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factor which is essentially «+3eq/2A+, through
the effect mentioned after (20). This is a small effect,
and amounts, in the case mentioned above, to a 0.2
percent range increase.

B. Range Distribution

The mean square straggling is given by the old
expression of Bohr, and can be expressed asymptotically
by

Pa=(DR') = r'L«+3/2A+3/A'+ lS/2A'+

where r'= e~EO'/k'A' and

A =Ag(Eo) =2 in(egEO/I) —3eg/2+

If we de6ne y= (s—(x))/pp, and 'rr = pp/P!pp I
~ w1th

the P, given by (23'), then the range distribution is

h(y) exp[—y'/2), with h(y) given as an expansion in
hermite polynomials by (24). This function has a
pronounced tail toward shorter-than-average range.

C. Most Probable Range

The most probable range is somewhat longer than
the mean range, to compensate for the short range tail.
One can estimate from the above that the displaceInent
ls

&prob &mean 3y3P2'= P3/2P2

which is about 0.1 unit in Fig. 1, and is indicated there.
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The theory of the rotational magnetic moment in «Z molecules is presented. This theory is applied in
particular to describe experiments on the Zeeman effect for a linear rotor, OCS, and a symmetric
top, NH3.

1. THEORY

'HE - recent development of experimental tech-
niques for observing low energy quantuIQ transl"

tions in the microwave and radiofrequency parts of the
spectrum permits the study of molecular interactions
which were previously not observable. These include
internal molecular interactions, as well as the inter-
action of molecules and their component particles with
externally applied fields. This report is concerned in
particular with the magnetic moment generated by a
molecule due to its free rotation, and the interaction of
this moment with an external magnetic field, the
Zeeman eGect.

The measurements reported in Part 2 were made on
molecular absorption lines in the microwave region.
Other methods are available for making somewhat
similar Zeeman measurements, notably the very precise
molecular-beam technique. "These other experiments
will not be discussed here except to point out that the
various methods complement each other, since each
has its own experimental difficulties, with the result
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that some types of molecules and interactions can be
eGectively studied by one method and not by another.
In some instances the various methods may serve as a
check on each other,

The molecules to which the following discussion
applies are those with '5 electronic ground states, that
is, those with zero total orbital and zero total spin
angular momenta. Such molecules include by far the
majority of the known cases, since the pairing of elec-
trons with oppositely directed spins and the filling of
electronic shells are so important to the formation of a
chemical bond. The oxygen and nitric oxide molecules
are important exceptions, each possessing a magnetic
moment about equal to a Bohr magnetron since the
electronic angular momenta are not zero in the ground
state. For the '5 molecules the rotational magnetic
moment is much smaller and can be pictured as the
result of electric currents due to the circulation of the
charged nuclei and electrons. The nuclei can be con-
sidered to rotate as a semirigid framework, but, as will

be seen, it is too naive to assume that the electronic
contribution will be that of the electronic charge cloud
frozen and rotating with the nuclear framework. Rather,
the molecular rotation perturbs the electronic motion,
due to the noncentral nature of the potential within a
molecule, and internal electric currents are set up even
though the electronic charge density distribution re-
mains essentially unchanged from that of the fictitious
nonrotating molecule.



ROTATIONAL MAGNETIC MOMENTS OF 'Z MOLECULES

The theory of the Zeeman eRect on the energy levels
of a system involving a given magnetic moment or
interacting moments is well known, and examples are
provided in the experiments described later. But to
interpret properly these experimental results it is also
necessary to investigate how the rotational molecular
moment actually arises and, in particular, its depen-
dence on the rotational state of the molecule, and the
molecular structural constants. This theory is implicit
in Van Vleck's dassic work on susceptibilities' ' and
has been carried out by others for some cases of specific
symmetry. Condon, ' using wave mechanics, calculated
the Zeeman eRect for a symmetric top due to a point
charge rigidly fixed on the top. This calculation, of
course, includes the linear rotor as a special case and
represents quite well the nuclear contribution to these
moments. Wick6 ' was first to calculate the electronic
contribution to the rotational moment in the case of a
diatomic molecule with two equivalent nuclei. Ramsey'
has extended his theory to the case of a diatomic
molecule with isotopic nuclei. Wick's immediate purpose
was to explain the results of experiments by Frisch
and Stern" and Estermann and Stern" on the hydrogen
molecule. These experiments represent the initial meas-
urements of such moments aside from. susceptibility
determinations. The measured moment of hydrogen
indicated that the electronic contribution was much
smaller than that of a rigid charge cloud, but Wick
showed that it was indeed of the order of magnitude
that one would expect on a more realistic picture of
the electronic motion. Wick's considerations in one of
his earlier papers' on the diatomic molecule are quite
simple and instructive and are repeated here to preface
the deriva, tion given later for the general rotating
molecule.

As shown by Van Vleck, ' two terms are of importance
for the susceptibility theory of 'Z molecules. One is a
diamagnetic term resulting from the Larmor precession
of the electrons in a magnetic field and. the other is an
induced electronic paramagnetism due to the non-
central potential for electronic motion which hinders
the pure I.armor precession. These terms are given in
Eq. (1).

where x,i „i,is the average susceptibility per molecule
and the magnetic field is assumed to be along the space-
6xed Z-axis.

