percent out to Q= 10'. Hence we believe that
all our formulas may be safely extrapolated for large Q.
Their accuracy is, however, not good for Q much
below 100.

Figure 3 shows a plot of 8 against log 0, with
Moliere's values and some further calculations of ours,
along with 6tted line.

In the Gaussian approximation and in the limit of
large Q for the exact small-angle case, there is a relation
between the C's and the T's. The factor as usually
stated is {3/2)', but since Q here for the chord case
refers to two chords and the angles are squared, we
Gnd a factor 3. The coeKcients of the logarithms in

Eqs. (7) are all within 0.4 percent of 3 times the
corresponding coeKcients in (8). However, the constant
terms show no such simple relationship.

%e have not made calculations for the distribution
of angles between "best-6t" or "smoothed-out" chords,
as used by various investigators using photographic
emulsions. However, Moliere has dealt with this case
in. considerable detail. The smoothing-factors for the
Gaussian part of the calculation are given by Moliere as
(3/2)& for the chord case, (35/26)' for the angles
between successive best-fitting (least-squares) lines, and
(70/61)'* for the angles between alternate best-fitted.
chords. We can thus approximate the effect of using
successive best-6tted lines by multiplying our chord
functions (8a)—(Sf) by the factor 3/(35/13)=39/35,
and the e6ect of using alternate chords in half-cells by
multiplying the tangent functions (7a)—(7f) {which give
the nearest results) by 61/70. For this last calculation
the length t in Eq. (5a) refers to the center-to-center
distance of two alternate chords. GoMschmidt-Cler-

mont uses a smoothing factor of 0.96, for which

(61/70) l= 0.934 is a closer approximation.
The extent to which the Gaussian approximation is

8 G. Moliere, unpublislmd manuscript. I am indebted to Br.
Moliere for communicating his results to me in prepublication
form.' Y. Goldschmidt-Clermont, Nuovo Cimento 7, 331 {1950),
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valid can be shown by correspondences among the
various T's. If we characterize a Gaussian distribution
by its 1/e width C'i~, =w, the various other quantities
are given by (IC'I)"=~/~" IC'I-~=04769~' Cl
=to(log, 2)'; (Pe~&) '=u; and (i 4 i)A„,.„——0.5614tt.
Calculating m from the various T's by these formulas
gives for the coeKcient of logMQ, in order, {a) 2.593,
(b) 2.637, (c) 2.642, (d) 2.636, (e) 2.656, (f) 2.595. For
large Q, then, the criteria (7b), (7c)& (7d), and (7e) agree
within 1 percent showing that the central part of the
curve has indeed a Gaussian shape. The eGect of the
plural scattering tail is still felt to an extent of about
2 percent for large Q.

It will be noted that we do not refer to a mean square
angle. One of the simplifications used in the theory
results in the fact that the single-scattering law does
not possess a mean square unless a somewhat arbitrary
cuto6 is introduced. This fact has a negligible eGect
on the calculations unless one should wish a multiple-
scattering mean square angle. However, the statistical
errors introduced by using the mean square as an
experimental criterion are considerable and make this
calculation less useful than the simpler mean absolute
angle.

On the other hand, a mean-square angle can be of use
in calculating the errors involved in a series of repeated
measurements. Speci6cally, if a series of chord angles
are measured using m+1 cells on the same track, as in
an emulsion, and a mean absolute angle calculated, the
rms deviation of this result from the expected mean can
be found by the well-known theorem on the variance
of a sample mean for an arbitrary distribution —namely,
that the rms deviation is I & times the rms deviation
expected for a single measurement. This result requires
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the successive angles to be independent, which is true
for the tangent case but not for the chord case.

However, in an earlier calculation concerned with a
measurement of mean-square angle of scattering, " a
correlated, Gaussian-approximation formula was used
for 8 chords and yielded an rms spread about 5 percent
greater than the uncorrelated calculation. Thus, the
uncorrelated error calculation for the mean absolute
chord angle method should be good to 5 percent or
better if 10 or more cells are used.