The first term is the diamagnetic term and represents
the average of the squared distance of an electron from
the Z-axis summed over the electrons of the molecule.
The second term gives a positive contribution to the
susceptibility and is a sum over the electronic states of
terms involving the matrix elements of the Z-component
of the total electronic orbital angular momentum. Van
Vleck shows that the right side of Eq. (1) is invariant
to changes iri the position of the Z-axis with respect to
the molecule. For convenience in the following dis-
cussion the Z-axis will here be taken to pass through
the center of mass of the molecule. Van Vleck also
points out that the second term is zero for atoms if the
Z-axis is taken through the atomic nucleus, that is to
say, the Larmor precession is unhindered since the '

potential function is spherica, lly symmetric.
Now consider, following Wick, a diatomic molecule

rotating about the Z-axis with an angular velocity wg

in a field-free space, the nuclear axis of the molecule
rotating in the X—I' plane. If the electrons rotated
with the molecule as a frozen cha, rge cloud, they would

produce a magnetic moment along the Z-axis equal to

It may be seen, by inverting Larmor's theorem, that
the motion of the electrons due to the molecular rotation
will be the same to a first approximation as that which
would have been produced by a magnetic field

IIg —2mcre g/e. ——

By multiplying this field by the molecular susceptibility,
Eq. (1), the magnetic moment due to rotation-induced
electronic currents is obtained. This result is added to
Eq. (2), leaving only the paramagnetic term with a
nega, tive sign, since the diamagnetic circulation just
cancels the moment due to the rotation of the elec-
tronic charge. Thus

(1)
2m c & E&—Eo

With A~ g=2BJg, where 8 is the rotational constant,
It /2I, I is the moment of inertia, and. Iz is the rotational
quantum number, Wick's result is
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Bohr magnetrons per rotational quantum number. This
derivation shows the origin of the electronic contribu-
tion to the rotational moment. As Kick points out„
this moment is of the same sign as that of a rigid elec-
tronic rotation but may be entirely diRerent in magni-
tude. In another paper, 7 Wick derives this same result
more rigorously.
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From Larmor's theorem for atoms it is seen that the
inner shell electrons of atoms bound in a molecule will
be permitted more nearly free diamagnetic circulation
about their own nucleus than the outer or valence elec-
trons, since the inner electrons are in an almost spheri-
cally symmetric potential with respect to their own
nucleus. Their contribution to the rotational moment
can therefore be described as effectively canceling some
of the charge of their own nucleus, since they will

precess about their nucleus at a velocity just equal to
the rotational velocity. The magnetic moment along
the axis of a linear molecule is handled in a fashion
similar to that for atoms; since the potential is cylindri-
cally symmetric, completely free diamagnetic circula-
tion is possible and no magnetic moment exists.

Since the present work was undertaken, Jen" has
derived an expression for the rotational magnetic mo-
ment of a symmetric top molecule whose electronic and
nuclear charge principal axes are coincident with the
principal axes of inertia. The resulting nuclear con-
tribution is the same as in Condon's expression' and
the electronic contribution involves terms of Kick's
type as in Eq. (5). Jen unnecessarily separates the
electrons into "firmly bound" (inner shell) and "free,"
and arrives at an expression containing some terms
which are not obviously related to the total molecular
wave functions. The concept of "firmly bound" and
"free" electrons is useful for qualitative discussion or
for the estimation of magnetic moments, but, since the
demarcation is not at all sharp, the device has doubtful
value in a quantitative expression. Jen's derivation for
the symmetric top follows Condon's wave-mechanical
analysis, but includes the electrons as mentioned. The
wave mechanical analysis for the symmetric top, how-
ever, does not indicate a satisfactory approach to the
calculation of the rotational moment of a more general
molecule.

A more general formulation of the problem has been
devised and is presented here. The approach differs
from Condon's and Jen's in that the magnetic moment
is calculated directly from the defining equation

Eq. (7) is used. The complete matrix could be obtained
from the wave-mechanical approach in certain cases,
but with considerably more effort than by the method
used here. The oG-diagonal elements of the matrix are
important for the general Zeeman effect, and add to
the understanding of rotational moments. The present
general formulation is actually simpler to carry out
than the wave-mechanical calculation for the sym-
metric top since the rotational magnetic moment
matrix is developed in terms of the molecular angular
momenta and direction cosine matrices which are well
known. Thus the rotational magnetic moment problem
in the general molecule is solved to about the same
degree that the free rotation problem has been solved,
and any future simplification in the relevant matrices is
immediately applicable to rotational moments through
the relations given.

Theory of Rotational Magnetic Moments in 'X
Polyatomic Molecules

The magnetic moment of a system of particles is
defined by the equation

m= (1/2c) P; e, (r;&& v,) (8)

where t,; is the charge of the ith particle, r; is the position
vector of the ith particle from an arbitrary origin,
v;. is the velocity vector of the ith particle, and the sum
is over all particles. The magnetic moment due to the
free rotation of a 'Z polyatomic molecule will be calcu-
lated using this definition, but before doing so it is
necessary to derive what are essentially the velocities,
v;, from the rotational problem.

In the conventional fashion, the nuclear system will
be taken as a rigid framework. This introduces a
tremendous simplification of the analytical problem,
and in most cases the error incurred will be well beyond
the accuracy of measurements. Vibrational and cen-
trifugal effects on the rotational magnetic moments
will be briefly discussed later. Kith this simplification,
the hamiltonian for the molecular system, after the
translational part has been separated, may be written

m= (1/2c) P; e,(r;)&v,). II= 'P X '/I, + (1/2m) P-g P ( ) '+ V(u, b c), (9)
Such a starting point proves to yield general expressions
more simply than the alternate method of calculating
the Zeeman effect for the energy levels and inferring
the moment from

mg(J, 7) = —BlV(J, 7)/cIII. (7)

W(J, 7) is the energy of the rotational state charac-
terized by the rotational quantum numbers J and 7.,
and II is the magnetic field. As will be seen, by starting
with Eq. (6) one naturally arrives at the complete
matrix of m, rather than the diagonal elements referred
to a space-fixed axis, as is likely to be the case when

"C. K. Jen, Cruft Laboratory Technical Report No. 124,
Harvard University, August 22, 1950, and Phys. Rev. 81, 297
(2952).

where N, is the instantaneous angular momentum of
the nuclear system, referred to the principal axes of
inertia, g=a, b, and c, fixed in the molecule; I, is a
principal moment of inertia of the nuclear system;
p, is an instantaneous linear momentum of the jth
electron, referred ' to the principal inertial axis g;
V(a, fi, c) is the potential function for electronic motion
and involves only the relative coordinates of the par-
ticles. The total angular momentum of such a system
of particles is a constant of the motion. Let this quantity
be P; then instantaneously

(10)

where N is the angular momentum of the nuclear



Z Z (P.)P+ l'(o, &, c),
2tÃ g

and then the rotation dependent perturbation
II'= —Z. &OLg/I' (13)

Nuclear Contribution

By expanding Eq. (8) and referring all quantities
instantaneously to the principal axes of inertia, one has

(m.)-.= (1/2c) Z~ c~L(&"+c")~.
—(oa~a) &s—(ok&)~c]

(m~) ..= (1/2c) Z~ c~L—(&~o~)~.

+ (c~'+ o~') ~~—(4c~)~.g
(m.). ,= (1/2c) Pg cgL—(cpaI, )co,

—(cA)~~+(o~'+4')~, j (14)
'3 A similar derivation of this hamiltonian is given by H. 3. G.

Casimir, Rototioe of u Rigid Body ie Qvaefem 3/Iechomcs (J. 8.
%alter's Uitgevers-Maatschappj M. V., The Hague, 1931),p. 99.

system and L is the total electronic angular momentum.
Substituting for N in Eq. (9), one gets"

I'g' I'-gl.g i I.ge

+-Z
2 g Ig g Ig 2 g Ig

1
+ ZZ(P. )''+1'(~, &, c) (11)

28$ g

For 'Z molecules I is zero if a nonrotating molecule is
imagined and is quite small compared to P in the
rotating molecule. This fact is substantiated by the
magnetic moment measurements. The fact that the
electron mass is small compared to nuclear masses
means that for 'Z molecules the molecular rotation is
essentially unchanged whether the presence of the elec-
trons is acknowledged or not. But since the electronic
charge is of the same size as nuclear charges, a very
smaH fraction of a quantum of electronic angular mo-
mentum CRIl pr'oducc R magnetic moment comparable
to that of the nuclear system possessing a full quantum.
For this reason, the third term of the right-hand side of
Eq. (11) will be entirely negligible for the rotational
problem, and the second term may bc. taken as a
relevant perturbation term. This perturbation term
may be considered to act on the electronic motion
alone, since, as explained above, it yields the change in
electronic motion which is far more important in giving
rise to the existence of an electronic contribution to
the molecular magnetic moment than as a small correc-
tion to the nuclear motion. This amounts to the
scpRI'Rtlon of thc wRvc fuIlctlon 1Qto that of tlM orlglIlRl

rigid rotor wave function and of the Qew, perturbed,
electronic wave function.

Thc nuclcRl motion can thcI'cfoI'c bc specified by
I','/I„Pq'/I~ and P,'/I, . The electronic motion can be
found by first considering the unperturbed electronic
pI oblcIQ, which ls scen to bc independent of tlM
molecular rotation

where eI, is the charge of the kth nucleus, uq, b~, and cI,
are the coordinates of the kth nucleus referred to the
pI'lnclpRl incr'tlRl Rxcs, RDd m, mg, RQd cv, Rlc tlM RDgulRl'

vclocltlcs lcsolvcd Rlong thc lIMI'tlRl Rxcs. But

(mu) -= E G.g 'I'g
g'=a, b, c

whClC

G '= (1/2cI.) Z~ ca(4'+ca')

is a typical diagonal element of the Ggg
' tensor, and

G.~'= —(1/2cIt) P~ e(oA)
is a typical OG-diagonal element.

Because of the initial assumptions, Eq. (16) does not
involve the electronic coordinates, but this by no means
indicates thRt thc I matI'lx ls independent of thc
electronic state; rather, this result is always to be
applied only to 'Z states. The nuclear contribution to
the rotational moment matrix will thus depend on the
rotational stRtc Rnd ls glvcn ln tclIDs of constRQts of
the molecule, the Gg, ', and the matrices of the angular
IQOIDCnta Ig.

Since all of the electrons have the same value for t,,/m,
Eq. (8) reduces to

(m,),) —— eI.,/2mc—

where L will depend on P through the perturbation
term Eq. (13). If L is calculated for the electronic
ground state of a 'Z molecule using the wave functions
of the unperturbed electronic problem Eq. (12), the
result is of course zero. That is

(0IL,, I0) =0 (18)

where the 0's stand for the unperturbed electronic
ground states, $00 By ordina. ry perturbation theory,
the erst-order electronic state is given by

I; (~l L„lo)O'= A'+Z' Z ——
g Ig E„—Eo

Thus) to tlM 6rst order) thc cxpcctRtlon vRluc of Ig ls

(0IL.I0)'= (0 I L. I
0)+2' 2

fb g' Igr

(oI L.l~)(~II'I0)+(0II-'l~)(~IL. I0)
x

+higher order terms (g'= a, b, c). (20)

Combining Eqs. (20), (18), and (17), the result may be
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wi'it ten

(21)

G« "=— (OJLg/e)(Nfl. , /0)

G«'
(of I, [ ~)(~/ L,„[o)

Gu'=G. u '+Gas"

Gu~
*=G0~ '+ Goo

"* (23)

With a static magnetic fieM along a space-fixed axis
P(Ii=X, V, Z) we are interested in the expectation of
the magnetic moment along the axis. The transforma-
tion from molecule-fixed axes g=a, b, c to the space-
fixed axis Il is given by the direction cosines as'4

where eF, is the direction cosine. Using Eq. (22) this
relation may be written

m~=2 Z. c'~a 2' (Go+Go'*)&" (25)

Let us consider erst the nuclear contribution to the
magnetic moment. Since in general G«. '&G, ,', the
nuclear contribution to the magnetic moment in the
molecule-fixed system does not commute with the

"See Cross, Hainer, and King, J. Chem. Phys. 11, 27 I,'1943);
12, 210 (1944), for an exhaustive general discussion of the trans-
formations involved in the following section,

As in the case of the nuclear contribution, the relation
Eq. (21) gives the electronic contribution to the rota-
tional magnetic moment matrix as a function of con-
stants of the molecule, G«" and the matrices of the
angular momenta I', .