We have calculated for both the tangent and chord
angle cases the rms deviation of the cut-off mean
absolute angle, and quote here the results

(C &Av; «/x~'Q =0.998+1.221 logioQ i (7g)

(n'&A„, „/x~'Q =0.202+0.422 logioQ. (Sg)

These formulas are also good to 1 percent. Using
(7f), (7g) and (Sf), (Sg) we find speci6cally

L&~'&";-—& I
C'l &A;-'3'/&

I
c'I &;-=o 82

=0.77 for 0= 10'
E&~'&";-—& I

~
I &A.;-'3'/&

I
~

I
&A;-= o 8o

=0.77 for 0= 10'.

Thus, no serious misestimation of error will be made
if we use for n angular measurements of any sort on a
track, a standard deviation for the arithmetic mean of
0.85m ' times the mean.

For the case of Ilford G-5 emulsions, we have calcu-
lated the scattering constant K. In agreement with
Snyder i we find that X~X&ZP=3 70X102, or (Z &Av~

=21.34. However, using Eq. (4) instead of an average
of Z4i' we 6nd, combining with Eq. (5) and P=1, that
Q=631sp where $p is the cell-length t/2 in units of 100
microns. This result is equivalent to using Z=40.6 in
Eq. (3b), and differs from the value s=1248$O of
reference 11, which was calculated from Eq. (2a) with-
out the factors 1.13' and 1.13+3.76'', and involved
&Z'I'&A„=(16.22)'i'. For $0=1, Q=631, we find instead
of the value" 26.8: (a) complete mean value, E„=25.8
from (Sa); (b) cut-off mean value, K „=23.2 from (8f).
If we wish to compare the results of using Eqs. (7) and
a factor s, we find: (c) complete mean value from
T /3, E '=26.4; (d) cut-off mean value from T„„/3,
E „'=23.9.

With somewhat less reliability, we can calculate
scattering constants using Moliere's smoothing factors.
For best-6tted lines (assumed to be the same as a
least-squares 6t ting would yield), we have: (e) complete

'0 W. T. Scott, Phys. Rev. 15, 1763 (1949).
"H. S. Snyder, Phys. Rev. 83, 1068 (1951).

mean value from (39/35)C, ' E„,„,i, ——27.2; (f) cut-
off mean value from (39/35)C ... E « .~ooih=24 5.

Finally, for angles between alternate smoothed chords
at separations 2s, we have, dividing by 2 to reduce to
cell-length $: (g) complete mean value from (61/140) T,E,ii,=30.2; (h) cut-off mean value from (61/140) T „,
E~««i, =27 4 T. h. e use of ZP+Z; instead of Z; in
these results would increase &Z')A„by 0.29 percent and
would have a negligible effect on Q. Hence all the
results above can be increased by about 0.1 because
of this effect. The variation of E with cell-length is to
be found, of course, from the appropriate one of Eqs.
(7) or (8).

The variation of Q with P' is given to suflicient
accuracy by Fig. 2 of the paper by Gottstein et al. '
The values given by this figure must be multiplied by
2 for use in our formulas.

We have compared our results with those of Williams'
scattering theory" as discussed by Voyvodic and
Pickup. ' The results of this theory can be written in
similar form to Eqs. (7). In particular, the mean and
cut-off mean values of Williams' theory fit the following
formulas:

T~w= 1.63+0.79 logioQ T~„w=1.18+0.79 logipQ.

The differences from the present results will evidently
be greatest for small Q.

Work is progressing on formulas similar to Eqs. (7)
for the spatial (unprojected) tangent angle distribution,
and will be reported later.

We should like to take the opportunity here to point
out that the graphs of the two Snyder-Scott distribu-
tions printed in reference 3, Figs. 5 and 6, have had
their legends interchanged.

Pote added zrl, proof: Recent, unpublished words by S. Olbert on
the inclusion in Moliere's theory of the e6'ect of the 6nite size of
nuclei indicates that the tails of the multiple scattering distribu-
tion are considerably reduced by this eBect. Thus our results may
need modi6cation, especially for the mean absolute angles; to a
lesser extent for the cut-oG mean median and (I'07') & values;
and probably very little for the —,

' and 1/e widths. I am indebted
to Dr. Bruno Rossi for communicating these results to me.
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