It can easily be shown that the G«. ' and the G« "
transform in the same way 'under a rotation of the
molecule fixed coordinate system from which they are
calculated. Also, it is easily established that I, G«.'
and I, G«" will have a set of principal axes fixed in
the molecule, which, in general will not be the same
for each and neither need. be the same as the principal
axes of inertia. However, in the case of a true symmetric
top these tensors possess only diagonal elements, the
principal axes being the same as the principal inertial
axes of the molecule. Even in the case of many asym-
metric tops it is clear that some or all of the off-diagonal
elements may be zero. Thus the situation is not quite
so hopeless as one might expect on considering the
general problem.

The G«. ' and G« "may of course be added to form
a new tensor, G«, in terms of which the total rotational
moment is expressible as

m, =-,' P,. (G„.+G„.*)I',. (g and g'=a, b, c) (22)

whele

direction cosine transformation. Thus, in the usual
quantum-mechanical fashion we use an average of the
product to assure a hermitian matrix for mp, which
divers by only a scalar factor from an energy. Thus,
the nuclear contribution is

or
(mp). .=-,' g L(mg)„„,e pg+c pg(m, )„„,]

(mr)-. =
2 Zu Zu Guu '(I''@~.+~'~,I';) (26)

The electronic contribution to the magnetic moment
must, of course, commute with the direction cosine
transformation, since it divers only by a scalar factor
from the electronic angular momentum. The commuta-
tion in this case results from the existence of matrix
elements of Cp, which are off-diagonal in e, the elec-
tronic quantum number. These off-diagonal elements
in e are readily evaluated directly, using the wave
function of Eq. (19), or, since we are interested in
(I.p), the quantities (4'z, L,,) are more conveniently cal-
culated. The resulting contribution by the electrons to
the magnetic moment may be written in terms of the
direction cosine matrix elements diagonal in e as

(mp). &„=-,' P, P, (G„"I';ep,+G„"~ep, I'g ) (27).
The total space-fixed rotational magnetic moment

may thus be written conveniently in terms of our
previous notation

m~= 2 E.Z' (G- &'C'~a+Go''C'ru&u )

In a representation in which P', I', and M(Pz) are
diagonal, the well-known matrix elements of the arigular
momenta are

P, Z, M(S.~S, lt-, M)=XZ

P. Z, M [ I„~I, Ey 1, M)
= ai(J, E, M)P (J, K+1, M)
= —,'kL J(5+1)—It (K+1)]'*. (29)

The association of a, b, and c with x, y, and s may be
made in any of six difI'erent ways in the general poly-
atomic molecule. It should be apparent that for sym-
metric rotors, for example, the s-axis should be taken
as the symmetry axis of the molecule for simplicity.
For linear rotors, similarly, the s-axis would be taken
as the internuclear axis. For asymmetric rotors the
assignment should be made in the usual fashion, i.e., to
minimize the free rotation problem.

The matrix elements for the direction cosines in
factored form and in the above representation are given
in Table I, which is copied from reference 14. Note that
the total element is given as

p, z, M~&„~j', Z', M')=(Z~c„~E)
~ (J, Itive„(S', It') P, M(e„[g', M'). (3O)

Simple matrix multiplication of these elements thus
gives the desired matrix for mp for the general poly-
atomic molecule. A few generally pertinent matrix
elements are given in the Appendix.



TABLE I. Direction cosine matrix elements.

Matrix element factor

(J I
4'~g

I
J')

(J, K i
C z, i

J', Z)

(J, K)e&„]J' K~1)
=+i(J, KfC p,

/

J', Z+1)

(J, 34'~Cgg~ J', M)

(J, 3I~C»,
~

J' 34~1)

5+1
(4(J+1)D2J+1)(2J+3)3'i '

2DJ+1)'—Z'g&

WP(JAZZ+ 1)(J+Z+2)]&

2/{my»2 —~j»

wp(JAM+1) (JAM+2) g&

Value of J'
J

I 4~{~+»j-I L4J(4J'—1l&g '

—2{J2—X2}»

LJ(J+1)—3E(35+1)]& WL(J+M)(JT3I—1)]&

(J(J+1)—Z(Z+1)$& TL(J+Z)(JWZ —1)j&

—2{f2—~}»

Certain simpli6cations are possible in the case of
linear and symmetric rotors. The matrix elements for
these cases are given in the Appendix, No immediate
reduction in the number of elements of my is possible
for the general asymmetric molecule with no symmetry.
It should be apparent, however, that in particular cases
a charge symmetry axis may exist, e.g. , H&O, PH&D, and
in these cases the symmetry may be exploited to reduce
the number of independent elements of mp.

The magnetic moment matrix derived from the fore-
going theory is applied in Part 2 for the case of linear
rotors and symmetric top molecules. In these cases the
diagonal elements of the magnetic moment ms~ yield,
by inspection, the "g-factor" associated with the F
space-6xed axis. Work in progress in this Laboratory
on asymmetric molecules will, when reported, discuss
the practical application of the theory to asymmetric
molecules. Stated simply, a certain transformation„XT,
diagonalizes the free rotational energy matrix of an
asymmetric top (since it is not diagonal in the repre-
sentation of Eq. (27)). The evaluation of XT is given
explicitly in reference 14. This same transformation
must be applied to nzI&, Eq. (25). The diagonal elements
of T'X'm pXT are then used to determine, by inspection,
the eGective molecular "g-factor" in a particular rota-
tional state, .as in the case of linear and symmetric
rotors. OG-diagonal elements may be handled in the
case of near degeneracy by means of the usual perturba-
tion theory applied to the actual interaction energy
of mg with the external F-axis magnetic 6.eld.

Vibrational and Centrifogal Effects

The gyromagnetic tensor elements, Ggg, are seen
from Eqs. (16) and. (21) to be constants for a molecule
under- the assumption of a rigid nuclear structure.
These factors will in general be a function of the
vibrational state and will vary with centrifugal dis-

tortion in an actual molecule. However, it is to be
expected that these eGects will be small and the 6«
would only involve the vibrational and rotational
quantum numbers if their calculation were carried to a
high approximation.

The nuclear contribution, for example, is essentially

the ratio of the second moment of charge

pI eI (b~'+c~')

to the moment of inertia

I.=Z~ ~a(4'+~~')

Therefore, if the ratio eI,/M~ were the same for all

nuclei, vibrational and centrifugal eGects would indeed
be negligible. But it is in fact true that for most nuclei,
except that of hydrogen, the ratio of atomic number
to mass number is about the same, namely about one-
half. Thus, for molecules not involving hydrogen and
for those with only hydrogen oG the axis concerned,
these effects on the nuclear contribution may be
neglected.

Isotopic Effects

The application of the above theory to isotopic mole-
cules is straightforward, since it is only necessary to
transform the G-tensor, Eq. (22), by translation and
rotation in order to correct it to the new center of mass
and the new principal inertial axes. Rotation of the
6-tensor is straightforward. Translation may be ac-
counted for by relations such as the invariance of
expressions of the form of Eq. (1).'5 In fact, when the
hrst moments of the nuclear and electronic charge are
identical at a point on the axis along which translation
is being performed, i,e., no electric dipole moment
exists on that axis, it is evident that the change in 6'
cancels the change in 6".When the nuclear and elec-
tronic charge centers do not coincide on the axis along
which translation is being performed a slight correction
must be made in terms of the electric dipole moment.
Finally, the scale factors such as the I,'s must be
revise(i.

The Zeeman E6'ect on Rotational Absorption Lines

The Zeeman eRect is the splitting of a spectral line
into several components accompanying the application
of a magnetic field to the emitting or absorbing system.
This splitting is of course the result of the removal of
the spatial degeneracy of the energy levels concerned

'5 See reference 3, Chapter X, Sec. 68.
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and is intimately related to the magnetic moment. of
the system. .

For the molecules under discussion, the perturbation
energy due to the magnetic Geld may be written"

E '= —(~, r, MImgIJ, r, M)~, (31)

where (J, r, Mlmzl/, r, M) is a diagonal matrix ele-
ment of Eq. (25) (transformed if necessary for an
asymmetric rotor). This matrix element is directly a
function of the rotational quantum numbers, J,
and M, but may depend slightly on the vibrational
state as explained previously. Examples for linear and
symmetric top molecules are given in the Appendix.
It may be shown in general" that Kq. {31) may be
1CwllttCn Rs

E '= ppMg8—(M=2, J—1, , —J) (32)

where pp eh/2M——~c, the nuclear magnetron, and g is
the splitting factor for the particular level. For sym-
metric tops g is found from the Appendix to be

g(~ K) =g.*+(g- g**)K'—/~(~+1), (33)

where s refers to the symmetry axis and g„=g»."
Therefore, the total energy may be written

E=E'+E '=EP(J, K) ppMgH, — (34)

where E' is the unperturbed energy of the particular
vibrational-rotational level.

Dipole selection rules for M are AM =0, which applies
when the clcetrlc vcctol of thc 1ncldcnt I'Rd1RtloIl ls
parallel to the magnetic field (m-transitions), and.
AM=+1, which applies if it is perpendicular to the
magnetic field (o-transitions). Thus the transition fre-
quencies are

v = vs —(pp/h)(gs —gr)™
(35)".=".~(ps/h) g

H'

where vs=(Es —Er)/h, the frequency of the unsplit
absorption, and the subscripts 1 and 2 refer to the
lower and upper levels respectively. From Eq. (35) it is
seen that if gs ——gt, then v =vs and v, =vs~(pp/h)gsH,
which is a normal Zeema11 effect; that is, there is no
deviation for the m-components, and the r-components
form a symmetricaHy spaced doublet with respect to
the unsplit linc. This is the case for linear molecules in
the ground bending vibrational states and symmetric
top molecules if E=O, since DE=0 for electric dipole
transitions. In general, however, the Zeeman pattern is
anomalous and may consist of several components for
both ~- and O.-transitions. In any case, the vr-transition
measurements give g2

—
g~ directly, and the combination

of m.- and 0-measurements is necessary to evaluate both
'6 Equation (31) is only true for the first-order Zeeman effect,

but is sufIIcient for the present discussion. Detailed discussion of
the Zeeman effect is given in the standard references.

'7 Since XT is diagonal in J and 3f, see second reference 14,', '3"It is convenient to define the dimensionless gyromagnetic
tensor elements as g«~=(h/ps)G«

g~ and g2. It is to be expected that due to centrifugal
distortion many "normal" patterns would become
RnoIQRlous to some deglcc of 1csolutlon.

In some molecules one or more of the nuclei may.
inter'act with the molecular rotation because of the
nuclear moments in the presence of the internal Gelds
of the molecule. If such an interaction is of sufhcient
strength, the rotational absorption lines will exhibit a
resolvable hyperGne structure. Since molecular rota-
tional magnetic moments are of the same order of
magnitude as nuclear magnetic moments, the analysis
of the Zeeman CGect in terms of these moments be-
comes more complicated. The theory of the Zeeman
effect under these conditions has been adapted to
molecular rotational absorptions by Jen" and Coester"
from a similar case in atomic spectra. " It should be
stressed that the .molecular g-factors entering this
theory are not constants of the molecule, but depend
on the rotational state and the g« -tensor just de-
veloped.

Relation of Rotational Moments to
Magnetic Susceptibilities

The magnetic susceptibility for 'Z molecules given by
Van Vleck, ' is

Les f e
Z (r;').,+21-I

6mc' s &2m. &

, I( l~.io)l'xZ' {36)
n gn —+0

v here I is Avogadro's number and ~ refers to the ~th
electron of the molecule. Aside from dimensional factors,
the only difference of the second term of Zq. (36) from
the diagonal elements of the electronic contribution to
the rotational moment tensor, Eq. (21), is that in
Eq. (36) the matrix elements are referred to the space-
Gxed Z-axis, while the diagonal rotational moment
tensor elements are referred to the Inolecule-Gxed axes,
g, b, and c. Howcvcrq lIl avclag1ng ovcl R volume of gRS
the following replacement may be made

Avl(ml~slo) I'=pl l(~l~ Io) I'
+ I {"l~plo) I'+ l(~l J-.lo) I'I (»)

Thus, once the diagonal elements g~", g~~", and g„"are
known, the paramagnetic term in the susceptibility can
be calculated.

ZeemaIl efkct measurements on rotational absorp-
tions do not yield the g«" elements directly, but rather
the elements g«, which are the sum of the electronic
g«" and the nuclear g«'. However, since the elective
internuclear distances are usually known from analysis

"C.K. Jen, Phys. Rev. 74, 13M (1948); Phys. Rev. 76) 1494
(1949).

20 F. Coester, Phys. Rev. 77, 454 (1950).
2' E. Back and S. A. Goudsmit, Z. Physik 47, 174 (1928).
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of the rotational spectrum, the nuclear contribution to
the g«can be easily calculated from Eq. (16), and thus
the g«" become known from Zeeman measurements.

The diamagnetic term in the susceptibility depends
only on the electronic charge density distribution in
the electronic ground state of the molecule. This can
be estimated fairly well; or, if the susceptibility is also
measured, then the diamagnetic term and thus the

'4 ~'4 Av

for the electronic ground state becomes known.
The susceptibility expression in terms of the elec-

tronic part of the rotational gyromagnetic tensor ele-
ments becomes

There would presumably be a temperature-dependent
paramagnetic contribution to the susceptibility result-
ing from the rotational magnetic moments, since these
are not held induced. However, such a term' would be
very small compared with those of Eq. (38).

2. MEASUREMENTS

Carbonyl Sulfide (OCS): A Linear Rotor

The Zeeman eGect on the J= 1—&2 rotational transi-
tion of 0'6C"S'2 in its ground vibrational state was
observed. Experiments were performed for both m- and fT-

transitions using linearly polarized radiation, and for
the O.-transitions using circularly polarized radiation.
The method and apparatus are described in a forth-
coming report.

Carbonyl sulMe was known to be a linear mole-
cule, ""and therefore, on the basis of the theory of
Part I, a normal Zeeman efkct was to be expected and
was in fact observed.

The vr-transitions were observed at about 3000 gauss
with a full line width at half-intensity of about 0.10
Mc/sec. No change in line shape or intensity was per-
ceptible from that of the zero field line. The 0--observa-
tions resulted in a doublet, the components being of
equal intensity. The measured splittings are given i'
Table II. The value of g for this line represents the
g-factor along an axis normal to the nuclear axis, as may
be seen from Part I and the Appendix.

The circular polarization experiment was set up for
observing AM=+1 transitions and again for AM= —1

transitions. Both observations indicated that the g-fac-
tor was negative. A negative OCS g-factor was also
required for consistency in experiments on the hyper-
fine pattern of the 1=1~2 transition of 0"C"S"
reported by Eshbach, Hillger, and Jen'4 and to be
described in detail in a separate report.

"Strandberg, Wentink, and Kyhl, Phys. Rev. 75, 270 (1949).
2' G. Herzberg, Molecular Spectra and Molecular Structure:

II. Infrared and Raman Spectra of Polyatomic Molecules (D. Van
Nostrand Company, Inc. , New York, 1945).

~4 Eshbach, Hillger, and Jen, Phys. Rev. 80, 1106 (1950).

TAsx,z IT. a Zeeman component measurements for the- J=1~2
rotational absorption of 0"C'~S" at 24,325.92 Mc/sec.

hu measured'
(Mc/sec)

0.175
0.198
0.163
0.167

(gauss)

4929
4664
4496
4280

g =hv/2II, OIJ
(nuclear units)

0.0233
0.0278
0.0238
0.0256

average =0.0251+0.002

a The measured Ar represents the total splitting between the two e-
components.

Thus, the rotational moments of OCS in its ground
vibrational state are describable by g, =g» ———0.025
&0.002 nuclear unit.

Previous g-factor measurements on OCS have been
made by Coles" and by Jen." Neither of these ob-
servers determined the sign of the g-factor, and. their
results had rather large uncertainties. Since both the
sign and magnitude were important for a check on the
0"C"S" experiments, these measurements were re-
peated. Jen's measured value is

I g(oCS) I
=0.029

&0.006 nuclear unit.

Ammonia (N"H&) A Symmetric Top Molecule

The micl owave spectrum of ammonia ls unique ln
several respects. Besides being the first molecular ab-
sorption spectrum to have been observed and studied
in the . microwave region'~*'8 and having unusually
strong absorptions, this molecule has a large number of
lines with quite different rotational quantum numbers
in a compact region of the spectrum. The reason that
this is possible lies in the unusual nature of the transi-
tion involved. Ammonia is a pyramidal, symmetric
top molecule, whose microwave spectrum arises from
transitions between vibrational inversion levels with the
same rotational quantum numbers, J and E. The
inversion which takes place is that of the nitrogen
through the plane of the hydrogens along the axis of
symmetry. There are two stable positions for the nitro-
gen nucleus, one on either side of this plane, with a
rather low potential barrier separating them. The
coupling or "tunnel" effect, between the two regions
where classical vibrations could occur, splits the ground
vibrational level into a closely-spaced doublet, of about
22,000 Mc/sec separation. The height of the barrier
depends noticeably on centrifugal eGects and therefore
on the rotational quantum numbers, J and E. The
resulting lines occur over a few thousand megacycles,
centering at about 22,000 Mc/sec. "

The convenient position of these lines and their high

~' D. K. Coles, Microwave Spectroscopy, Advances in Electronics
{Academic Press, Inc. , New York, 1950), Vol. II.

~6C. K. Jen, Cruft Laboratory Technical Report No. 116,
Harvard, October 5, 1950; also as Phys. Rev. 81, 197 (1951).

"C.E. Cleeton and N. H. Williams, Phys. Rev. 45, 234 (1934).
~s B. Bleany and R. P. Penrose, Nature 157, 339 (1936}."P.Kisliuk and C. H. Townes, J. Research, Natl. Bur. Stand-

ards, RP 2107, 44, 611 (1950).
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TABLE IIl. 0 component Zeeman measurements for
ammonia inversion lines.

Molecule

N1583

Line
J, K

3, 1
2, 1
3 2
1 1
6, 5
3, 3
6, 6

H =5635

Frequency (29)
(Mc/sec)

21,202.30
22,044.28
21,783.98
22,624.96
21,667.93
22, 789.41
23,922.32

gauss
dva

(Mc/
sec)

4.72
4.75
4.60
4.48
4.43
4.29
4.24

K2/J(J+1) g(J, K)

0.083
0.167
0.333
0.500
0.595
0.750
0.859

0.550
0.553
0.535
0.521
0.516
0.500
0.494

N14Hg 3 2 22,834.10 4.60 0.333 0.535

a The measured Av represents the total split ting between the two
components.

absorption coefficients allow one almost free choice of
the values of J and E for the purpose of studying the
rotational magnetic moment of this symmetric top.
The g-factor for a symmetric top was given in Eq. (33).
The value of X'/J(7+1) is just the square of the
direction cosine between the total angular momentum
vector, J, and the symmetry axis z, along which there
is a component of the total angular momentum in an
amount EA. Thus it is seen that for J=E the magnetic
moment will be essentially due to g„, while for E=O it
depends only on g„=g». Therefore the measurements
were made on lines chosen so as to give a wide range
of values of E'/J(7+1)

For these inversion transitions, the selection rules,
DJ=O and DE=0, result in the same g-factor for both
the upper and the lower energy levels, since the change
in g(J, X) between the two inversion states is probably
negligible. It should be noted that this is not the case
for symmetric top rotational transitions, where the
selection rules, AJ=&1 and AE=O, give rise to an
anomalous Zeeman eGect.

The measurements were made on the isotopic mole-
cule N"H3, since for the more abundant N"H3 a re-
solvable interaction between the N" nuclear quadrupole
moment and the gradient of the molecular electric
6eld complicates the spectrum. This does not occur for
N"H3 and the observed Zeeman eGect was normal as
expected. The splitting of the O.-component doublets
was measured for seven lines with values of E'/J(7+0)
ranging from 0.083 to 0.859 and all measuremerIts were
made in a field of 5635 gauss. The measured splittings
and resulting g(J, E)'s are listed in Table III. Each
entry im this table represents an average of from three
to six measurements.

Figure 1 shows a plot of these results, with the esti-
mated experimental error (~&1 percent) indicated by
the vertical bars through the plotted points. An addi-
tional consistent error of about ~1 percent in the
measurement of the magnetic field is possible. The inter-
cepts at E'/J(J+1) =1 and 0 are g„and g„, respec-
tively. Thus, g,=g» ——+0.560&0.007 and g„'=+0.484
&0.007. The signs of the g-factors were again deter-
mined by the circular polarization method.

A measurement on the N'4H3 line for J=3, E=2 was

made, since for this particular line there is no hyper6ne
pattern. Experimentally the g(3, 2) for N "H3 coincides
with that for N"H3, however, one would expect that a
small difference actually exists. According to the theory
of Part I, the g„should be the same for both molecules
and a calculation shows that the g (N"H3) should be
about 0.1 percent higher than the g„(X"H~). Thus, to
the accuracy of the present experiments no measurable
difference between g(3, 2) for N "H~ and N"Hs should
exist.

Jen" has made similar measurements on N"H3 in

connection with the Zeeman eGect on the N' H3 hyper-
fine pattern. However, his measurements were only on
components of lines for which J=E, and for these he
of course detected no variation of g with J and E.
He reports g(N"H3)=0.477&0.03 and since he used
only J=E lines, this is essentially to be compared with

g.z above.

i ~i Av

for the ground electronic state of these molecules
through Eq. (38). Solving Eq. (38) for

Av

90' =ebb =0.5600560~ "

0.550

0.540

0,530

0.52C

0.510

0.500

0.490

'l, 1 2, 1

0.480
0 02

52 I I 65
0.4

~ 0.6
K

J(J+I)

5,5 6,6=J,K
I I

0.8 1.0

Fio. 1. Ammonia molecular g-factor.

IIandbook of Chemistry and Physics (Chemical Rubber Pub-
lishing Company, Cleveland, Ohio, 1947), thirtieth edition,
p. 1991.

Correlation with Susceptibilities

The results of the measurements of the rotational
g-factors of OCS and NH3 may be used in conjunction
with the published susceptibilities" to yield a value of
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TAnLE IV, Calculated values of (r')A~ for electronic ground states.

Specific suscepti-
biiitr (2S) (cgs (r&)A&(y) (rA)Ay(g") (rA)Ay [(r')Ay]i

Molecule electromagnetic) 10 '6 cm' 10 '6 cm' 10 '6 cm' 10 g cm

ocs
NH3
H2

—0.48X10 «
—1.1 )(10 8

—1.97)(10 6

0.34
0.66
0.697

1.44
0.13
0.016

1.78
0.79
0.713

1.34
0.88
0.845

a Estimated, see text.

and dividing by the total number of electrons yields
an expression for (r')A, which is the sum of a term de-
pending on the susceptibility and a term depending on
the g«'"s. Both of these terms are positive for a dia-
magnetic gas.

The value of (r,s)A„has been calculated in this way
for OCS, NHA, and Hs (using Ramsey's data). ' The
magnetic susceptibility of OCS is not listed but that
of both CO~ and CS2 has been measured. "These specific
susceptibility values are x(COs)= —0.423)&10 ' and

y(CSs) = —0.54&&10 ', and since the structures of the
three molecules OCS, CO2 and CS2 are very similar, it is
not unreasonable to take )((OCS) to be the average of
that for the other two. In the following it is therefore
taken as )((OCS) = —0.48&&10 '. Calculations in the
case of H2 are given here for comparison purposes. The
g-factor of H~ is more accurately known than for any
other molecule, the most precise measurement having
been made by Ramsey' using the molecular beam
technique.

The calculated values of the (r')A„ for these molecules
are given in Table IV, along with the values of the
contributions of the susceptibility and g"-factor terms
to the (r')A„.

The distance, r, is here taken from the center of
gravity of the molecule. In each case, rough calculations
show that these results are reasonable numbers, and
more precise evaluation would require use of specific
wave functions.

The relative magnitudes of the contributing terms,
(r')A„(x) and (r')A„(g"), should be noted. In the case of
OCS the larger contribution comes from g", which is
to be expected, since the majority of the electrons are
in the almost spherical potential of their own nucleus,
that is to say, the inner shell electrons are fairly free to
precess about their own nucleus, but (r')A, is measured
from the molecular center of gravity. Thus, in the case
of a molecule with nuclei far. from the center of gravity,
the main contribution will come from (r')A„(g"), while

(r')A„(x) is a measure of the precession about the indi-

vidual nuclei. The opposite case is demonstrated by
the values for H~, where an almost free precession can
take place about the molecular center of gravity itself.

TABLE V. Estimated and measured g-factors.

Molecule
Estimated positive limit
g-( =g») gcc

Measured values
g ( =g») gcc

H2
NH3
OCS

+1.0
+0.60
+0.045

+0.50
+0.878
+0.560—0.025

+0.484

a See reference 9.

for example, and dividing by the corresponding moment
of inertia,

One of the main errors in this procedure arises from
the neglect of polarization e6ects on inner shells, and
for nuclei of large atomic number this could cause a
large relative error. However, for molecules containing
such nuclei, the g-factors will generally be small and
the absolute error will not be serious. It appears that
this procedure will at least give the positive limit to
the g-factors.

Table V is a comparison of the g-factors estimated in
this way with the measured values.

Estimation of the Positive Limit of
Rotational g-Factors

Following the ideas in these susceptibility considera-
tions, and the discussion of rotational moments given

by Wick, it is possible to formulate a means of esti-
mating the rotational g-factors.

As has been pointed out, the nuclear part of the
g-factors can be satisfactorily calculated from a knowl-

edge of the eGective internuclear distances in a given
vibration-rotation state; but the electronic part is in

general of comparable magnitude and more difFicult to
estimate. Thus, in general, the net g-factors become
differences of two large numbers. However, following
the previous discussion, the main effect of the inner
electronic shells in the rotating molecule is a precession
which cancels off a comparable amount of charge of
their own nucleus as far as the magnetic moments are
concerned. Further, from the case of hydrogen, it is
seen that the valence electrons can very roughly be
said to precess about an average position between the
atoms they are binding and at about the rotational
velocity. Thus, considering a charge at the position of
the nuclei of a magnitude equal to the atomic number
minus the number of inner shell electrons, and the
valence electrons to be located at&their average posi-
tions, the elements of the g-factor tensor can be esti-
mated by calculating the second ynoments of such a
charge distribution

Q ; c,(b;s+c;s)



J. R. ESH BACH AN D M. %'. P. STRAND 8 ERG

APPENDIX

Rotational magnetic moment matrix elements on the space-6xed Z(M) axis.

1. General Molecule

g»+gum K g»+gw . E ~gv*
(J, K, M {~s{J, K, M) = @0M + g-—— +i

2 J(J+1) 2 J(J+1)
LJ(J+1)—E(E+1)j'*

(J, E, M {~s~ J, Z+ 1, M) =&,M
4J(J+1)

~ {~TK(g-+ g*.*)+(E+1)(g-+g-*)l+E(g"+g"*)+(K+1)(g"+g*.*)I,

{LJ(J+1)—E(E+1)XJ(J+1)—(K+1)(K+2)3 I
'

(J, K, M~mz{ J, K+2, M)= poM
8J(J+1)

&& {2(gww g»)+~Lf*w+g*w +gw*+g» jI ~

(J, E, M{nzsi 9+1,E, M) =
2(J+ 1)

(J, K, M~~, ~J+1, K~1, M)=
2(J+1)

L(J+1)'—E'jL(J+1)'—3II2] l

(2J+1)(2J+3)

&& {E(2g*.—g**—g-) —~LJ(g*.—g.*)+(I+2)(g*.*—g.**)jI,
(JwK+ 1)(JOE+2)L(J+1)'—M'j '

(2J+1)(2J+3)

&& {—E(~g.*~g")—(E~1)(~g.**~g.**)

(J, E, M~~,
~
J+1,E~2, M)=

4(J+ 1)

+ (J~K)(g.. ~g*.)+(J~E+1)(g"*~'g***I,

(J&E)(JOE+1)(JOE+2)(JOE+3){(J+1)'—M'j &

(2J'+ 1)(2J+3)

x {a (g.. g„,) ',i(g—.„+g.—,*-+g,.+g,.*)I

2. Syecial Cases

go(g, —g,) L(J+1)'—E'j{(J+1)'—M'j &

(J, E, M~ .~J+1, E, M)=
(J+1) (2J+1)(2J+3)

A. Linear Rotor (ground bending vibrational state): s refers to nuclear axis, thus g,=g~, g„=0,
(J, Mimsy J, M)= poMg„.

B. Symmetric Rotor: 2 refers to symmetry axis, thus g,„=g».

(I, K, Ming{ I, E, M) =poM{g„+'(g„g„)K'/J(J+1)—I

Note: The total matrix may be constructed from its hermitian property. The g„s are dimensionless and
dered by

ggg' = IIGgg'/po~

where po is the nuclear magneton, po ——ek/2M„c.


